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Abstract
We derive finite time error bounds for estimating
general linear time-invariant (LTI) systems from
a single observed trajectory using the method of
least squares. We provide the first analysis of the
general case when eigenvalues of the LTI system
are arbitrarily distributed in three regimes: stable,
marginally stable, and explosive. Our analysis
yields sharp upper bounds for each of these cases
separately. We observe that although the under-
lying process behaves quite differently in each of
these three regimes, the systematic analysis of a
self–normalized martingale difference term helps
bound identification error up to logarithmic fac-
tors of the lower bound. On the other hand, we
demonstrate that the least squares solution may be
statistically inconsistent under certain conditions
even when the signal-to-noise ratio is high.

1 Introduction
Finite time system identification—the problem of estimat-
ing the parameters of an unknown dynamical system given
a finite time series of its output—is an important problem
in the context of time-series analysis, control theory, eco-
nomics and reinforcement learning. In this work we will
focus on obtaining sharp non–asymptotic bounds for linear
dynamical system identification using the ordinary least
squares (OLS) method. Such a system is described by
Xt+1 = AXt + ηt+1 where Xt ∈ Rd is the state of the
system and ηt is the unobserved process noise. The goal
is to learn A by observing only Xt’s. Our techniques can
easily be extended to the more general case when there is a
control input Ut, i.e., Xt+1 = AXt +BUt + ηt+1. In this
case (A,B) are unknown, and we can choose Ut.

Linear systems are ubiquitous in control theory. For exam-
ple, proportional-integral-derivative (PID) controller is a
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popular linear feedback control system found in a variety
of devices, from planetary soft landing systems for rock-
ets (see e.g. (Açıkmeşe et al., 2013)) to coffee machines.
Further, linear approximations to many non–linear systems
have been known to work well in practice. Linear systems
also appear as auto–regressive (AR) models in time series
analysis and econometrics. Despite its importance, sharp
non–asymptotic characterization of identification error in
such models was relatively unknown until recently.

In the statistics literature, correlated data is often dealt with
using mixing–time arguments (see e.g. (Yu, 1994)). How-
ever, a fundamental limitation of the mixing-time method is
that bounds deteriorate when the underlying process mixes
slowly. For discrete linear systems, this happens when
ρ(A)—the spectral radius of A—approaches 1. As a result
these methods cannot extend to the case when ρ(A) ≥ 1.
More recently there has been renewed effort in obtaining
sharp non–asymptotic error bounds for linear system identi-
fication (Faradonbeh et al., 2017; Simchowitz et al., 2018).
Specifically, (Faradonbeh et al., 2017) analyzed the case
when the system is either stable (ρ(A) < 1) or purely ex-
plosive (ρ(A) > 1). For the case when ρ(A) < 1 the
techniques in (Faradonbeh et al., 2017) are similar to the
standard mixing time arguments and, as a result, suffer from
the same limitations. When the system is purely explo-
sive, the authors of (Faradonbeh et al., 2017) show that
finite time identification is only possible if the system is
regular, i.e., if the geometric multiplicity of eigenvalues
greater than unity is one. However, as discussed in (Sim-
chowitz et al., 2018), the bounds obtained in (Faradonbeh
et al., 2017) are suboptimal due to a decoupled analysis
of the sample covariance,

∑T
t=1XtX

′
t, and the martingale

difference term
∑T
t=1Xtη

′
t+1. A second approach, based

on Mendelson’s small–ball method, was studied in (Sim-
chowitz et al., 2018). Such a technique eschewed the need
for mixing-time arguments and sharper error bounds for
1 − C/T ≤ ρ(A) ≤ 1 + C/T could be obtained. The au-
thors in (Simchowitz et al., 2018) argue that a larger signal-
to-noise ratio, measured by λmin(

∑T−1
t=0 AtAt′), makes it

easier to estimate A. Although this intuition is consistent
for the case when ρ(A) ≤ 1, it does not extend to the
case when eigenvalues are far outside the unit circle. Since
XT =

∑T
t=1A

T−tηt, the behavior of XT is dominated by
{η1, η2, . . .}, i.e., the past, due to exponential scaling by
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{AT−1, AT−2, . . .}. As a result, X1 depends strongly on
{X2, . . . , XT } and standard techniques of creating “inde-
pendent” blocks of covariates fail.

The problem of system identification has received a lot
of attention. Asymptotic results on identification of AR
models can be found in (Lai & Wei, 1983). Some of the
earlier work on finite time identification in systems theory
include (Campi & Weyer, 2002; Vidyasagar & Karandikar,
2006). A more general setting of the problem considered
here is whenXt is observed indirectly via its filtered version,
i.e., Yt = CXt whereC is unknown. The single input single
output (SISO) version of this problem, i.e., when Yt, Ut are
numbers, has been studied in (Hardt et al., 2016) under
the assumption that system is stable. Provable guarantees
for system identification in general linear systems was also
studied in (Oymak & Ozay, 2018). However, the analysis
there requires that ||A||< 1. Generalization bounds for
time series forecasting of non–stationary and non–mixing
processes have been developed in (Kuznetsov & Mohri,
2018).

2 Contributions
In this paper we offer a new statistical analysis of the or-
dinary least squares estimator of the dynamics Xt+1 =
AXt + ηt+1 with no inputs. Unlike previous work, we do
not impose any restrictions on the spectral radius of A and
provide nearly optimal rates (up to logarithmic factors) for
every regime of ρ(A). The contributions of our paper can
be summarized as follows

• At the center of our techniques is a systematic analysis
of the sample covariance

∑T
t=1XtX

′
t and a certain

self normalized martingale difference term. Although
such a coupled analysis is similar in flavor to (Sim-
chowitz et al., 2018), it comes without the overhead
of choosing a block size and applies to a general case
when covariates grow exponentially in time.
• Specifically, for the case when ρ(A) ≤ 1, we recover

the optimal finite time identification error rates previ-
ously derived in (Simchowitz et al., 2018). For the
case when all eigenvalues are outside the unit circle,
we argue that small ball methods cannot be used. In-
stead we use anti–concentration arguments discussed
in (Faradonbeh et al., 2017; Lai & Wei, 1983). By lever-
aging subgaussian tail inequalities we sharpen previous
error bounds by removing polynomial factors. We also
show that this analysis is indeed tight by deriving a
matching lower bound.

• We provide the first analysis of the general case when
eigenvalues of A are arbitrarily distributed in three
regimes: stable, marginally stable and explosive. This
involves a careful analysis of the noise-covariate cross
terms as the underlying process behaves differently in
each of these regimes.

• We show that when A does not satisfy certain reg-
ularity conditions, OLS identification is statistically
inconsistent, even when signal-to-noise ratio is high.
Our result indicates that consistency of OLS identifi-
cation depends on the condition number of the sample
covariance matrix, rather than the signal-to-noise ratio
itself.

3 Notation and Definitions
A linear time invariant system (LTI) is parametrized by a
matrix, A, where the observed variable, Xt, indexed by t
evolves as

Xt+1 = AXt + ηt+1. (1)

Here ηt is the noise process. Denote by ρi(A) the absolute
value of the ith eigenvalue of the d× d matrix A. Then

ρmax(A) = ρ1(A) ≥ ρ2(A) ≥ . . . ≥ ρd(A) = ρmin(A).

Similarly the singular values of A are denoted by σi(A).
For any matrix M , ||M ||op= ||M ||2.
Definition 1. A stable LTI system is that where ρmax(A) <
1. An explosive LTI system is that where ρmin(A) > 1.

For simplicity of exposition, we assume that X0 = 0 with
probability 1. All the results can be obtained by assuming
X0 to be some bounded vector.
Definition 2. A random vector X ∈ Rd is called isotropic
if for all x ∈ Rd we have

E〈X,x〉2 = ||x||22
Assumption 1. {ηt}∞t=1 are i.i.d isotropic subgaussian and
coordinates of ηt are i.i.d. Further, let f(x) be the pdf of
each noise coordinate then the essential supremum of f(·)
is bounded above by C <∞.

We will deal with only regular systems, i.e., LTI systems
where eigenvalues of A with absolute value greater than
unity have geometric multiplicity one. We will show that
when A is not regular, OLS is statistically inconsistent.

Define the data matrix X and the noise matrix E as

X =


X ′0
X ′1

...
X ′T

 , E =


η′1
η′2
...

η′T+1,


where the superscript a′ denotes the transpose. Then X, E
are (T + 1)× d matrices. Consider the OLS solution

Â = arg min
B

T∑
t=0

||Xt+1 −BXt||22.

One can show that

A− Â = ((X′X)+X′E)′ (2)
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where M+ is the pseudo inverse of M. We define

YT = X′X =

T∑
t=0

XtX
′
t, ST = X′E =

T∑
t=0

Xtη
′
t+1.

To analyze the error in estimating A, we will aim to bound
the norm of (X′X)+X′.

We will occasionally replace Xt (or X(t)) with the lower-
case counterparts xt (or x(t)) to denote state at time t, when-
ever this does not cause confusion. Further, we will use C, c
to indicate universal constants that can change from line to
line. Define the Gramian as

Γt(A) =

t∑
k=0

AkAk′ (3)

and a Jordan block matrix Jd(λ) as

Jd(λ) =


λ 1 0 . . . 0
0 λ 1 . . . 0
...

...
. . . . . .

...
0 . . . 0 λ 1
0 0 . . . 0 λ


d×d

(4)

We present the three classes of matrices that will be of
interest to us:

• The perfectly stable matrix class, S0

ρi(A) ≤ 1− C

T

for 1 ≤ i ≤ d.
• The marginally stable matrix, S1

1− C

T
< ρi(A) ≤ 1 +

C

T

for 1 ≤ i ≤ d.
• The regular and explosive matrix, S2

ρi > 1 +
C

T

for 1 ≤ i ≤ d.

Slightly abusing the notation, whenever we write A ∈ Si ∪
Sj we mean that A has eigenvalues in both Si,Sj .
Critical to obtaining refined error rates, will be a result
from the theory of self–normalized martingales. We let
F t = σ(η1, η2, . . . , ηt, X1, . . . , Xt) to denote the filtration
generated by the noise and covariate process.

Proposition 3.1. Let V be a deterministic matrix with V �
0. For any 0 < δ < 1 and {ηt, Xt}Tt=1 defined as before,

we have with probability 1− δ

||(ȲT−1)−1/2
T−1∑
t=0

Xtη
′
t+1||2

≤ R

√√√√8d log

(
5det(ȲT−1)1/2ddet(V )−1/2d

δ1/d

)
(5)

where Ȳ −1
τ = (Yτ + V )−1 and R2 is the subGaussian

parameter of ηt.

The proof can be found in appendix as Proposition 9.2. It
rests on Theorem 1 in (Abbasi-Yadkori et al., 2011) which is
itself an application of the pseudo-maximization technique
in (Peña et al., 2008) (see Theorem 14.7).

Finally, we define several A-dependent quantities that will
appear in time complexities in the next section.

Definition 3 (Outbox Set). For the space Rd define the
a–outbox, Sd(a), as the following set

Sd(a) = {v| min
1≤i≤d

|vi|≥ a}

Sd(a) will be used to quantify the following norm–like quan-
tities of a matrix:

φmin(A) =

√√√√ inf
v∈Sd(1)

σmin

( T∑
i=1

Λ−i+1vv′Λ−i+1′
)

(6)

φmax(A) =

√√√√ sup
||v||2=1

σmax

( T∑
i=1

Λ−i+1vv′Λ−i+1′
)

(7)

where A = P−1ΛP is the Jordan normal form of A.

ψ(A) is defined in Proposition 3.2 and is needed for error
bounds for explosive matrices.

Proposition 3.2 (Proposition 2 in (Faradonbeh et al., 2017)).
Let ρmin(A) > 1 and P−1ΛP = A be the Jordan decom-
position of A. Define zT = A−T

∑T
i=1A

T−iηi and

ψ(A, δ) = sup

{
y ∈ R : P

(
min

1≤i≤d
|P ′i zT |< y

)
≤ δ
}

where P = [P1, P2, . . . , Pd]
′
. Then

ψ(A, δ) ≥ ψ(A)δ > 0

Here ψ(A) = 1
2d sup1≤i≤d C|P ′

i
zT |

where CX is the essential

supremum of the pdf of X .

We summarize some definitions in Table 1 for convenience
in representing our results.
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Tη(δ) = C
(

log 2
δ + d log 5

)
Ts(δ) = C

(
d log (tr(ΓT (A)) + 1) + 2d log 5

δ

)
c(A, δ) = Ts(

2δ
3T )

β0(δ) = inf
{
β|β2σmin(Γb 1

β c
(A)) ≥

(
16ec(A,δ)
Tσmin(AA′)

)}
Tms(δ) = inf

{
T
∣∣∣T ≥ Cc(A,δ)

σmin(AA′)

}
Tu(δ) =

{
T
∣∣∣(4T 2σ2

1(A−b
T+1

2 c)tr(ΓT (A−1)) + T tr(A−T−1ΓT (A−1)A−T−1′)
δ

)
≤ φmin(A)2ψ(A)2δ2

2σmax(P )2

}
γ(A, δ) =

4φmax(A)2σ2
max(A)

φmin(A)2σ2
min(A)ψ(A)2δ2

(1 + 1
c log 1

δ )tr(P (ΓT (A−1))P ′)I

γs(A, δ) =

√
8d
(

log
(

5
δ

)
+ 1

2 log
(

4tr(ΓT (A)) + 1
))

γms(A, δ) =

√
16d log (tr(ΓT (A)) + 1) + 32d log

(
15T
2δ

)
γe(A, δ) =

√
dσmax(P )

φmin(A)ψ(A)δ

√
log 2

δ + 2 log 5 + log (1 + γ(A, δ))

Table 1. Definitions of key quantities in the paper

4 Main Results
We will first show non–asymptotic rates for the three sep-
arate regimes, followed by the case when A has a general
eigenvalue distribution.
Theorem 1. The following non-asymptotic bounds hold,
with probability at least 1− δ, for the least squares estima-
tor:

• For A ∈ S0 ∪ S1

||A− Â||2≤
√
C

T
γs

(
A,

δ

4

)
︸ ︷︷ ︸

=O(
√

log ( 1
δ ))

whenever T ≥ max
(
Tη

(
δ
4

)
, Ts

(
δ
4

))
.

• For A ∈ S1

||A− Â||2≤
Cσmax(A−1)√

Tσmin(Γb 1
β0(δ)

c(A))
γms

(
A,

δ

2

)2

︸ ︷︷ ︸
=O(log (Tδ ))

whenever

T ≥ max
(

2Tη

( δ

3T

)
︸ ︷︷ ︸
=O(log T )

, 2Ts

( δ

3T

)
︸ ︷︷ ︸
=O(log T )

, Tms

(δ
2

)
︸ ︷︷ ︸
=O(log T )

)

Since σmin(Γb 1
β0(δ)

c(A)) ≥ α(d) T
log T , we have that

||A− Â||2≤
√

log T

α(d)

γms

(
A, δ2

)2

T

• For A ∈ S2

||A− Â||2≤ Cσmax(A−T ) γe

(
A,

δ

5

)
︸ ︷︷ ︸

=O( 1
δ )

whenever T ∈ Tu

(
δ
5

)
. Since σmax(A−T ) ≤

α(d)(ρmin(A))−T for A ∈ S2, the identification er-
ror decays exponentially with T .

Here C, c are absolute constants and α(d) is a function that
depends only on d.

Remark 1. Tu(δ) is a set where there exists a minimum
T∗ <∞ such that T ∈ Tu(δ) whenever T ≥ T∗. However,
there might be T < T∗ for which the inequality of Tu(δ)
holds. Whenever we write T ∈ Tu(δ) we mean T ≥ T∗.

Proof. We start by writing an upper bound

||A− Â||op ≤ ||Y +
T ST ||op

≤ ||(Y +
T )1/2||op||(Y +

T )1/2ST ||op. (8)

The rest of the proof can be broken into two parts:

• Showing invertibility of YT and lower bounds on the
least singular value

• Bounding the self-normalized martingale term given
by (Y +

T )1/2ST

The invertibility of YT is where most of the work lies. Once
we have a tight characterization of YT , one can simply ob-
tain the error bound by using Proposition 3.1. Here we
sketch the basis of our approach. First, we find determinis-
tic Vup, Vdn, T0 such that

E0 = {0 ≺ Vdn � YT � Vup, T ≥ T0} (9)
P(E0) ≥ 1− δ (10)

The next step is to bound the self–normalized term. Under
E0, it is clear that YT is invertible and we have

(Y +
T )1/2ST = Y

−1/2
T ST .
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Define event E1 in the following way

E1 ={
||ST ||(YT+Vdn)−1≤

√√√√8d log

(
5det(YTV −1

dn + I)1/2d

δ1/d

)}

It follows from Proposition 3.1 that P(E1) ≥ 1− δ. Then

E0 =⇒ YT + Vdn � 2YT =⇒ (YT + Vdn)−1 � 1

2
Y −1
T ,

and we have that under E0

||ST ||Y −1
T
≤
√

2||ST ||(YT+Vdn)−1 .

Now considering the intersection E0 ∩ E1, we get

E0 ∩ E1 =⇒

E0 ∩
{
||ST ||Y −1

T
≤

√√√√16d log

(
5det(VupV −1

dn + I)1/2d

δ1/d

)}
(11)

We replaced the LHS of E1 by the lower bound obtained
above and in the RHS replaced YT by its upper bound under
E0, Vup. Further, observe that P(E0 ∩ E1) ≥ 1− 2δ. Under
E0 ∩ E1 we get

||A− Â||op

≤ 1

σmin(Vdn)︸ ︷︷ ︸
αT

√√√√16d log

(
5det(VupV −1

dn + I)1/2d

δ1/d

)
︸ ︷︷ ︸

βT

(12)

where αT goes to zero with T and βT is typically a constant.
This shows that OLS learnsA with increasing accuracy as T
grows. The deterministic Vup, Vdn, T0 differ for each regime
of ρ(A) and typically depend on the probability threshold
δ. We now sketch the approach for finding these for each
regime.

YT behavior when A ∈ S0 ∪ S1

The key step here is to characterize YT in terms of YT−1.

YT = x0x
′

0 +AYT−1A
′
+

+

T−1∑
t=0

(Axtη
′

t+1 + ηt+1x
′

tA
′
) +

T∑
t=1

ηtη
′

t

� AYT−1A
′
+

+

T−1∑
t=0

(Axtη
′

t+1 + ηt+1x
′

tA
′
) +

T∑
t=1

ηtη
′

t. (13)

Since {ηt}Tt=1 are i.i.d. subgaussian we can show that∑T
t=1 ηtη

′
t concentrates near TId×d with high probability.

Using Proposition 3.1 once again, we will show that with
high probability

T−1∑
t=0

(Axtη
′

t+1 + ηt+1x
′

tA
′
) � −ε(AYT−1A

′
+

T∑
t=1

ηtη
′
t)

where ε ≤ 1/2 whenever ρi(A) ≤ 1 + C/T and T ≥ T0

for some T0 depending only on A. As a result with high
probability we have

YT � (1− ε)AYT−1A
′
+ (1− ε)

T∑
t=1

ηtη
′
t

� (1− ε)
T∑
t=1

ηtη
′
t. (14)

The details of this proof are provided in appendix as Sec-
tion 10. When 1 − C/T ≤ ρi(A) ≤ 1 + C/T we note
that the bound in Eq. (14) is not tight. The key to sharp-
ening the lower bound is the following observation: for
T > max

(
2Tη

(
δ

3T

)
, 2Ts

(
δ

3T

)
, Tms

(
δ
2

))
we can ensure

with high probability
t∑

τ=1

ητη
′
τ = tI

Yt � (1− ε)AYt−1A
′
+ (1− ε)tI (15)

simultaneously for all t ≥ T/2. Then we will show that
ε = β0(δ) in Table 1. The sharpening of ε from 1/2 to β0(δ)
is only possible because all the eigenvalues of A are close
to unity. In that case by successively expanding Eq. (15) we
get

YT � (1− ε)1/β0(δ)AYT/2−1A
′
+
T

2

1/β0(δ)∑
t=1

(1− ε)tAtAt′

(16)
and then Eq. (16) can be reduced to

YT � (1− ε)1/β0(δ)AYT/2−1A
′
+
T (Γ1/β0(δ)(A)− I)

4e
.

We show that

1/β0(δ) ≥ α(d)TR2σmin(AA′)

8ec(A, δ)

and by Proposition 8.5, YT � α(d)T 2 for some function
α(·) that depends only on d. The details of the proof are
provided in appendix as Section 11.

To get deterministic upper bounds for YT with high proba-
bility, we note that

YT � tr

(
T∑
t=1

XtX
′
t

)
I.
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Then we can use Hanson–Wright inequality or Markov in-
equality to get an upper bound as shown in appendix as
Proposition 9.4.

YT behavior when A ∈ S2

The concentration arguments used to show the convergence
for stable systems do not work for unstable systems. As
discussed before Xt =

∑T
τ=1A

t−τηt and, consequently,
XT depends strongly on X1, X2, . . .. Due to this depen-
dence we are unable to use typical techniques where Xis
are divided into roughly independent blocks of covariates.
to obtain concentration results. Motivated by (Lai & Wei,
1983), we instead work by transforming xt as

zt = A−txt

= x0 +

t∑
τ=1

A−τητ . (17)

The steps of the proof proceed as follows. Define

UT = A−T
T∑
t=1

xtx
′
tA
−T ′ = A−TYTA

−T ′

=

T∑
t=1

A−T+tztz
′
tA
−T+t′

FT =

T−1∑
t=0

A−tzT z
′

TA
−t′ (18)

We show that
||FT − UT ||op≤ ε.

Here ε decays exponentially fast with T . Then the lower and
upper bounds of UT can be shown by proving correspond-
ing bounds for FT . A necessary condition for invertibility
of FT is that the matrix A should be regular (in a later sec-
tion we show that it is also sufficient). If A is regular, the
deterministic lower bound for FT is fairly straightforward
and depends on φmin(A) defined in Definition 3. The upper
bound can be obtained by using Hanson–Wright inequality.
The complete steps are given in appendix as Section 12.

The analysis presented here is sharper than (Faradonbeh
et al., 2017) as we use subgaussian matrix inequalities such
as Hanson–Wright Inequality (Theorem 4) to bound the er-
ror terms in contrast to uniformly bounding each noise vari-
able and applying a less efficient Bernstein inequality. An-
other minor difference is that (Lai & Wei, 1983),(Faradon-
beh et al., 2017) consider ||UT−F∞|| instead and as a result
they require a martingale concentration argument to show
the existence of z∞.

Lower bounds for identification error when ρ(A) ≤ 1 have
been derived in (Simchowitz et al., 2018). In Table 1 and

Theorem 1, the error in identification for explosive matri-
ces depends on δ as 1

δ unlike stable and marginally stable
matrices where the dependence is log 1

δ . Typical minimax
analyses, such as the one in (Simchowitz et al., 2018), are
unable to capture this relation between error and δ. Here we
show that such a dependence is unavoidable:

Proposition 4.1. Let A = a ≥ 1.1 be a 1–D matrix and
Â = â be its OLS estimate. Then whenever Ca2T 2a−T >
δ2, we have with probability at least δ that

|a− â|≥ C(1− a−2)δ

−a2(log δ)3

where C is a universal constant. If Ca2T 2a−T ≤ δ2 then
with probability at least δ we have

|a− â|≥
(C(1− a−2)

−δ log δ

)
a−T

Our lower bounds indicate that 1
δ is inevitable in Theorem 1,

i.e., when Ca2T 2a−T ≤ δ2. Second, when Ca2T 2a−T >
δ2, our bound sharpens Theorem B.2 in (Simchowitz et al.,
2018). The proof and an explicit comparison is provided in
Section 17.

For the general case we use a well known fact for matrices,
namely, that there exists a similarity transform P̃ such that

A = P̃−1

Ae 0 0
0 Ams 0
0 0 As

 P̃ (19)

Here Ae ∈ S0, Ams ∈ S1, As ∈ S2. Although one might
be tempted to use Theorem 1 to provide error bounds, mix-
ing between different components due to the transformation
P̃ requires a careful analysis of identification error. We
show that error bounds are limited by the slowest compo-
nent as we describe below. We do not provide the exact
characterization due to a shortage of space. The details are
given in appendix as Section 14.

Theorem 2. For any regular matrix A we have with proba-
bility at least 1− δ,

• For A ∈ S1 ∪ S2, ||A− Â||2≤ poly(log T,log 1
δ )

T when-
ever

T ≥ poly
(

log
1

δ

)
• For A ∈ S0 ∪ S1 ∪ S2, ||A − Â||2≤ poly(log T,log 1

δ )√
T

whenever

T ≥ poly
(

log
1

δ

)
Here poly(·) is a polynomial function.
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Proof. Define the partition of A as Eq. (19). Since

Xt =

t∑
τ=1

Aτ−1ηt−τ+1

X̃t = P̃−1Xt =

t∑
τ=1

Ãτ−1 P̃−1ηt−τ+1︸ ︷︷ ︸
η̃t−τ+1

(20)

then the transformed dynamics are as follows:

X̃t+1 = ÃX̃t + η̃t+1.

Here {η̃t}Tt=1 are still independent. Correspondingly we
also have a partition for X̃t, η̃t

X̃t =

 Xe
t

Xms
t

Xs
t

, η̃t =

 ηet
ηmst
ηst

 (21)

Then we have

T∑
t=1

X̃tX̃
′
t =

T∑
t=1

 Xe
t (Xe

t )′ Xe
t (Xms

t )′ Xe
t (Xs

t )′

Xms
t (Xe

t )′ Xms
t (Xms

t )′ Xms
t (Xs

t )′

Xe
t (Xs

t )′ Xs
t (Xms

t )′ Xs
t (Xs

t )′


(22)

The next step is to show the invertibility of
∑T
t=1 X̃tX̃

′
t.

Although reminiscent of our previous set up, there are some
critical differences. First, unlike before, coordinates of η̃t,
i.e., {ηet , ηmst , ηst } are not independent. A major implication
is that it is no longer obvious that the cross terms between
different submatrices, such as

∑T
t=1X

e
t (Xms

t )′, go to zero.
Our proof will have three major steps:

• First we will show that the diagonal submatrices are in-
vertible. This follows from Theorem 1 by arguing that
the result can be extended to a noise process {Pηt}Tt=1

where {ηt}Tt=1 are independent subgaussian and ele-
ments of ηt are also independent for all t. The only
change will be the appearance of additional σ2

1(P ) sub-
gaussian parameter (See Corollary 9.1). We will then
show that

Xmss =

T∑
t=1

[
Xms
t (Xms

t )′ Xms
t (Xs

t )′

Xs
t (Xms

t )′ Xs
t (Xs

t )′

]
is invertible. This will follow from Theorem 1 (its
dependent extension). Specifically, since Xmss con-
tains only stable and marginally stable components, it
falls under A ∈ S0 ∪ S1. It should be noted that since
Xms
t , Xs

t are not independent in general, the invertibil-
ity of Xmss can be shown only through Theorem 1. In
a similar fashion,

∑T
t=1X

e
t (Xe

t )′ is also invertible as
it corresponds to A ∈ S2.

−0.6 −0.4 −0.2 0.0 0.2 0.4

x

0.0

0.2

0.4

0.6

0.8

1.0

cd
f(

x)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

p
d

f(
x)

CDF of x

PDF of x

Figure 1. CDF and PDF of β̂o

• Since invertibility of block diagonal submatrices in∑T
t=1 X̃tX̃

′
t does not imply the invertibility of the en-

tire matrix we also need to show that the cross terms
||Xe

t (Xms
t )′||2, ||Xe

t (Xs
t )′||2 are sufficiently small rel-

ative to the appropriate diagonal blocks.
• Along the way we also obtain deterministic lower and

upper bounds for the sample covariance matrix follow-
ing which the steps for bounding the error are similar
to Theorem 1.

The details are in appendix as Section 14.

5 Inconsistency of OLS
We will now show that when a matrix is irregular, then
it cannot be learned despite a high signal-to-noise ratio.
Consider the two cases

Ar =

[
1.1 1
0 1.1

]
, Ao =

[
1.1 0
0 1.1

]
Here Ar is a regular matrix and Ao is not. Now we run
Eq. (1) for A = Ar, Ao for T = 103. Let the OLS estimate
of Ar, Ao be Âr, Âo respectively. Define

βr = [Ar]1,2, βo = [Ao]1,2

β̂r = [Âr]1,2, β̂o = [Âo]1,2

Although βr ≈ β̂r, β̂o does not equal zero. Instead Fig. 1
shows that β̂o has a non–trivial distribution which is bimodal
at {−0.55, 0.55} and as a result OLS is inconsistent for Ao.
This happens because the sample covariance matrix forAo is
singular despite the fact that ΓT (Ao) = (1.1)T I , i.e., a high
signal to noise ratio. In general, the relation between OLS
identification of A and its controllability Gramian, ΓT (A),
is tenuous for unstable systems unlike what is suggested
in (Simchowitz et al., 2018). To see this singularity observe
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that

Xt+1 = Ao

[
X

(1)
t

X
(2)
t

]
+

[
η

(1)
t+1

η
(2)
t+1

]

YT =

[ ∑T
t=1(X

(1)
t )2

∑T
t=1(X

(1)
t )(X

(2)
t )∑T

t=1(X
(1)
t )(X

(2)
t )

∑T
t=1(X

(2)
t )2

]

where X(1)
t , X

(2)
t are independent of each other. Define

a = 1.1.

Proposition 5.1. Let {ηt}Tt=1 be i.i.d standard Gaussian
then whenever T 2 ≤ aT , we have that

||Âo −Ao||= γT

where γT is a random variable that admits a continuous pdf
and does not decay to zero as T →∞. Further, the sample
covariance matrix has the following singular values

σ1(

T∑
t=1

XtX
>
t ) = Θ(a2T ), σ2(

T∑
t=1

XtX
>
t ) = O(

√
TaT )

The proof is given in Section 20 and Proposition 20.2. Propo-
sition 5.1 suggests that the consistency of OLS estimate
depends directly on the condition number of the sample
covariance matrix. In fact, OLS is inconsistent when con-
dition number grows exponentially fast in T (as in the case
of Ao). The proof requires a careful expansion of the (ap-
propriately scaled) sample covariance matrix inverse using
Woodbury’s identity. Since the sample covariance matrix
is highly ill–conditioned, it magnifies the noise-covariate
cross terms so that the identification error no longer decays
as time increases. Although for stable and marginally stable
A this invertibility can be characterized σmin(ΓT (A)) such
an intuition does not extend to explosive systems. This is
because the behavior of YT is dominated by “past” ηts such
as η1, η2 much more than the ηT−1, ηT etc. When A is
explosive, all singular values of ||AT || grow exponentially
fast. Since XT = AT−1η1 +AT−2η2 + . . .+AηT−1 + ηT
the behavior of XT is dominated by AT−1η1. This causes a
very strong dependence between XT and XT+1 and some
structural constraints (such as regularity) are necessary for
OLS identification.

6 Discussion
In this work we provided finite time guarantees for OLS
identification for LTI systems. We show that whenever A is
regular, with an otherwise arbitrary distribution of eigenval-
ues, OLS can be used for identification. More specifically
we give sharpest possible rates when A belongs to one of
{S0,S1,S2}. When the assumption of regularity is violated,
we show that OLS is statistically inconsistent. This sug-
gests that statistical consistency relies on the conditioning
of the sample covariance matrix and not so much on the

signal-to-noise ratio for explosive matrices. Despite sub-
stantial differences between the distributional properties of
the covariates we find that time taken to reach a given error
threshold scales the same (up to some constant that depends
only on A) across all regimes in terms of the probability
of error. To see this, observe that Theorem 1 gives us with
probability at least 1− δ

A ∈ S0 =⇒ ||A− Â||≤

√
C0(d) log 1

δ

T

A ∈ S1 =⇒ ||A− Â||≤ C1(d)

T
log
(T
δ

)
A ∈ S2 =⇒ ||A− Â||≤ C2(d)σmax(A−T )

δ
(23)

The lower bounds forA ∈ S0 andA ∈ S1 are given in (Sim-
chowitz et al., 2018) Appendix B, F.1 which are

A ∈ S0 =⇒ ||A− Â||≥

√
B0(d) log 1

δ

T

A ∈ S1 =⇒ ||A− Â||≥ B1(d)

T
log
(1

δ

)
(24)

with probability at least δ. For A ∈ S2 we provide a tighter
lower bound in Proposition 4.1, i.e., with probability at least
δ

A ∈ S2 =⇒ ||A− Â||≥ B2(d)σmax(A−T )

−δ log δ
(25)

Now fix an error threshold ε, from Eq. (23) we get with
probability ≥ 1− δ

A ∈ S0 =⇒ ||A− Â||≤ ε if T ≥ log 1
δ

ε2C0(d)

A ∈ S1 =⇒ ||A− Â||≤ ε if T ≥ log T
δ

εC1(d)

A ∈ S2 =⇒ ||A− Â||≤ ε if T ≥ log 1
δε + logC2(d)

log ρmin

From Eq. (24),(25) we also know this is tight. In summary
to reach a certain error threshold, T must be at least as large
as log 1

δ for every regime.

Another key contribution of this work is providing finite
time guarantees for a general distribution of eigenvalues. A
major hurdle towards applying Theorem 1 to the general
case is the mixing between separate components (corre-
sponding to stable, marginally stable or explosive). Despite
these difficulties we provide error bounds where each com-
ponent, stable, marginally stable or explosive, has (almost)
the same behavior as Theorem 1. The techniques introduced
here can be used to analyze extensions such as identifica-
tion in the presence of a control input Ut or heavy tailed
distribution of noise (See Sections 15 and 16).
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7 Road Map of Results
We sketch the road map of our results here. Critical to the results our finding matrices Vup, Vdn that satisfy Eq. (9), (10).

• For the case when ρi(A) ≤ 1 + C/T , we find these matrices in Section 10. We show that Vup, Vdn = Θ(T )I .
• The bound for Vdn can be sharpened to Vdn = Ω(T 2)I when all the eigenvalues of A lie in (1− c/T, 1 + c/T ). This

result is proven as part of Section 11.
• Section 12 (specifically Proposition 12.2) discusses the proof technique for finding Vup, Vdn for explosive systems.

Non-trivial bounds on the matrix rely critically on the regularity of the explosive matrix.
• When the regularity condition is violated, we show via a simple construction of a scaled identity matrix that OLS is

inconsistent in Section 20. This involves explicitly showing that the error is a random variable which has a non-zero
norm even when T →∞. These are Propositions 20.1, 20.2.

• We then combine the separate cases of stable, marginally stable and explosive matrices to show that even with an
arbitrary distribution of eigen values (albeit regular), OLS is consistent. Furthermore, the rate of convergence is limited
by the slowest component. The proof requires a careful transformation of the matrix into blocks of stable, marginally
stable and explosive and showing that the cross terms zero out. This is proven in Section 14.

• Other minor extensions of our results can be found in Section 15 (when there is an additional control input) and Section
16 (when the noise is heavy-tailed).

8 Matrix Inequalities
In this section we present some probabilistic and matrix inequalities that will be used in our main results.

Proposition 8.1. Let P, V be a psd and pd matrix respectively and define P̄ = P + V . Let there exist some matrix Q for
which we have the following relation

||P̄−1/2Q||≤ γ

For any vector v such that v′Pv = α, v′V v = β it is true that

||v′Q||≤
√
β + αγ

Proof. Since

||P̄−1/2Q||22≤ γ2

for any vector v ∈ Sd−1 we will have

v′P̄ 1/2P̄−1/2QQ′P̄−1/2P̄ 1/2v

v′P̄ v
≤ γ2

and substituting v′P̄ v = α+ β gives us

v′QQ′v ≤ γ2v′P̄ v = (α+ β)γ2

Proposition 8.2. Consider a Jordan block matrix Jd(λ) given by (4), then Jd(λ)−k is a matrix where each off–diagonal
(and the diagonal) has the same entries, i.e.,

Jd(λ)−k =


a1 a2 a3 . . . ad
0 a1 a2 . . . ad−1

...
...

. . .
. . .

...
0 . . . 0 a1 a2

0 0 . . . 0 a1


d×d

(26)

for some {ai}di=1.
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Proof. Jd(λ) = (λI +N) where N is the matrix with all ones on the 1st (upper) off-diagonal. Nk is just all ones on the
kth (upper) off-diagonal and N is a nilpotent matrix with Nd = 0. Then

(λI +N)−1 = (

d−1∑
l=0

(−1)lλ−l−1N l)

(−1)k−1(k − 1)! (λI +N)−k =
( d−1∑
l=0

(−1)l
dk−1λ−l−1

dλk−1
N l
)

=
( d−1∑
l=0

(−1)lcl,kN
l
)

and the proof follows in a straightforward fashion.

Proposition 8.3. Let A be a regular matrix and A = P−1ΛP be its Jordan decomposition. Then

inf
||a||2=1

||
d∑
i=1

aiΛ
−i+1||2> 0

Further φmin(A) > 0 where φmin(·) is defined in Definition 3.

Proof. When A is regular, the geometric multiplicity of each eigenvalue is 1. This implies that A−1 is also regular.
Regularity of a matrix A is equivalent to the case when minimal polynomial of A equals characteristic polynomial of A (See
Section 19 in appendix), i.e.,

inf
||a||2=1

||
d∑
i=1

aiA
−i+1||2 > 0

Since A−j = P−1Λ−jP we have

inf
||a||2=1

||
d∑
i=1

aiP
−1Λ−i+1P ||2 > 0

inf
||a||2=1

||
d∑
i=1

aiP
−1Λ−i+1||2σmin(P ) > 0

inf
||a||2=1

||
d∑
i=1

aiΛ
−i+1||2σmin(P )σmin(P−1) > 0

inf
||a||2=1

||
d∑
i=1

aiΛ
−i+1||2 > 0

Since Λ is Jordan matrix of the Jordan decomposition, it is of the following form

Λ =


Jk1(λ1) 0 . . . 0 0

0 Jk2(λ2) 0 . . . 0
...

...
. . . . . .

...
0 . . . 0 Jkl(λl) 0
0 0 . . . 0 Jkl+1

(λl+1)

 (27)

where Jki(λi) is a ki × ki Jordan block corresponding to eigenvalue λi. Then

Λ−k =


J−kk1 (λ1) 0 . . . 0 0

0 J−kk2 (λ2) 0 . . . 0
...

...
. . . . . .

...
0 . . . 0 J−kkl (λl) 0

0 0 . . . 0 J−kkl+1
(λl+1)

 (28)



Near optimal finite time identification of arbitrary linear dynamical systems

Since ||∑d
i=1 aiΛ

−i+1||2> 0, without loss of generality assume that there is a non–zero element in k1 × k1 block. This
implies

||
d∑
i=1

aiJ
−i+1
k1

(λ1)︸ ︷︷ ︸
=S

||2> 0

By Proposition 8.2 we know that each off–diagonal (including diagonal) of S will have same element. Let j0 =
inf {j|Sij 6= 0} and in column j0 pick the element that is non–zero and highest row number, i0. By design Si0,j0 > 0 and
further

Sk1−(j0−i0),k1 = Si0,j0

because they are part of the same off–diagonal (or diagonal) of S. Thus the row k1 − (j0 − i0) has only one non–zero
element because of the minimality of j0.

We proved that for any ||a||= 1 there exists a row with only one non–zero element in the matrix
∑d
i=1 aiΛ

−i+1. This
implies that if v is a vector with all non–zero elements, then ||∑d

i=1 aiΛ
−i+1v||2> 0, i.e.,

inf
||a||2=1

||
d∑
i=1

aiΛ
−i+1v||2 > 0

This implies

inf
||a||2=1

||[v,Λ−1v, . . . ,Λ−d+1v]a||2 > 0

σmin([v,Λ−1v, . . . ,Λ−d+1v]) > 0

By Definition 3 we have

φmin(A) > 0

Proposition 8.4 (Corollary 2.2 in (Ipsen & Lee, 2011)). For any positive definite matrix M with diagonal entries mjj ,
1 ≤ j ≤ d and ρ is the spectral radius of the matrix C with elements

cij = 0 if i = j

=
mij√
miimjj

if i 6= j

then

0 <

∏d
j=1mjj − det(M)∏d

j=1mjj

≤ 1− e−
dρ2

1+λmin

where λmin = min1≤j≤d λj(C).
Proposition 8.5. Let 1− C/T ≤ ρi(A) ≤ 1 + C/T and A be a d× d matrix. Then there exists α(d) depending only on d
such that for every 8d ≤ t ≤ T

σmin(Γt(A)) ≥ tα(d)

Proof. Since A = P−1ΛP where Λ is the Jordan matrix. Since Λ can be complex we will assume that adjoint instead of
transpose. This gives

ΓT (A) = I +

T∑
t=1

At(At)′

= I + P−1
T∑
t=1

ΛtPP ′(Λt)∗P−1′ � I + σmin(P )2P−1
T∑
t=1

Λt(Λt)∗P−1′
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Then this implies that

σmin(ΓT (A)) ≥ 1 + σmin(P )2σmin(P−1
T∑
t=1

Λt(Λt)′P−1′) ≥ 1 + σmin(P )2σmin(P−1)2σmin(

T∑
t=1

Λt(Λt)′)

≥ 1 +
σmin(P )2

σmax(P )2
σmin(

T∑
t=1

Λt(Λt)′)

Now

T∑
t=0

Λt(Λt)∗ =


∑T
t=0 J

t
k1

(λ1)(J tk1(λ1))∗ 0 . . . 0

0
∑T
t=1 J

t
k2

(λ2)(J tk2(λ2))∗ 0 . . .
...

...
. . . . . .

0 . . . 0
∑T
t=1 J

t
kl

(λl)(J
t
kl

(λl))
∗


Since Λ is block diagonal we only need to worry about the least singular value corresponding to some block. Let this block
be the one corresponding to Jk1(λ1), i.e.,

σmin(

T∑
t=0

Λt(Λt)∗) = σmin(

T∑
t=0

J tk1(λ1)(J tk1(λ1))∗) (29)

Define B =
∑T
t=0 J

t
k1

(λ1)(J tk1(λ1))∗. Note that Jk1(λ1) = (λ1I +N) where N is the nilpotent matrix that is all ones on
the first off–diagonal and Nk1 = 0. Then

(λ1I +N)t =

t∑
j=0

(
t

j

)
λt−j1 N j

(λ1I +N)t((λ1I +N)t)∗ =
( t∑
j=0

(
t

j

)
λt−j1 N j

)( t∑
j=0

(
t

j

)
(λ∗1)t−jN j′

)

=

t∑
j=0

(
t

j

)2

|λ1|2(t−j) N j(N j)′︸ ︷︷ ︸
Diagonal terms

+

j=t,k=t∑
j 6=k

(
t

k

)(
t

j

)
λj1(λ∗1)kN j(Nk)′

=

t∑
j=0

(
t

j

)2

|λ1|2(t−j) N j(N j)′︸ ︷︷ ︸
Diagonal terms

+

j=t,k=t∑
j>k

(
t

k

)(
t

j

)
λj1(λ∗1)kN j(Nk)′

+

j=t,k=t∑
j<k

(
t

k

)(
t

j

)
λj1(λ∗1)kN j(Nk)′

=

t∑
j=0

(
t

j

)2

|λ1|2(t−j) N j(N j)′︸ ︷︷ ︸
Diagonal terms

+

j=t,k=t∑
j>k

(
t

k

)(
t

j

)
|λ1|2kλj−k1 N j−kNk(Nk)′︸ ︷︷ ︸

On (j − k) upper off–diagonal

+

j=t,k=t∑
j<k

(
t

k

)(
t

j

)
|λ1|2j(λ∗1)k−jN j(N j)′(N j−k)′︸ ︷︷ ︸

On (k − j) lower off–diagonal

Let λ1 = reiθ, then similar to (Erxiong, 1994), there is D = Diag(1, e−iθ, e−2iθ, . . . , e−i(k1−1)θ) such that D(λ1I +
N)t((λ1I +N)t)∗D∗ is a real matrix. Observe that any term on (j − k) upper off–diagonal of (λ1I +N)t((λ1I +N)t)∗

is of the form r0e
i(j−k)θ. In the product D(λ1I +N)t((λ1I +N)t)∗D∗ any term on the (j − k) upper off diagonal term
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now looks like e−ijθ+ikθr0e
i(j−k)θ = r0, which is real. Then we have

D(λ1I +N)t((λ1I +N)t)∗D∗ =

t∑
j=0

(
t

j

)2

|λ1|2(t−j) N j(N j)′︸ ︷︷ ︸
Diagonal terms

+

j=t,k=t∑
j>k

(
t

k

)(
t

j

)
|λ1|2k|λ1|j−kN j−kNk(Nk)′︸ ︷︷ ︸

On (j − k) upper off–diagonal

+

j=t,k=t∑
j<k

(
t

k

)(
t

j

)
|λ1|2j |λ1|k−jN j(N j)′(Nk−j)′︸ ︷︷ ︸

On (k − j) lower off–diagonal

(30)

Since D is unitary and D(λ1I +N)t((λ1I +N)t)∗D∗ = (|λ1|I +N)t((|λ1|I +N)t)′, we can simply work with the case
when λ1 > 0 and real, as the singular values remain invariant under unitary transformations. Now we show the growth of
ijth term of the product D(λ1I +N)t((λ1I +N)t)∗D∗), Define B =

∑T
t=1(|λ1|I +N)t((|λ1|I +N)t)′

Bll =

T∑
t=1

[(λ1I +N)t((λ1I +N)t)∗]ll (31)

=

T∑
t=1

k1−l∑
j=0

(
t

j

)2

|λ1|2(t−j) (32)

Since 1− C/T ≤ |λ1|≤ 1 + C/T , then for every t ≤ T we have

e−C ≤ |λ1|t≤ eC

Then

Bll =

T∑
t=1

k1−l∑
j=0

(
t

j

)2

|λ1|2(t−j)≥ e−2C
T∑
t=1

k1−l∑
j=0

(
t

j

)2

≥ e−2C
T∑

t=T/2

k1−l∑
j=0

(
t

j

)2

≥ e−2C
T∑

t=T/2

ck1
t2k1−2l+2 − 1

t2 − 1
≥ C(k1)T 2k1−2l+1 (33)

An upper bound can be achieved in an equivalent fashion.

Bll =

T∑
t=1

k1−l∑
j=0

(
t

j

)2

|λ1|2(t−j)≤ e2CT

k1−l∑
j=0

T 2j ≤ C(k1)T 2k1−2l+1 (34)

Similarly, for any Bk,k+l we have

Bk,k+l =

T∑
t=1

k1−k−l∑
j=0

(
t

j

)(
t

j + l

)
|λ1|2j |λ1|l≥

T∑
t=1

e−2C
T∑

t=T/2

k1−k−l∑
j=0

(
t

j

)(
t

j + l

)
(35)

≥ e−2C T

2

k1−k−l∑
j=0

(
T/2

j

)(
T/2

j + l

)
≥ C(k1)T 2k1−2k−l+1 (36)

and by a similar argument as before we get Bjk = C(k1)T 2k1−j−k+1. For brevity we use the same C(k1) to indicate
different functions of k1 as we are interested only in the growth with respect to T . To summarize

Bjk = C(k1)T 2k1−j−k+1 (37)

whenever T ≥ 8d. Recall Proposition 8.4, let the M there be equal to B then since

Cij = C(k1)
Bij√
BiiBjj

= C(k1)
T 2k1−j−k+1

√
T 4k1−2j−2k+2
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it turns out that Cij is independent of T and consequently λmin(C), ρ are independent of T and depend only on k1: the

Jordan block size. Then
∏k1
j=1Bjj ≥ det(B) ≥ ∏k1

j=1Bjje
− dρ2

1+λmin = C(k1)
∏k1
j=1Bjj . This means that det(B) =

C(k1)
∏k1
j=1Bjj for some function C(k1) depending only on k1. Further using the values for Bjj we get

det(B) = C(k1)

k1∏
j=1

Bjj =

k1∏
j=1

C(k1)T 2k1−2l+1 = C(k1)T k
2
1 (38)

Next we use Schur-Horn theorem, i.e., let σi(B) be the ordered singular values of B where σi(B) ≥ σi+1(B). Then σi(B)
majorizes the diagonal of B, i.e., for any k ≤ k1

k∑
i=1

σi(B) ≥
k∑
i=1

Bii

Observe that Bii ≤ Bjj when i ≤ j. Then from Eq. (37) it implies that

Bk1k1 = C1(k1)T ≥ σk1(B)

k1∑
j=k1−1

Bjj = C2(k1)T 3 + C1(k1)T ≥ σk1−1(A) + σk1(A)

Since k1 ≥ 1 it can be checked that for T ≥ T1 = 2k1

√
C1(k1)
C2(k1) we have σk1−1(A) ≤ (1 + (2k1)−2)C2(k1)T 3 ≤

(1 + k−1
1 )C2(k1)T 3 as for every T ≥ T1 we have C2(k1)T 3 ≥ 4k2

1C1(k1)T . Again to upper bound σk1−2(A) we will use
a similar argument

k1∑
j=k1−2

Bjj = C3(k1)T 5 + C2(k1)T 3 + C1(k1)T ≥ σk1−2(A) + σk1−1(A) + σk1(A)

and show that whenever

T ≥ max
(
T1, 2k1

√
C2(k1)

C3(k1)

)
we get σk1−2(A) ≤ (1 + (2k1)−2 + (2k1)−4)C3(k1)T 5 ≤ (1 + k−1

1 )C3(k1)T 5 because T ≥ T1 ensures C2(k1)T 3 ≥
4k2

1C1(k1)T and T ≥ T2 = 2k1

√
C2(k1)
C3(k1) ensures C3(k1)T 5 ≥ 4k2

1C2(k1)T 3. The Ci(k1) are not important, the goal is to
show that for a sufficiently large T we have an upper bound on each singular values (roughly) corresponding to the diagonal
element. Similarly we can ensure for every i we have σi(A) ≤ (1 + k−1

1 )Ck1−i+1(k1)T 2k1−2i+1, whenever

T > Ti = max
(
Ti−1, 2k1

√
Ci(k1)

Ci+1(k1)

)
Recall Eq. (38) where det(B) = C(k1)T k

2
1 . Assume that σk1(B) < C(k1)T

e
∏d
i=1 Ci+1(k1)

. Then whenever T ≥

max
(

8d, supi 2k1

√
Ci(k1)
Ci+1(k1)

)
det(B) = C(k1)T k

2
1

k1∏
i=1

σi = C(k1)T k
2
1

σk1(B)(1 + k−1
1 )k1−1T k

2
1−1

k1∏
i=2

Ci+1 ≥ C(k1)T k
2
1

σk1(B) ≥ Ck1T

(1 + k−1
1 )k1−1

∏k1
i=2 Ci+1

≥ C(k1)T

e
∏k1
i=1 Ci+1(k1)
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which is a contradiction. This means that σki(B) ≥ C(k1)T

e
∏k1
i=1 Ci+1(k1)

. This implies

σmin(ΓT (A)) ≥ 1 +
σmin(P )2

σmax(P )2
C(k1)T

for some function C(k1) that depends only on k1.

It is possible that α(d) might be exponentially small in d, however for many cases such as orthogonal matrices or diagonal
matrices α(A) = 1 [As shown in (Simchowitz et al., 2018)]. We are not interested in finding the best bound α(d) rather
show that the bound of Proposition 8.5 exists and assume that such a bound is known.
Proposition 8.6. Let t1/t2 = β > 1 and A be a d× d matrix. Then

λ1(Γt1(A)Γ−1
t2 (A)) ≤ C(d, β)

where C(d, β) is a polynomial in β of degree at most d2 whenever ti ≥ 8d.

Proof. Since λ1(Γt1(A)Γ−1
t2 (A)) ≥ 0

λ1(Γt1(A)Γ−1
t2 (A)) ≤ tr(Γt1(A)Γ−1

t2 (A)) ≤ tr(Γ−1/2
t2 (A)Γt1(A)Γ

−1/2
t2 (A))

≤ dσ1(Γ
−1/2
t2 (A)Γt1(A)Γ

−1/2
t2 (A)) ≤ d sup

||x||6=0

x′Γt1(A)x

x′Γt2(A)x

Now

Γti(A) = P−1
ti∑
t=0

ΛtPP ′(Λt)∗P−1′ � σmax(P )2P−1
ti∑
t=0

Λt(Λt)∗P−1′

Γti(A) � σmin(P )2P−1
ti∑
t=0

Λt(Λt)∗P−1′

Then this implies

sup
||x||6=0

x′Γt1(A)x

x′Γt2(A)x
≤ σmax(P )2

σmin(P )2
sup
||x||6=0

x′
∑t1
t=0 Λt(Λt)∗x

x′
∑t2
t=0 Λt(Λt)∗x

Then from Lemma 12 in (Abbasi-Yadkori et al., 2011) we get that

sup
||x||6=0

x′
∑t1
t=0 Λt(Λt)∗x

x′
∑t2
t=0 Λt(Λt)∗x

≤ det(
∑t1
t=0 Λt(Λt)∗)

det(
∑t2
t=0 Λt(Λt)∗)

Then

det(
∑t2
t=0 Λt(Λt)∗)

det(
∑t1
t=0 Λt(Λt)∗)

≤ det(
∏l
i=1(

∑t2
t=0 Jki(λi)

t(Jki(λi)
t)∗))

det(
∏l
i=1(

∑t1
t=0 Jki(λi)

t(Jki(λi)
t)∗))

Here l are the number of Jordan blocks of A. Then our assertion follows from Eq. (38) which implies that the determinant
of
∑t2
t=0 Jki(λi)

t(Jki(λi)
t)∗ is equal to the product of the diagonal elements (times a factor that depends only on Jordan

block size), i.e., C(ki)t
k2i
2 . As a result the ratio is given by

det(
∏l
i=1(

∑t2
t=0 Jki(λi)

t(Jki(λi)
t)∗))

det(
∏l
i=1(

∑t1
t=0 Jki(λi)

t(Jki(λi)
t)∗))

=

l∏
i=1

βk
2
i

whenever t2, t1 ≥ 8d. Summarizing we get

sup
||x||6=0

x′Γt1(A)x

x′Γt2(A)x
≤ σmax(P )2

σmin(P )2

l∏
i=1

βk
2
i
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9 Probabilistic Inequailities

Proposition 9.1 ((Vershynin, 2010)). Let M be a random matrix. Then we have for any ε < 1 and any w ∈ Sd−1 that

P(||M ||> z) ≤ (1 + 2/ε)dP(||Mw||> (1− ε)z)

The proof of the Proposition can be found, for instance, in (Vershynin, 2010).

Proposition 9.1 helps us in using the tools developed in de la Pena et. al. and (Abbasi-Yadkori et al., 2011) for self–
normalized martingales. We will define S̃t =

∑t−1
τ=0Xτ η̃τ+1 where η̃t = wT ηt is standard normal when w is a unit vector.

Specifically, we use Lemma 9 of (Abbasi-Yadkori et al., 2011) which we state here for convenience:

Theorem 3 (Theorem 1 in (Abbasi-Yadkori et al., 2011)). Let {F t}∞t=0 be a filtration. Let {ηt}∞t=1 be a real valued
stochastic process such that ηt is F t measurable and ηt is conditionally R-sub-Gaussian for some R > 0., i.e.,

∀λ ∈ R E[eληt |F t−1] ≤ eλ
2R2

2

Let {Xt}∞t=1 be an Rd–valued stochastic process such that Xt is F t measurable. Assume that V is a d× d positive definite
matrix. For any t ≥ 0 define

V̄t = V +

t∑
s=1

XsX
′
s St =

t∑
s=1

ηs+1Xs

Then for any δ > 0 with probability at least 1− δ for all t ≥ 0

||St||2V̄ −1
t
≤ 2R2 log

(
det(V̄t)1/2det(V )−1/2

δ

)

Proposition 9.2. Let P have full row rank and

Xt+1 = AXt + Pηt+1

where {ηt}Tt=1 is an i.i.d. subGaussian process with variance proxy = 1 and each ηt has independent elements. For any
0 < δ < 1, we have with probability 1− δ

||(ȲT−1)−1/2
T−1∑
t=0

Xtη
′
t+1P

′||2≤ R

√√√√8d log

(
5det(ȲT−1)1/2ddet(V )−1/2d

δ1/d

)
(39)

where Ȳ −1
τ = (

∑τ
t=1XtX

′
t + V )−1 and any deterministic V with V � 0.

Proof. Note that Pηt is a non–trivial subGaussian if P has full rank.

Define St =
∑t
s=1Xsη

′
s+1P

′. Using Proposition 9.1 and setting ε = 1/2, we have that

P(||Ȳ −1/2
T−1 ST−1||2≤ y) ≤ 5dP(||Ȳ −1/2

T−1 ST−1w||2≤
y

2
) = 5dP(||Ȳ −1/2

T−1 ST−1w||22≤
y2

4
) (40)

Setting ST−1w =
∑T−1
s=1 Xsη

′
s+1P

′w we observe that η′s+1P
′w satisfies the conditions of Theorem 3 with variance proxy

σmax(P )2. Then replace in Eq. (40)

y2 = 8R2 log

(
det(ȲT−1)1/2det(V )−1/2

5−dδ

)

which gives us from Theorem 3
P(||Ȳ −1/2

T−1 ST−1||2≤ y) ≤ δ
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Theorem 4 (Hanson–Wright Inequality). Given a subGaussian vectorX = (X1, X2, . . . , Xn) ∈ Rn with supi||Xi||ψ2
≤ K

and Xi are independent. Then for any B ∈ Rn×n and t ≥ 0

Pr(|X ′BX − E[X ′BX]|≤ t) ≤ 2 exp

{
− cmin

( t

K2||B|| ,
t2

K4||B||2HS

)}
(41)

Proposition 9.3 (Theorem 5.39 (Vershynin, 2010)). Let E be an T ×d matrix whose rows η′i are independent sub–Gaussian
isotropic random vectors with variance proxy 1 in Rd. Then for every t ≥ 0, with probability at least 1− 2e−ct

2

one has
√
T − C

√
d− t ≤ σmin(E) ≤

√
T + C

√
d+ t (42)

The implication of Proposition 9.3 is as follows: E′E � (
√
T − C

√
d − t)2I with probability at least 1 − 2e−ct

2

. Let

t =
√

1
c log 2

δ , and ensure that

T ≥ Tη(δ) = C
(
d+ log

2

δ

)
for some large enough universal constant C. Then for T > Tη(δ) we have, with probability at least 1− δ, that

3

4
I � 1

T

T∑
t=1

ηtη
′
t︸ ︷︷ ︸

E′E

� 5

4
I (43)

Further with the same probability

3σ2
min(P )

4
I � 1

T

T∑
t=1

Pηtη
′
tP
′ � 5σ2

max(P )

4
I

Tη(δ) = C
(
d+ log

2

δ

)
(44)

Corollary 9.1 (Dependent Hanson–Wright Inequality). Given independent subGaussian vectors Xi ∈ Rd such that Xij are
independent and supij ||Xij ||ψ2

≤ K. Let P have full row rank. Define

X =


PX1

PX2

...
PXn

 ∈ Rdn

Then for any B ∈ Rdn×dn and t ≥ 0

Pr(|X ′BX − E[X ′BX]|≤ t) ≤ 2 exp

{
− cmin

( t

K2σ2
1(P )||B|| ,

t2

K4σ4
1(P )||B||2HS

)}
(45)

Proof. Define

X̃ =


X1

X2

...
Xn


Now X̃ is such that X̃i are independent. Observe that X = (In×n⊗P )X̃ . Then X ′BX = X̃(In×n⊗P )B(In×n⊗P ′)X̃ .
Since

||(In×n ⊗ P )B(In×n ⊗ P ′)|| ≤ σ2
1(P )||B||

tr((In×n ⊗ P )B(In×n ⊗ P ′)(In×n ⊗ P )B(In×n ⊗ P ′)) ≤ σ2
1(P )tr((In×n ⊗ P )B2(In×n ⊗ P ′))

≤ σ4
1(P )tr(B2)

and now we can use Hanson–Wright in Theorem 4 and get the desired bound.
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Let Xt =
∑t−1
j=0A

jηt−j .

Proposition 9.4. Let P have full row rank and

Xt+1 = AXt + Pηt+1

where {ηt} is an i.i.d. process and each ηt has independent elements. Then with probability at least 1− δ, we have

||
T∑
t=1

XtX
′
t||2 ≤ σ1(P )2T tr(ΓT−1(A))

δ

||
T∑
t=1

AXtX
′
tA
′||2 ≤ σ1(P )2T tr(ΓT (A)− I)

δ

Let δ ∈ (0, e−1) then with probability at least 1− δ

||
T∑
t=1

XtX
′
t||2≤ σ1(P )2tr(

T−1∑
t=0

Γt(A))
(

1 +
1

c
log
(1

δ

))
for some universal constant c.

Proof. Define η̃ =


Pη1

Pη2

...
PηT

. Then η̃ is a non–trivial subGaussian whenever P has full row rank.

As in Corollary 9.1 by defining Ã as

Ã =


I 0 0 . . . 0
A I 0 . . . 0
...

...
. . .

...
...

...
...

...
. . .

...
AT−1 AT−2 AT−3 . . . I

 (In×n ⊗ P ′)

observe that

Ãη̃ =


X1

X2

...
XT

 .
Since

||XtX
′
t||= X ′tXt,

we have that

||
T∑
t=1

XtX
′
t||≤

T∑
t=1

X ′tXt = η̃′Ã′Ãη̃ = tr(Ãη̃η̃′Ã′).

The assertion of proposition follows by applying Markov’s Inequality to tr(Ãη̃η′Ã′). For the second part observe that each
block matrix of Ã is scaled by A, but the proof remains the same. Then in the notation of Theorem 4 B = Ã′Ã,X = η̃

||B||S = tr(Ã′Ã)

=

T−1∑
t=0

tr(Γt(A))

||B||2F ≤ ||B||S ||B||2
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Define c∗ = min (c, 1). Set t =
||B||2F
c∗||B|| log (1

δ ) and assume δ ∈ (0, e−1) then

t

c∗||B|| ≤
t2

c∗||B||2F
we get from Theorem 4 that

η̃′Ã′Ãη̃ ≤ tr(
T−1∑
t=0

Γt(A)) +
||B||2F
c∗||B|| log

(1

δ

)
≤ tr(

T−1∑
t=0

Γt(A)) +
||B||s
c∗

log
(1

δ

)
≤ tr(

T−1∑
t=0

Γt(A))
(

1 +
1

c∗
log
(1

δ

))
with probability at least 1− exp

{(
− c||B||2F

c∗||B||22
log 1

δ

)}
. Since c||B||2F

c∗||B||22
≥ 1 it follows that

exp

{(
− c||B||2F
c∗||B||22

log
1

δ

)}
≤ δ

and we can conclude that with probability at least 1− δ

η̃′Ã′Ãη̃ ≤ tr(
T−1∑
t=0

Γt(A))
(

1 +
1

c∗
log
(1

δ

))

Corollary 9.2. Whenever δ ∈ (0, e−1), we have with probability at least 1− δ

||
T∑

t=k+1

XtX
′
t||2≤ σ2

1(P )tr(
T−1∑
t=k

Γt(A))
(

1 +
1

c
log
(1

δ

))
for some universal constant c.

Proof. The proof follows the same steps as Proposition 9.4. Define

Ã =


I 0 0 . . . 0
A I 0 . . . 0
...

...
. . .

...
...

...
...

...
. . .

...
AT−1 AT−2 AT−3 . . . I

 (In×n ⊗ P ′)

Define Ãk as the matrix formed by zeroing out all the rows of Ã from k + 1 row onwards. Then observe that

||
T∑

t=k+1

XtX
′
t|| ≤ tr(

T∑
t=k+1

XtX
′
t) = tr(

T∑
t=1

XtX
′
t −

k∑
t=1

XtX
′
t)

= η̃′(Ã′Ã− Ã′kÃk)η̃

Since tr(
∑T
t=1XtX

′
t −
∑k
t=1XtX

′
t) ≥ 0 for any η̃ it implies B = (Ã′Ã− Ã′kÃk) � 0.

||B||S = tr(Ã′Ã) =

T−1∑
t=k

tr(Γt(A))

||B||2F ≤ ||B||S ||B||2

Define c∗ = min (c, 1). Set t =
||B||2F
c∗||B|| log (1

δ ) and assume δ ∈ (0, e−1) then

t

c∗||B|| ≤
t2

c∗||B||2F
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we get from Theorem 4 that

η̃′Ã′Ãη̃ ≤ ||B||S+
||B||2F
c∗||B|| log

(1

δ

)
≤ ||B||S+

||B||S
c∗

log
(1

δ

)
≤ ||B||S

(
1 +

1

c∗
log
(1

δ

))
with probability at least 1− exp

{(
− c||B||2F

c∗||B||22
log 1

δ

)}
. Since

c||B||2F
c∗||B||22

≥ 1

it follows that

exp

{(
− c||B||2F
c∗||B||22

log
1

δ

)}
≤ δ

and we can conclude that with probability at least 1− δ

η̃′Ã′Ãη̃ ≤ tr(
T−1∑
t=k

Γt(A))
(

1 +
1

c∗
log
(1

δ

))

Proposition 9.5. Whenever the pdf of X , f(·), satisfies ess supxf(x) = CX <∞ we have

P(|X|≤ δ) ≤ 2CXδ

Proof. Since the essential supremum of f(·) is bounded. Then

P(|X|≤ δ) =

∫ δ

x=−δ
f(x)dx ≤ 2CXδ

Proposition 9.6 (Proposition 2 in (Faradonbeh et al., 2017)). Let P−1ΛP = A be the Jordan decomposition of A and
define zT = A−T

∑T
i=1A

T−iηi. Further assume that ηt is continuous, subGaussian with variance proxy = 1 then

ψ(A, δ) = sup

{
y ∈ R : P

(
min

1≤i≤d
|P ′i zT |< y

)
≤ δ
}

where P = [P1, P2, . . . , Pd]
′
. If ρmin(A) > 1, then

ψ(A, δ) ≥ ψ(A)δ > 0

where ψ(A) depend only on A.

Proof. Define the event E = {min1≤i≤d|P
′

i zT |< y}, Ei = {|P ′i zT |< y}. Clearly E = ∪di=1Ei, then

P(E) ≤ P(∪di=1Ei) ≤
d∑
i=1

P(Ei)

From Proposition 9.5 and Assumption 1, we have P(Ei) ≤ 2C|P ′i zT |
y. Then we get

P(E) ≤ (2

d∑
i=1

C|P ′i zT |
)y ≤ 2d sup

1≤i≤d
C|P ′i zT |

y

where C|P ′i zT | is the essential supremum of the pdf of |P ′i zT |. Then ψ(A) = 1
2d sup1≤i≤d C|P ′

i
zT |

.
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10 Lower Bound for YT when A ∈ S0 ∪ S1
Here we will prove our results when ρ(A) ≤ 1 + C/T . Assume for this case that ηt = Lη̄t where {η̄t}Tt=1 are i.i.d and all
elements of η̄t are independent. Further L is full row rank. This result is a generalization from the case when {η̄t}Tt=1 are
i.i.d., i.e., L = I . Recall from Eq. (13) that

YT � AYT−1A
′ +

T−1∑
t=0

Axtη
′
t+1 + ηt+1x

′
tA
′ +

T∑
t=1

ηtη
′
t (46)

In this section we will find Vdn, Vup such that Vdn � YT � Vup. The way we will approach this is by first controlling the
error cross terms, i.e., ||∑T−1

t=0 Axtη
′
t+1 + ηt+1x

′
tA
′||2= O(

√
T ) and then showing that

∑T
t=1 ηtη

′
t = Ω(T )I with high

probability. By the inequality in Eq. (46) we will then conclude that YT � Ω(T )I .

Define σmin(LL′) = R2 > 0. Let σmax(LL′) = 1 (this does not affect our result: R is just the inverse of the condition
number). Define

P = AYT−1A
′

Q =

T−1∑
τ=0

Axtη
′
t+1

V = TI

Tη = C
(

log
2

δ
+ d log 5

)
E1(δ) =

{
||Q||2(P+V )−1≤ 8 log

(
5ddet(P + V )1/2det(V )−1/2

δ

)}

E2(δ) =

{
||
T−1∑
τ=0

Axτx
′
τA
′||≤ T tr(ΓT (A)− I)

δ

}

Eη(δ) = {T > Tη(δ),
3R2

4
I � 1

T

T∑
t=1

ηtη
′

t �
5

4
I}

E(δ) = Eη(δ) ∩ E1(δ) ∩ E2(δ)

Proposition 10.1. If ρi(A) ≤ 1 + c/T and

T ≥ max
(
C
(

log
2

δ
+ d log 5

)
, CR2

(d
2

log (tr(ΓT − I) + 1) + d log
5

δ

))
then with probability at least 1− 3δ we have YT � TR2

4 I .

Proof. Our goal here will be to control ||Q||2. Following Proposition 3.1, Proposition 9.4, it is true that P(E1(δ)∩ E2(δ)) ≥
1− 2δ. We will show that

E(δ) = Eη(δ) ∩ E1(δ) ∩ E2(δ) =⇒ σmin(ŶT ) ≥ 1/4

Under Eη(δ), we get

YT � AYT−1A
′ +

T−1∑
t=0

Axtη
′
t+1 + ηt+1x

′
tA
′ +

T∑
t=1

ηtη
′
t

YT � AYT−1A
′ +

T−1∑
t=0

Axtη
′
t+1 + ηt+1x

′
tA
′ +

3

4
R2TI

U ′YTU ≥ U ′AYT−1A
′U + U ′

T−1∑
t=0

(
Axtη

′
t+1 + ηt+1x

′
tA
′

)
U +

3

4
TR2 ∀U ∈ Sd−1 (47)
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Intersecting Eq. (47) with E1(δ) ∩ E2(δ), we find under E(δ)

||Q||2(P+V )−1≤ 8 log

(
5ddet(P + V )1/2det(V )−1/2

δ

)

≤ 8 log

(
5ddet(TItr(ΓT (A)−I)

δ + TI)1/2det(TI)−1/2

δ

)

≤ 8 log

(
5ddet(tr(ΓT (A)− I)I + I)1/2

δd

)

Using Proposition 8.1 and letting κ2 = U ′PU then

||QU ||2

≤
√
κ2 + T

√√√√8 log

(
5ddet(tr(ΓT (A)− I)I + I)1/2

δd

)

So Eq. (47) implies

U ′YTU ≥ κ2 −
√

(κ2 + T )

√
16d log (tr(ΓT − I) + 1) + 32d log

5

δ
+

3

4
TR2

which gives us

U ′
YT
T
U ≥ κ2

T
−
√

(
κ2

T
+ 1)

√
16d

T
log (tr(ΓT − I) + 1) +

32d

T
log

5

δ︸ ︷︷ ︸
=β

+
3

4
R2 (48)

If we can ensure
TR4

128
≥ d

2
log (tr(ΓT − I) + 1) + d log

5

δ
(49)

then β ≤ R2/2, i.e., √
16d

T
log (tr(ΓT − I) + 1) +

32d

T
log

5

δ
≤ R2

2

Let T be large enough that Eq. (49) is satisfied then Eq. (48) implies

U ′
YT
T
U ≥ κ2

T
−

√
(κ

2

T + 1)R2

2
+

3R2

4
≥ R2

4
+
κ2

2T
(50)

Since U is arbitrarily chosen Eq. (50) implies

YT �
TR2

4
I (51)

with probability at least 1− 3δ whenever

ρi(A) ≤ 1 +
c

T

T ≥ max
(
C
(

log
2

δ
+ d log 5

)
, CR2

(d
2

log (tr(ΓT − I) + 1) + d log
5

δ

))
(52)

Remark 2. Eq. (49) is satisfied whenever tr(ΓT − I) grows at most polynomially in T . This is true whenever ρ(A) ≤ 1+ c
T .
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11 Sharpened bounds when 1− c
T
≤ ρi(A) ≤ 1 + c

T

Here we show that the bound for YT in Eq. (51) can be sharpened to have quadratic growth in T . The key idea towards
sharpening will be that

YT � AYT−1A
′︸ ︷︷ ︸

≈(1− c
T )YT

+

T−1∑
t=0

Axtη
′
t+1 + ηt+1x

′
tA
′ +

T∑
t=1

ηtη
′
t︸ ︷︷ ︸

≈CTI

YT � CT 2I

Formally,

Proposition 11.1. Let 1− c/T ≤ ρi(A) ≤ 1 + c/T and

T ≥ max
(
C
(

log
2

δ
+ d log 5

)
, C
(d

2
log (tr(ΓT − I) + 1) + d log

5

δ

))
then with probability at least 1− δ we have

YT �
√
α(d)T 2R4σmin(AA′)

256e2c(A, δ)
I

where α(·) is a function of only d, R is an absolute constant and

c(A, δ) = 16d log (tr(ΓT − I) + 1) + 32d log
15T

2δ

Proof. For this we want Eq. (51) satisfied for every t ≥ T
2 simultaneously, i.e., we need

Yt �
tR2

4
I (53)

simultaneously for t ≥ T
2 with high probability. By similar arguments as before as long as we have

ρi(A) ≤ 1

t ≥ max
(
C
(

log
2

δ
+ d log 5

)
, CR2

(d
2

log (tr(Γt − I) + 1) + d log
5

δ

))
(54)

we can conclude with probability at least 1− 2δ that Yt � tR2

4 I . This means that with probability at least 1− 3δ T2 we have
for t ≥ T

2 simultaneously

Yt �
tR2

4
I

when Eq. (54) is satisfied for each t. Since the LHS of Eq. (54) is least at t = T/2 and RHS is greatest at t = T , a sufficient
condition for every t ≥ T

2 satisfying Eq. (54) is the following

T ≥ max
(
C
(

log
2

δ
+ d log 5

)
, C
(d

2
log (tr(ΓT − I) + 1) + d log

5

δ

))
Then by substituting δ → 2δ

3T we can conclude with probability at least 1− δ that

Yt �
tR2

4
I

simultaneously for every t ≥ T
2 whenever

T ≥ max
(
C
(

log
3T

2δ
+ d log 5

)
, CR2

(d
2

log (tr(ΓT − I) + 1) + d log
15T

2δ

))
(55)
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Define γt−1 =
√
U ′A′Yt−1AU and Eq. (50) becomes

U ′YtU ≥ γ2
t−1 −

√
(γ2
t−1 + t)

√
16d log (tr(Γt − I) + 1) + 32d log

15T

2δ︸ ︷︷ ︸
Under Eq. (55) is≤R2

√
t

2

+
3

4
tR2

≥ γ2
t−1 − (γt−1 +

√
t)

√
16d log (tr(Γt − I) + 1) + 32d log

15T

2δ
+

3t

4
R2

≥ γ2
t−1 − γt−1

√
16d log (tr(Γt − I) + 1) + 32d log

15T

2δ
+

3tR2

4
−
√
t

√
16d log (tr(Γt − I) + 1) + 32d log

15T

2δ︸ ︷︷ ︸
≤R2

√
t

2

≥ γ2
t−1

(
1−

√
16d log (tr(Γt − I) + 1) + 32d log 15T

2δ

γ2
t−1

)
+
tR2

4

≥ γ2
t−1

(
1−

√
16d log (tr(ΓT − I) + 1) + 32d log 15T

2δ

γ2
t−1︸ ︷︷ ︸

=
√
c(A,δ)

γ2
t−1

)
+
TR2

8
(56)

Observe that

γt−1 =
√
U ′A′Yt−1AU ≥ σmin(A)

√
TR2

8e
(57)

Eq. (56) will give us a non–trivial bound only when c(A,δ)
γ2
t−1
≤ 1/4 which is true whenever

T ≥ 64ec(A, δ)

R2σ2
min(A)

(58)

The scaling 1−
√

c(A,δ)
γ2
t−1

in Eq. (56) depends on γt−1 itself. We will show that

γ2
t−1 = TΩ(1) =⇒ γ2

t−1 = TΩ
(√ T

c(A, δ)

)
γ2
t−1 = TΩ

(( T

c(A, δ)

)1/2)
=⇒ γ2

t−1 = TΩ
(( T

c(A, δ)

)3/4)
γ2
t−1 = TΩ

(( T

c(A, δ)

) 2k−1

2k
)

=⇒ γ2
t−1 = TΩ

(( T

c(A, δ)

) 2k+1−1

2k+1
)

=⇒ . . . =⇒ γ2
t−1 = TΩ

( T

c(A, δ)

)
From Eq. (56),(57) since √

c(A, δ)

γ2
t−1

≤
√

16ec(A, δ)

σmin(AA′)T
= β1

it follows that

Yt�
(

1−
√

16ec(A, δ)

σmin(AA′)TR2︸ ︷︷ ︸
=β1

)
AYt−1A

′ +
R2TI

8
(59)

The goal here is to refine the upper bound for
√

c(A,δ)
γ2
t−1

such that√
c(A, δ)

γ2
t−1

≤ C

T
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Eq. (59) implies that

Yt
(a)

� TR2

8

min (b 1
β1
c,T4 )∑

k=1

(1− β1)kAkAk′ +
R2TI

16

(b)

� TR2

16e

min (b 1
β1
c,T4 )∑

k=1

AkAk′ +
R2TI

16

�R
2T

16e
Γb 1

β1
c(A) +

R2TI

16

Here

β1 =

√
16ec(A, δ)

σmin(AA′)R2T
(60)

Due to the choice of T, d we will usually have b 1
β1
c2 ≤ T

4 . (a) follows by successively expanding Eq. (59), (b) follows

because (1− β1)b
1
β1
c ≥ e−1

2 since β1 ≤ 1/2 by Eq. (58). Then we can conclude that

γ2
t−1 ≥ σmin(AYtA

′)

≥
R2Tσmin(AA′)σmin(Γb 1

β1
c(A))

16e
(61)

which gives us √
c(A, δ)

γ2
t−1

≤
( 16ec(A, δ)

R2Tσmin(AA′)σmin(Γb 1
β1
c(A))

)1/2

= β2 (62)

It is clear from Eq. (62) that we get a recursion during the refinement process. Specifically at the kth repetition of Eq. (59)
up to Eq. (62) we get,

βk =
( 16ec(A, δ)

R2Tσmin(AA′)σmin(Γb 1
βk−1

c(A))

)1/2

(63)

Now βk is a non-increasing sequence. We show this by induction. Since σmin(Γt(A)) ≥ 1 and√
16ec(A, δ)

σmin(AA′)R2T
≤ 1

it follows trivially that β2 ≤ β1. Assume our hypothesis holds for all k ≤ m. Then since Γt1(A) � Γt2(A) whenever
t1 ≥ t2 we have ( 16ec(A, δ)

R2Tσmin(AA′)σmin(Γb 1
βm
c(A))

)1/2

≤
( 16ec(A, δ)

R2Tσmin(AA′)σmin(Γb 1
βm−1

c(A))

)1/2

βm+1 ≤ βm

and we have proven our hypothesis. To now find the best upper bound for
√

c(A,δ)
γ2
t−1

we find the steady state solution for
Eq. (63), i.e.

β2
0σmin(Γb 1

β0
c(A)) =

( 16ec(A, δ)

R2Tσmin(AA′)

)
(64)

Now a solution for β0 ∈ ( 2C
σmin(AA′)TR2 , 1). To see this set β0 = 1, then LHS > RHS. Next set β0 = 2C

σmin(AA′)TR2 then
since ρmin(At) ≥ σmin(At) and ρi ≤ 1 + C/T we see that

4C2σmin(Γb 1
β0
c(A))

σmin(AA′)2T 2
≤ 4

∑σmin(A)2R2T/2C
t=0 ρmin(A)2t

R4σmin(AA′)2T 2/C2

≤ 2eC

σmin(A)2T
≤
( 16ec(A, δ)

R2Tσmin(AA′)

)
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and LHS < RHS because C is a constant but c(A, δ) is growing logarithmically with T (and we can pick T accordingly).
By ensuring that

T ≥ 64ec(A, δ)

R2σmin(A)2

we also ensure that β1 < 1/2 and as a result all subsequent βk < 1/2. Now we can conclude that whenever T ≥ 64ec(A,δ)
σmin(A)2

we get Eq. (59)

Yt�(1− β0)AYt−1A
′ +

TR2I

8
(65)

and following as before we get with probability at least 1− δ

YT �
TR2

16e
Γb 1

β0
c(A) +

TR2I

16
(66)

where β0 is solution to

β2
0σmin(Γb 1

β0
c(A)) =

( 16ec(A, δ)

TR2σmin(AA′)

)
and

c(A, δ) = 16d log (tr(ΓT − I) + 1) + 32d log
15T

2δ

It should be noted that 1
β0

will equal
√
α(d)TR2σmin(AA′)

16ec(A,δ) , i.e., grow linearly with T , as shown in Proposition 8.5. Then it
can be seen from Eq. (66) that

YT �
TR2

16e
Γb 1

β0
c(A) +

TR2I

16

YT �
TR2

16e
σmin(Γb 1

β0
c(A)) +

TR2I

16

� TR2

16e

TR2
√
α(d)σmin(AA′)

16ec(A, δ)C(d)
I =

√
α(d)T 2R4σmin(AA′)

256e2c(A, δ)
I (67)

12 Invertibility of YT in explosive systems

Assume for this case that ηt = Lη̄t where {η̄t}Tt=1 are i.i.d and all elements of η̄t are independent. Further L is full row
rank. Define σmin(LL′) = R2 > 0. In this section we show the invertibility (with high probability) of YT when A is regular
and explosive.

Let σmax(LL′) = 1. Recall that

zt = A−txt

= x0 +

t∑
τ=1

A−τητ

Define

z(T, t) =

(
t−1∑
s=0

A−sηT+1−t+s

)
where z(T, t) = 0 for t ≤ 0, t ≥ T + 1. An observation that will be useful is that z(t) is statistically independent of
z(T ) − z(t). Recall from Eq. (18) that UT = A−T

∑T
t=1 xtx

′
tA
−T ′, FT =

∑T
t=1A

−t+1zT z
′
TA
−t+1′. UT is a scaled

version of YT and we will show that ||UT − FT ||2≤ c with high probability. Then we show that FT � 2cI as a result
UT � cI with high probability. This behavior is only possible due to the regularity of the matrix A and significantly different
from Section 10.
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Bounding ||FT − UT ||op

Proposition 12.1. We have with probability at least 1− 2δ,

||UT − FT ||2≤
(

4T 2σ2
1(A−(T+1)ε)tr(ΓT (A−1)) +

(
1 +

1

c
log

1

δ

)
T tr(A−T−1ΓT (A−1)A−T−1′)

)

whenever

T ≥ T0 =
2

c

(
log

1

δ
+ log 2 + 2d log 5

)
Proof. Observe that

z(T )− z(T − t) = A−T+t−1

(
t−1∑
s=0

A−sηT+1−t+s

)
= A−T+t−1z(T, t) (68)

Then

||UT − FT ||op=||
T∑
t=1

A−t(z(T − t)z(T − t)′ − z(T )z(T )
′
)(A−t)

′ ||2

Let u = z(T − t), v = z(T ) and since uu′ − vv′ = (u− v)u′ + u(u− v)′ − (u− v)(u− v)′ we have

||UT − FT ||op ≤ ||
T∑
t=1

A−t(z(T − t)− z(T ))(z(T − t)− z(T ))
′
A−t

′ ||2

+ ||
T∑
t=1

A−t((z(T − t)− z(T ))z(T − t)′ + z(T − t)(z(T − t)′ − z(T )
′
)A−t

′ ||2 (69)

The reason we decompose it in such a way is so that we can represent the cross terms (z(T − t)− z(T ))z(T − t)′ as the
product of independent terms. This will be useful in using Hanson–Wright bounds as we show later.

First we bound

||
T∑
t=1

A−t(z(T − t)− z(T ))(z(T − t)− z(T ))
′
A−t

′ ||2

From Eq. (68) we see that A−t(z(T − t)− z(T )) = −A−T−1z(T, t), then

A−T−1z(T, t) = A−T−1[0, 0, . . . , I︸︷︷︸
T−t+1 term

, A−1, A−2, . . . , A−t+1]


η1

η2

...
ηT


Since

∑T
t=1(z(T − t)− z(T ))(z(T − t)− z(T ))

′ �∑T
t=1 trace((z(T − t)− z(T ))(z(T − t)− z(T ))

′
)I . Based on these

observations we have

||
T∑
t=1

A−t(z(T − t)− z(T ))(z(T − t)− z(T ))
′
A−t

′ ||2= ||
T∑
t=1

A−T−1z(T, t)z(T, t)
′
A−T−1′ ||2

≤ trace(A−T−1
T∑
t=1

z(T, t)z(T, t)
′
A−T−1′) =

T∑
t=1

z(T, t)
′
A−T−1′A−T−1z(T, t) = η̃

′
Ã
′
Ãη̃
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where η̃ =


η1

η2

...
ηT

 and

Ã =


0 0 . . . 0 A−T−1

0 0 . . . A−T−1 A−T−2

...
...

...
...

...
A−T−1 A−T−2 . . . A−2T+1 A−2T


Since tr(ÃÃ′) = T tr(A−T−1ΓT (A−1)A−T−1′). Applying Markov’s Inequality (See Proposition 9.4), we have with
probability at least 1− δ that

η̃
′
Ã
′
Ãη̃ ≤ tr(E[Ãη̃η̃

′
Ã
′
])

δ
≤ σ1(L)2T tr(A−T−1ΓT (A−1)A−T−1′)

δ
(70)

Although this bound can be tightened by dependent Hanson–Wright (See Corollary 9.1), there is no reason to do so as δ
depends only logarithmically on T . In fact we get with probability at least 1− δ that

η̃
′
Ã
′
Ãη̃ ≤

(
1 +

1

c
log

1

δ

)
(σ1(L)2T tr(A−T−1ΓT (A−1)A−T−1′)) (71)

Next we analyze the second term

||
T∑
t=1

A−t((z(T − t)− z(T ))z(T − t)′ + z(T − t)(z(T − t)′ − z(T )
′
)A−t

′ ||2

Consider the summand
∑T
t=1A

−t((z(T − t)− z(T ))z(T − t)′A−t′, then

T∑
t=1

A−t((z(T − t)− z(T ))z(T − t)′A−t′ = A−T−1
T∑
t=1

z(T, t)z(T − t)′A−t′ (72)

We define scaled version of z(T, t), z(T − t).

z̃(T, t) = A−T−1z(T, t) = A−T−1 [0, 0, . . . , I︸︷︷︸
T−t+1 term

, A−1, A−2, . . . , A−t+1]

︸ ︷︷ ︸
A(T,t)


η1

η2

...
ηT



z̃(T − t)′ = z(T − t)′A−t′ = [η′1, η
′
2, . . . , η

′
T ]︸ ︷︷ ︸

η̃′



A−t−1′

A−t−2′

...
A−T ′

0
...
0


︸ ︷︷ ︸
A(T−t)′

+x0

Then the probability of the second term can be written as

P(||
T∑
t=1

(z̃(T, t)z̃(T − t)′ + z̃(T − t)z̃(T, t)′)||2≥ z) ≤︸︷︷︸
1
2−net

2× 52d × P(

∣∣∣∣∣
T∑
t=1

2u
′
z̃(T, t)z̃(T − t)′v

∣∣∣∣∣) ≥ z/4)

≤ 2× 52d × P

(∣∣∣∣∣η̃′(
T∑
t=1

A(T, t)′A−T−1′uv′A(T − t) +A(T − t)′vu′A−T−1A(T, t)
)
η̃

∣∣∣∣∣ ≤ z/4
)

(73)
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To Eq. (73) apply Hanson-Wright inequality. For any u, v, due to the statistical independence of z(T − t), z(T, t) we have

E[

T∑
t=1

2u
′
z̃(T, t)z̃(T − t)′v] = 0

We now need an upper bound on ||S||2, ||S||F . Since CD′ +DC ′ � CC ′ +DD′

S =

T∑
t=1

A(T, t)′A−T−1′uv′A(T − t) +A(T − t)′vu′A−T−1A(T, t)

=

T∑
t=1

A(T, t)′A−(T+1)ε′︸ ︷︷ ︸
=C

A−(T+1)(1−ε)′uv′A(T − t)︸ ︷︷ ︸
=D′

+A(T − t)′vu′A−(T+1)(1−ε)A−(T+1)εA(T, t)

�
T∑
t=1

A(T, t)′A−(T+1)ε′A−(T+1)εA(T, t)︸ ︷︷ ︸
=CC′

+

T∑
t=1

A(T − t)′vu′A−(T+1)(1−ε)A−(T+1)(1−ε)′uv′A(T − t)︸ ︷︷ ︸
=DD′

� σ2
1(A−(T+1)ε)

T∑
t=1

A(T, t)′A(T, t) + u′A−(T+1)(1−ε)A−(T+1)(1−ε)′u

T∑
t=1

A(T − t)′vv′A(T − t)

� σ2
1(A−(T+1)ε)tr

( T∑
t=1

A(T, t)′A(T, t)
)
I + σ2

1(A−(T+1)(1−ε))tr
( T∑
t=1

A(T − t)′vv′A(T − t)
)
I

(a)

� 2Tσ2
1(A−(T+1)ε)tr(ΓT (A−1))I

Here (a) follows because

A(T, t)A(T, t)′ = Γt−1(A), A(T − t)A(T − t)′ = ΓT−t(A)

Then whenever
T ≥ T0 =

2

c

(
log

1

δ
+ log 2 + 2d log 5

)
(74)

Eq. (73) becomes with probability at least 1− δ that

||
T∑
t=1

((z(T − t)− z(T ))z(T − t)′ + z(T − t)(z(T − t)′ − z(T )
′
)||2≤ 4T 2σ2

1(A−(T+1)ε)tr(ΓT (A−1)) (75)

Then combining Eq. (70),(75) we get for T ≥ T0 given in Eq. (74),

||UT − FT ||2≤
(

4T 2σ2
1(A−(T+1)ε)tr(ΓT (A−1)) +

T tr(A−T−1ΓT (A−1)A−T−1′)

δ

)
(76)

with probability at least 1− 2δ. We pick ε such that (T + 1)ε = bT+1
2 c. In fact using Eq. (71) instead of Eq. (70) we get

||UT − FT ||2≤
(

4T 2σ2
1(A−(T+1)ε)tr(ΓT (A−1)) +

(
1 +

1

c
log

1

δ

)
T tr(A−T−1ΓT (A−1)A−T−1′)

)
(77)

Bounding UT

Proposition 12.2. We have with probability at least 1− 4δ

YT �
φmin(A)2ψ(A)2δ2

2σmax(P )2
ATAT ′

YT �
3φmax(A)2

2σmin(P )2
(1 +

1

c
log

1

δ
)tr(P (ΓT (A−1)− I)P ′)ATAT ′
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whenever (
4T 2σ2

1(A−(T+1)ε)tr(ΓT (A−1)) +
T tr(A−T−1ΓT (A−1)A−T−1′)

δ

)
≤ φmin(A)2ψ(A)2δ2

2σmax(P )2

Proof. To give lower and upper bounds on UT , we need to bound FT . The steps involve

||UT − FT ||2 ≤ ∆

FT � Vdn � 0

=⇒ UT ≥ Vdn −∆I

FT � Vup
=⇒ UT � Vup + ∆I

From Proposition 13.1 we get, with probability at least 1− 2δ,

FT � φmin(A)2ψ(A)2δ2σmin(P−1)2I

FT �
φmax(A)2

σmin(P )2
(1 +

1

c
log

1

δ
)tr(P (ΓT (A−1)− I)P ′)I

Define

∆ =
1

2
min

(
φmax(A)2

σmin(P )2
(1 +

1

c
log

1

δ
)tr(P (ΓT (A−1)− I)P ′), φmin(A)2ψ(A)2δ2σmin(P−1)2

)

=
φmin(A)2ψ(A)2δ2σmin(P−1)2

2

Then in Eq. (76) by ensuring that(
4T 2σ2

1(A−(T+1)ε)tr(ΓT (A−1)) +
T tr(A−T−1ΓT (A−1)A−T−1′)

δ

)
≤ φmin(A)2ψ(A)2δ2

2σmax(P )2

we get with probability at least 1− 4δ (since this is the intersection of events governed by Eq. (76),(83),(84))

UT � φmin(A)2ψ(A)2δ2σmin(P−1)2I − φmin(A)2ψ(A)2δ2

2σmax(P )2
I � φmin(A)2ψ(A)2δ2

2σmax(P )2
I (78)

Similarly, for the upper bound

UT �
3φmax(A)2

2σmin(P )2
(1 +

1

c
log

1

δ
)tr(P (ΓT (A−1)− I)P ′)I (79)

Thus with probability at least 1− 4δ we have

YT �
φmin(A)2ψ(A)2δ2

2σmax(P )2
ATAT ′

YT �
3φmax(A)2

2σmin(P )2
(1 +

1

c
log

1

δ
)tr(P (ΓT (A−1)− I)P ′)ATAT ′ (80)

whenever (
4T 2σ2

1(A−(T+1)ε)tr(ΓT (A−1)) +
T tr(A−T−1ΓT (A−1)A−T−1′)

δ

)
≤ φmin(A)2ψ(A)2δ2

2σmax(P )2
(81)
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13 Regularity and Invertibility
Through a counterexample in (Nielsen, 2008), Remark 4 in (Phillips & Magdalinos, 2013) it is shown that unless a matrix is
regular, the estimation of the parameters maybe asymptotically inconsistent.

Recall FT from Eq. (18). Assume again that ηt = Lη̄t where {η̄t}Tt=1 are i.i.d isotropic subGaussian and all elements of η̄t
are independent. Further L is full row rank. Define σmin(LL′) = R2 > 0. Let σmax(LL′) = 1 (this does not affect the
main result as it appears only as a scaling). For the invertibility of YT in explosive systems, it will be important that FT is
invertible with high probability. It will turn out that invertibility of FT can be ensured by assuming regularity of A. This
is Proposition 1 in (Faradonbeh et al., 2017) and has been presented here for completeness. It will be useful to recall the
definitions of φmin(A), φmax(A) from Definition 3.

We will show FT indeed has rank d with probability 1. Formally,
Proposition 13.1. Let A be regular, then we have with probability at least 1− 2δ

σmin(FT ) ≥ φmin(A)2

σmax(P )2
ψ(A)2δ2

σmax(FT ) ≤ φmax(A)2

σmin(P )2
(1 +

1

c
log

1

δ
)tr(P (ΓT (A−1)− I)P ′)

where A = P−1ΛP is the Jordan decomposition of A.

Proof. Let Sk = [zT , A
−1zT , . . . , A

−kzT ] where zT = A−TxT = A−T (
∑T−1
k=0 A

kLη̄T−k). Note that Lη̄t is continuous
whenever L is full row rank. Then FT = STS

′
T . Observe that

A−tzT = P−1Λ−tPzT

Define the event
E+(δ) = { min

1≤i≤d
|P ′izT |> ψ(A)δ}

where ψ(A) is the lower bound shown in Proposition 3.2 (which we can use due to the continuity of Lη̄t) and v = PzT .
Under E+(δ), |vi|> 0. Now we need a lower bound for σmin(FT ) under E+(δ)

FT = P−1
T∑
i=1

Λ−i+1PzT z
′
TP
′Λ−i+1′P−1′ = P−1

T∑
i=1

Λ−i+1vv′Λ−i+1′P−1′ (82)

� φmin(A)2ψ(A)2δ2P−1P−1′� φmin(A)2

σmax(P )2
ψ(A)2δ2I (83)

Further, since A is regular we have that φmin(A) > 0 from Proposition 8.3. Then with probability at least 1− δ we have

σmin(FT ) ≥ φmin(A)2

σmax(P )2
ψ(A)2δ2 > 0

For the upper bound, observe that PzT is a sub-Gaussian random variable. Since

||PzT z′TP ′||≤ z′TP ′PzT
and recalling that

zT = [A−1, A−2, . . . , A−T ]︸ ︷︷ ︸
Ã


η1

η2

...
ηT


we can use dependent Hanson Wright inequality (Corollary 9.1) to bound z′TP

′PzT . In Theorem 4,

B = Ã′P ′PÃ

E[z′TP
′PzT ] = tr(P (ΓT (A−1)− I)P ′)σ1(L)2 = tr(P (ΓT (A−1)− I)P ′)

||B||2, ||B||F≤ tr(Ã′P ′PÃ) = tr(P (ΓT (A−1)− I)P ′)
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Then with probability at least 1− δ we have

z′TP
′PzT ≤ (1 +

1

c
log

1

δ
)tr(P (ΓT (A−1)− I)P ′)

and we get from Eq. (82)

FT � P−1
T∑
i=1

Λ−i+1PzT z
′
TP
′Λ−i+1′P−1′ � (z′TP

′PzT ) sup
||v||2=1

σmax

(
P−1

T∑
i=1

Λ−i+1vv′Λ−i+1′P−1′
)
I

� φmax(A)2

σmin(P )2
(1 +

1

c
log

1

δ
)tr(P (ΓT (A−1)− I)P ′)I (84)

Then we have with probability at least 1− 2δ

FT �
φmin(A)2

σmax(P )2
ψ(A)2δ2I (85)

FT �
φmax(A)2

σmin(P )2
(1 +

1

c
log

1

δ
)tr(P (ΓT (A−1)− I)P ′)I (86)

14 Composite Result
In this section we discuss error rates for regular matrices which may have eigenvalues anywhere in the complex plane. The
key step is to recall that for every matrix A it is possible to find P̃ such that

A = P̃−1

Ae 0 0
0 Ams 0
0 0 As


︸ ︷︷ ︸

=Ã

P̃ (87)

Here Ae, Ams, As are the purely explosive, marginally stable and stable portions of A. This follows because any matrix A
has a Jordan normal form A = P−1ΛP , where Λ is a block diagonal matrix and each block corresponds to an eigenvalue.
We can always find Q (a rearrangement matrix) such that Λ is partitioned into two diagonal parts: explosive, marginally
stable and stable, i.e.,

A = P−1QT

Λe 0 0
0 Λms 0
0 0 Λs

QP (88)

Clearly, P̃ = QP . Since

Xt =

t∑
τ=1

Aτ−1ηt−τ+1

X̃t = P̃Xt =

t∑
τ=1

Ãτ−1 P̃ ηt−τ+1︸ ︷︷ ︸
η̃t−τ+1

(89)

Now, the transformed dynamics are as follows:

X̃t+1 = ÃX̃t + η̃t+1

where Ã has been partitioned into explosive and stable components as Eq. (87). Corresponding to Ã partition X̃t, η̃t

X̃t =

 Xe
t

Xms
t

Xs
t

, η̃t =

 ηet
ηmst
ηst

 (90)
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ỸT =

T∑
t=1

X̃tX̃
′
t =

T∑
t=1

 Xe
t (Xe

t )′ Xe
t (Xms

t )′ Xe
t (Xs

t )′

Xms
t (Xe

t )′ Xms
t (Xms

t )′ Xms
t (Xs

t )′

Xs
t (Xe

t )′ Xs
t (Xms

t )′ Xs
t (Xs

t )′

 (91)

We analyze the error of identification in the transformed system instead and show how it relates to the actual error. Note that
P̃ is unknown, the transformation is done for ease of analysis. The invertibility of submatrix corresponding to stable and
marginally stable components, i.e.,

Xmss
t =

[
Xms
t

Xs
t

]
follows from Theorem 1. To see this let Ae be a de × de matrix. Define

Pmss = P̃ [de + 1 : d, :]

i.e., Pmss is the rectangular matrix formed by removing the rows of P̃ corresponding to the explosive part. Then, by
definition, we have that [

ηmst
ηst

]
= Pmssηt

and

Xmss
t+1 =

[
Ams 0

0 As

]
︸ ︷︷ ︸

Amss

Xmss
t +

[
ηmst+1

ηst+1

]

Further
E[Pmssηtη

′
tP
′
mss] = PmssP

′
mss � 0

Since all rows of P̃ are independent then PmssP ′mss is invertible and {Pmssηt}Tt=1 are independent subGaussian vectors.
Now this is the same set up as the general version of Theorem 1 discussed in Section 10. Since Amss ∈ S0 ∪ S1 only has
stable and marginally stable components, it follows from the Eq. (51) that

T∑
t=1

Xmss
t (Xmss

t )′ � T

4
σmin(PmssP

′
mss)I

with high probability. Then since σmin(PmssP
′
mss) ≥ σmin(P̃ )2 = R2, we have that

∑T
t=1X

mss
t (Xmss

t )′ � TR2

4 I . Let
σmax(P̃ ) = 1. (this makes no difference to the results and R can be interpreted as the inverse condition number)

Recall the definition of β0(δ)

β0(δ) = inf
{
β|β2σmin(Γb 1

β c
(A)) ≥

( 8ec(A, δ)

TR2σmin(AA′)

)}
we refer to β0(δ) as β0. Following our discussion in Proposition 8.5 we see that β0 > 0 and since σmin(Γt(A)) ≥ α(d)t we
have that

β0 ≤
8ec(A, δ)

TR2σ2
min(A)C(d)

=⇒ 1

β0
≥ TR2σ2

min(A)C(d)

8ec(A, δ)

Define

Ve = (

T∑
t=1

Xe
t (Xe

t )′), Vs =
TR2

4
I, Vms =

(TR2

8e
Γb 1

β0
c(Ams)

)
where the invertibility in Ve holds with high probability. Observe that Vms � (

∑T
t=1X

ms
t (Xms

t )′), Vs � (
∑T
t=1X

s
t (Xs

t )′)
with high probability (follows from Eq. (51),(66)). This observation will be useful in proving the composite invertibility.

Although the technique to prove the invertibility of
∑T
t=1 X̃tX̃

′
t is similar in spirit to that of (Faradonbeh et al., 2017), it

addresses additional difficulties arising due to the presence of a marginally stable block.

Bd×d =

V
−1/2
e 0 0

0 V
−1/2
ms 0

0 0 V
−1/2
s

 (92)
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We will show that B
∑T
t=1 X̃tX̃

′
tB
′ is positive definite with high probability, i.e.,

T∑
t=1

BX̃tX̃
′
tB
′ =

 I
∑T
t=1 V

−1/2
e Xe

t (Xms
t )′V

−1/2′
ms

∑T
t=1 V

−1/2
e Xe

t (Xs
t )′V

−1/2′
s∑T

t=1 V
−1/2
ms Xms

t (Xe
t )′V

−1/2′
e

∑T
t=1 V

−1/2
ms Xms

t (Xms
t )′V

−1/2′
ms

∑T
t=1 V

−1/2
ms Xms

t (Xs
t )′V

−1/2′
s∑T

t=1 V
−1/2
s Xs

t (Xe
t )′V

−1/2′
e

∑T
t=1 V

−1/2
s Xs

t (Xms
t )′V

−1/2′
ms

∑T
t=1 V

−1/2
s Xs

t (Xs
t )′V

−1/2′
ms


(93)

We already showed that lower submatrix is invertible. To show that the entire matrix is invertible we need to show

||V −1/2
e

T∑
t=1

Xe
t (Xms

t )′V −1/2′
ms ||, ||V −1/2

e

T∑
t=1

Xe
t (Xs

t )′V −1/2′
s ||< γ/8

with high probability for some appropriate γ and

σmin

([
V
−1/2
ms 0

0 V
−1/2
s

]
T∑
t=1

Xmss
t (Xmss

t )′

[
V
−1/2
ms 0

0 V
−1/2
s

])
≥ γ > 0

14.1 Cross Terms have low norm

Define the following quantities:

α(Ae, δ) =
3φmax(Ae)

2σ2
max(Ae)

φmin(Ae)2σmin(Ae)2

(
1 + 1

c log 1
δ

)
tr(Pe(ΓT (A−1

e − I))P ′e)

ψ(Ae)2δ2
(94)

Tmc(δ) =

{
T

∣∣∣∣∣α(Ae, δ)tr(A−T+kmc(T )
e (A−T+kmc(T )

e )′) ≤ γ2

256

}
(95)

kmc = kmc(T ) = T

(
1− R2γ2

2048deλ1

(
ΓT (Ams)Γ

−1
b 1
β0(δ)

c(Ams)
(

1 + 1
c log 1

δ

))) (96)

Tsc(δ) =

{
T

∣∣∣∣∣α(Ae, δ)tr(A−T+ksc(T )
e (A−T+ksc(T )

e )′) ≤ γ2

256

}
(97)

ksc = ksc(T ) = T

(
1− R2γ2

1024dλ1

(
ΓT (As)

(
1 + 1

c log 1
δ

))) (98)

Remark 3. Note that Tmc(δ) (and Tsc(δ)) is a set where there exists a minimum T∗ <∞ such that T ∈ Tmc(δ) whenever
T ≥ T∗. However, there might be T < T∗ for which the inequality of Tmc(δ) holds. Whenever we write T ∈ Tmc(δ) we
mean T ≥ T∗.

Second note that for every T , since R, γ < 1 we have

ksc(T ), kmc(T ) ≥ T

2

These quantities will be useful in stating the error bounds. We have

||V −1/2
e

T∑
t=1

Xe
t (Xms

t )′V −1/2′
ms || ≤ ||V −1/2

e

k∑
t=1

Xe
t (Xms

t )′V −1/2′
ms ||+||V −1/2

e

T∑
t=k+1

Xe
t (Xms

t )′V −1/2′
ms ||

We will need a more nuanced argument to upper bound Eq. (99) than that provided in (Faradonbeh et al., 2017) (although it
will be similar in flavor).

P(||V −1/2
e

T∑
t=1

Xe
t (Xms

t )′V −1/2
ms ||) (99)
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For any v1, v2 we break |v′1V −1/2
e

∑T
t=1X

e
t (Xms

t )′V
−1/2
ms v2| into two parts

|v′1V −1/2
e

k∑
t=1

Xe
t (Xms

t )′V −1/2
ms v2|

and

|v′1V −1/2
e

T∑
t=k+1

Xe
t (Xms

t )′V −1/2
ms v2|

. For |v′1V −1/2
e

∑T
t=k+1X

e
t (Xms

t )′V
−1/2
ms v2| we have

|v′1V −1/2
e

T∑
t=k+1

Xe
t (Xms

t )′V −1/2
ms v2| ≤

√√√√v′1V
−1/2
e

T∑
t=k+1

Xe
t (Xe

t )′V
−1/2
e v1︸ ︷︷ ︸

≤1

√√√√v′2V
−1/2
ms

T∑
t=k+1

Xms
t (Xms

t )′V
−1/2
ms v2

≤

√√√√v′2V
−1/2
ms

T∑
t=k+1

Xms
t (Xms

t )′V
−1/2
ms v2 ≤

√√√√σ1(V
−1/2
ms

T∑
t=k+1

Xms
t (Xms

t )′V
−1/2
ms )

≤

√√√√λ1(

T∑
t=k+1

Xms
t (Xms

t )′V −1
ms ) (100)

To upper bound Eq. (100) we simply need to upper bound V −1/2
ms

∑T
t=k+1X

ms
t (Xms

t )′V
1/2
ms . We can use dependent

Hanson–Wright inequality (Corollary 9.1) and Corollary 9.2. Then from Corollary 9.2 and since Vms is deterministic we
can conclude that with probability at least 1− δ we get

V −1/2
ms

T∑
t=k+1

Xms
t (Xms

t )′V −1/2
ms �

T∑
t=k+1

tr(V −1/2
ms Γt(Ams)V

−1/2
ms )

(
1 +

1

c
log

1

δ

)
I (101)

We can upper bound the deterministic quantity in Eq. (101) as

T∑
t=k+1

tr(V −1/2
ms Γt(A)V −1/2

ms ) ≤ dλ1(

T∑
t=k+1

Γt(Ams)V
−1
ms )

= dλ1

( 8e

TR2

T∑
t=k+1

Γt(Ams)Γb 1
β0(δ)

c(Ams)
−1
)

≤ dλ1

(8e(T − k)

TR2
ΓT (Ams)Γb 1

β0(δ)
c(Ams)

−1
)

(102)

The last inequality holds because the eigenvalues of P−1/2QP−1/2 are the same as QP−1 and non–negative whenever
P,Q are psd matrices. The normalized gramian term, Γt(Ams)Γb 1

β0(δ)
c(Ams)

−1, appears in Eq. (102) only because Vms is
deterministic. This will help us in getting non–trivial upper bounds for the cross terms of explosive and marginally stable pair.
The key is the choice of k. In Proposition 8.6 we showed that λ1(Γt1Γ−1

t2 ) only depends on the ratio of t1/t2 and Ams and
not on the specific values of t1, t2. Note that due to Proposition 8.6 the normalized gramian term ΓT (Ams)Γ

−1
b 1
β0(δ)

c(Ams)

has spectral radius that is at most polynomial in Tβ0(δ). Since β0(δ) ≈ log T
T × log 1

δ , we get that

λ1(ΓT (Ams)Γ
−1
b 1
β0(δ)

c(Ams)) = poly
(

log T, log
1

δ

)
Our choices of Tmc(δ), kmc(T ) in Eq. (95),(96) are motivated by the preceding discussion. We set k = kmc(T ) and we
have that dλ1

(
8e(T−k)
TR2 ΓT (Ams)Γb 1

β0(δ)
c(Ams)

−1
)
≤ γ2

256 (check by directly substituting k = kmc(T ) in Eq. (102)) and
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as a result from Eq. (100)

|v′1V −1/2
e

T∑
t=k+1

Xe
t (Xms

t )′V −1/2
ms v2|≤

γ

16

for arbitrary v1, v2. Similarly for the second part

|v′1V −1/2
e

k∑
t=1

Xe
t (Xms

t )′V −1/2
ms v2| ≤

√√√√v′1V
−1/2
e

k∑
t=1

Xe
t (Xe

t )′V
−1/2
e v1︸ ︷︷ ︸

a1

√√√√v′2V
−1/2
ms

k∑
t=1

Xms
t (Xms

t )′V
−1/2
ms v2︸ ︷︷ ︸

≤1

(103)

For the choice of k = kmc the other term can be simplified as

a1 =

√√√√v′1V
−1/2
e

k∑
t=1

Xe
t (Xe

t )′V
−1/2
e v1 ≤

√√√√σ1(V
−1/2
e

k∑
t=1

Xe
t (Xe

t )′V
−1/2
e ) ≤

√√√√λ1(

k∑
t=1

Xe
t (Xe

t )′V −1
e )

≤

√√√√tr(
k∑
t=1

Xe
t (Xe

t )′V −1
e ) (104)

By ensuring that both T, k = kmc(which is ≥ T/2) ∈ Tu(δ) (from Table 1) we have from Eq. (80) that

k∑
l=1

Xe
t (Xe

t )′ � 3φmax(Ae)
2

2σmin(Pe)2
(1 +

1

c
log

1

δ
)tr(Pe(ΓT (A−1

e )− I)P ′e)A
k
eA

k′
e

Ve �
φmin(Ae)

2ψ(Ae)
2δ2

2σmax(Pe)2
ATe A

T ′
e

Define

α(Ae, δ) =
3φmax(Ae)

2σ2
max(Ae)

φmin(Ae)2σmin(Ae)2

(
1 + 1

c log 1
δ

)
tr(Pe(ΓT (A−1

e )− I)P ′e)

ψ(Ae)2δ2

and we can conclude √√√√tr(
k∑
t=1

Xe
t (Xe

t )′V −1
e ) ≤

√
α(Ae, δ)tr(A−T+k

e (A−T+k
e )′)

with probability at least 1− 2δ. Since T ∈ Tmc(δ) we have

a1 ≤
√
α(Ae, δ)tr(A−T+k

e (A−T+k
e )′) ≤ γ

16
(105)

with probability at least 1− 2δ. Then combining Eq. (100),(101),(103),(105) we get with probability at least 1− 4δ that

|v′1V −1/2
e

T∑
t=1

Xe
t (Xms

t )′V −1/2
ms v2| ≤

γ

8
(106)

This implies with probability at 1− 4δ we have

||V −1/2
e

T∑
t=1

Xe
t (Xms

t )′V −1/2
ms || ≤ γ

8
(107)

We have a similar assertion for the stable–explosive block but with T ∈ Tsc(δ) and k = ksc(T ).

||V −1/2
e

T∑
t=1

Xe
t (Xs

t )′V −1/2
s || ≤ γ

8
(108)

It should be noted that T ∈ Tsc(δ), Tmc(δ) are both poly logarithmic in δ because of A−T+kmc (or A−T+ksc ) term which is
exponentially decaying.
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Remark 4. Whenever T ∈ Tsc(δ), Tmc(δ), the other conditions on T such as T/2 ∈ Tu(δ) or T ≥ Ts(δ) ∨ Tms( δ
2T ) for

the invertibility of the individual stable, marginally stable blocks are satisfied simultaneously (or are trivial to satisfy) and
we do not state them explicitly.

14.2 Norm of scaled
∑T
t=1X

mss
t (Xmss

t )′ is high

Now we need to check

σmin

([
V
−1/2
ms 0

0 V
−1/2
s

]
T∑
t=1

Xmss
t (Xmss

t )′

[
V
−1/2
ms 0

0 V
−1/2
s

])
≥ γ > 0

Since from Theorem 1 and its extension in Section 10 it is known that with probability at least 1 − δ we have∑T
t=1X

mss
t (Xmss

t )′ � R2 TI
4 for some fixed R = σmin(P̃ ) > 0, then we know that the Schur complement of∑T

t=1X
mss
t (Xmss

t )′ is invertible too. For shorthand let

M =

T∑
t=1

Xmss
t (Xmss

t )′ =

[
M11 Q′

Q M22

]
Then the Schur complement is

M/M11 = M22 −QM−1
11 Q

′

Since σmin(M) ≥ R2 TI
4 then from Corollary 2.3 in (Liu, 2005) we have that

σmin(M/M11) ≥ R2T

4

Since M22 �
∑T−1
t=0 tr(Γt(As))

(
1 + 1

c log 1
δ

)
I with probability at least 1− δ. We see that with probability at least 1− δ

M
−1/2
22 (M/M11)M

−1/2
22 = I −M−1/2

22 QM
−1/2
11 M

−1/2
11 Q′M

−1/2
22 � R2

4tr(ΓT (As))(1 + 1
c log 1

δ )
I (109)

Since As is stable tr(ΓT (As)) ≤ tr(Γ∞(As)) <∞. Define

ω(δ) =
R2

4tr(ΓT (As))(1 + 1
c log 1

δ )
> 0 (110)

Then this implies that[
M
−1/2
11 0

0 M
−1/2
22

]
M

[
M
−1/2
11 0

0 M
−1/2
22

]
=

[
I M

−1/2
11 Q′M

−1/2
22

M
−1/2
22 QM

−1/2
11 I

]
� ω(δ)

4
I

because for any v =

[
v1

v2

]
we have

v′

 I M
−1/2
11 QM

−1/2
22︸ ︷︷ ︸

=D′

M
−1/2
22 Q′M

−1/2
11 I

 v = v′1v1 + v′1Dv2 + v′2D
′v1 + v′2v2

= v′1v1 − 2
√

1− ω(δ)||v2||||v1||+v′2v2

≥ v′1v1 − 2
(

1− ω(δ)

2

)
||v2||||v1||+v′2v2

Since from Eq. (109) it follows that ||D||2≤ 1− ω(δ) we obtain

v′1v1 − 2
√

1− ω(δ)||v2||||v1||+v′2v2 = v′1v1 − 2
(

1− ω(δ)

2

)
||v2||||v1||+v′2v2

=
(

1− ω(δ)

2

)
(||v1||−||v2||)2 +

(
1−

√
1− ω(δ)

2

)
(||v1||2+||v2||2)

≥
(ω(δ)

4

)
(||v1||2+||v2||2)
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Combining these observations we get

v′

 I M
−1/2
11 QM

−1/2
22︸ ︷︷ ︸

=D

M
−1/2
22 Q′M

−1/2
11 I

 v ≥ (ω(δ)

4

)

We have that

σmin

([M−1/2
11 0

0 M
−1/2
22

]
M

[
M
−1/2
11 0

0 M
−1/2
22

])
≥
(ω(δ)

4

)
Since M22 � Vs,M11 � Vms we have with probability at least 1− δ

σmin

([
V
−1/2
ms 0

0 V
−1/2
s

]
T∑
t=1

Xmss
t (Xmss

t )′

[
V
−1/2
ms 0

0 V
−1/2
s

])
≥
(ω(δ)

4

)
> 0 (111)

Now we replace in Eq. (107),(108) γ →
√
ω(δ)

32 . Then that implies

|| V −1/2
e

T∑
t=1

Xe
t (Xs

t )′V −1/2
s || ≥

√
ω(δ)

64

|| V −1/2
e

T∑
t=1

Xe
t (Xms

t )′V −1/2
ms || ≥

√
ω(δ)

64

14.3 Lower Bound on
∑T
t=1 X̃tX̃

′
t

Recalling that

T∑
t=1

BX̃tX̃
′
tB
′ =

 I
∑T
t=1 V

−1/2
e Xe

t (Xms
t )′V

−1/2′
ms

∑T
t=1 V

−1/2
e Xe

t (Xs
t )′V

−1/2′
s∑T

t=1 V
−1/2
ms Xms

t (Xe
t )′V

−1/2′
e

∑T
t=1 V

−1/2
ms Xms

t (Xms
t )′V

−1/2′
ms

∑T
t=1 V

−1/2
ms Xms

t (Xs
t )′V

−1/2′
s∑T

t=1 V
−1/2
s Xs

t (Xe
t )′V

−1/2′
e

∑T
t=1 V

−1/2
s Xs

t (Xms
t )′V

−1/2′
ms

∑T
t=1 V

−1/2
s Xs

t (Xs
t )′V

−1/2′
ms


then it follows from Eq. (111) that

T∑
t=1

BX̃tX̃
′
tB
′ �

 I
∑T
t=1 V

−1/2
e Xe

t (Xms
t )′V

−1/2′
ms

∑T
t=1 V

−1/2
e Xe

t (Xs
t )′V

−1/2′
s∑T

t=1 V
−1/2
ms Xms

t (Xe
t )′V

−1/2′
e

ω(δ)
4 I 0∑T

t=1 V
−1/2
s Xs

t (Xe
t )′V

−1/2′
e 0 ω(δ)

4 I



Let v =

v1

v2

v3

 Then v′
∑T
t=1BX̃tX̃

′
tB
′v = ||v1||2+ω(δ)

4 (||v2||22+||v3||22) + 2v′1
∑T
t=1 V

−1/2
e Xe

t (Xms
t )′V

−1/2′
ms v2 +

2v′1
∑T
t=1 V

−1/2
e Xe

t (Xs
t )′V

−1/2′
s v3 ≥ ||v1||2+ω(δ)

4 (||v2||22+||v3||22)−
√
ω(δ)

32 ||v1||||v2||−
√
ω(δ)

32 ||v1||||v3||. Then we get

v′
T∑
t=1

BX̃tX̃
′
tB
′v ≥ ||v1||2+

ω(δ)

4
(||v2||22+||v3||22)− ω(δ)

64
(||v1||2+||v2||2)− ω(δ)

64
(||v1||2+||v3||2)

Thus σmin(
∑T
t=1BX̃tX̃

′
tB
′) ≥ ω(δ)

8 . Summarizing we have with probability at least 1 − Cδ. The
Cδ comes because we are considering the intersection of invertibility of

∑T
t=1X

mss
t (Xmss

t )′ and∑T
t=1X

e
t (Xe

t )′,
∑T
t=1X

s
t (Xs

t )′,
∑T
t=1X

ms
t (Xms

t )′.

σmin(

T∑
t=1

BX̃tX̃
′
tB
′) ≥ ω(δ)

8
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whenever

T ∈ Tmc(δ) ∩ Tsc(δ) (112)

Replacing δ → δ
C we get with probability at least 1− δ that

σmin(

T∑
t=1

BX̃tX̃
′
tB
′) ≥ ω( δC )

8

Define

V edn(δ) =
φmin(Ae)

2ψ(Ae)
2δ2

2σmax(P )2
ATe A

T ′
e , V

s
dn(δ) =

TR2

4
I, V msdn (δ) =

(TR2

8e
Γb 1

β0(δ)
c(Ams)

)
This implies that with probability at least 1− 2δ we have that

T∑
t=1

BX̃tX̃
′
tB
′ � ω( δC )

8
I =⇒

T∑
t=1

X̃tX̃
′
t �

ω( δC )

8
B−2

T∑
t=1

X̃tX̃
′
t �

ω( δC )

8

V edn(δ) 0 0
0 V msdn ( δC ) 0
0 0 V sdn( δC )


︸ ︷︷ ︸

=Vdn

(113)

V edn depends differently than the rest because Ve was chosen to be data dependent and we only apply the lower bound on∑T
t=1X

e
t (Xe

t )′ at the very end.

14.4 Finding the Upper Bound
∑T
t=1 X̃tX̃

′
t

For the upper bound on
∑T
t=1 X̃tX̃

′
t. We use Lemma A.5 of (Simchowitz et al., 2018). Consider an arbitrary matrix

M =

M1

M2

M3

. Then

3M1M
′
1 0 0

0 3M2M
′
2 0

0 0 3M3M
′
3

 �MM ′. This is because

2M1M
′
1 −M1M

′
2 −M1M

′
3

−M2M
′
1 2M2M

′
2 −M2M

′
3

−M3M
′
1 −M3M

′
2 2M3M

′
3

 = (

M1

0
0

−
 0
M2

0

)(

M1

0
0

−
 0
M2

0

)′

+ (

M1

0
0

−
 0

0
M3

)(

M1

0
0

−
 0

0
M3

)′ + (

 0
0
M3

−
 0
M2

0

)(

 0
0
M3

−
 0
M2

0

)′

Define

V eup(δ) =
3φmax(A)2σmax(P̃ )4

σmin(P̃ )2
(1 +

1

c
log

1

δ
)tr(ΓT (A−1

e ))ATe A
T ′
e

V sup(δ) = 3σmax(P̃ )2T tr(ΓT (As))
(

1 +
1

c
log
(1

δ

))
I

V msup (δ) = 3σmax(P̃ )2T tr(ΓT (Ams))
(

1 +
1

c
log
(1

δ

))
I

Then with probability at least 1− 4δ we have
∑T
t=1X

e(Xe
t )′ 0 0

0
∑T
t=1X

ms(Xms
t )′ 0

0 0
∑T
t=1X

s(Xs
t )′

 �
V eup(δ) 0 0

0 V msup (δ) 0
0 0 V sup(δ)


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We get these upper bounds for stable and marginally stable matrices from Proposition (9.4) and Eq. (80) for explosive
matrices. Then with probability at least 1− 4δ we have

T∑
t=1

X̃tX̃
′
t �

3V eup(δ) 0 0
0 3V msup (δ) 0
0 0 3V sup(δ)


︸ ︷︷ ︸

=Vup

(114)

Note that the time requirement in Eq. (112) is sufficient to ensure the upper bounds with high probability and we do not
state them explicitly.

14.5 Getting Error Bounds

We recall the discussion for Theorem 1. We have Vup, Vdn, so we compute VupV −1
dn which gives us

VupV
−1
dn =

8

ω( δC )

3V eup(δ)(V
e
dn(δ))−1 0 0

0 3V msup (δ)(V msdn ( δC ))−1 0

0 0 3V sup(δ)(V
s
dn)−1( δC )


det(VupV −1

dn ) =
( 24

ω( δC )

)d
det(V eup(δ)(V

e
dn(δ))−1)det(V msup (δ)(V msdn (

δ

C
))−1)det(V sup(δ)(V

s
dn(

δ

C
))−1)

Further V sdn( δC ) = V sdn(δ) (only the time required to be greater than this with high probability changes). Then

log (det(VupV −1
dn )) = d(log 24− logω(

δ

C
)) + log det(V eup(δ)(V

e
dn(δ))−1)

+ log det(V msup (δ)(V msdn (
δ

C
))−1) + log det(V sup(δ)(V

s
dn(

δ

C
))−1)

Following this the bounds are straightforward and can be computed as shown in Eq. (12). It should be noted that
Proposition 3.1 works for a general case of noise process which η̃t satisfies.

Now we only know the error of the transformed dynamics, i.e.,

T∑
t=1

(

T∑
t=1

X̃tX̃t)
+(

T∑
t=1

X̃tη̃t+1)

Since (
∑T
t=1 X̃tX̃t) is invertible with high probability

T∑
t=1

(

T∑
t=1

X̃tX̃t)
+(

T∑
t=1

X̃tη̃t+1) = (

T∑
t=1

X̃tX̃t)
−1(

T∑
t=1

X̃tη̃t+1)

=

T∑
t=1

P̃−1′(

T∑
t=1

XtXt)
−1P̃−1P̃Xtηt+1P̃

′

= P̃−1′
T∑
t=1

(

T∑
t=1

XtXt)
−1Xtηt+1P̃

′

Then it is clear that∣∣∣∣∣
∣∣∣∣∣
T∑
t=1

(

T∑
t=1

X̃tX̃t)
−1(

T∑
t=1

X̃tη̃t+1)

∣∣∣∣∣
∣∣∣∣∣ ≥ σmin(P̃−1)

∣∣∣∣∣
∣∣∣∣∣
T∑
t=1

(

T∑
t=1

XtXt)
−1Xtηt+1

∣∣∣∣∣
∣∣∣∣∣σmin(P̃ )

and we have bounded the original error term in terms of the unknown σmin(P̃ ), σmin(P̃−1). However this factor only
depends on d and not T .
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15 Extension to presence of control input
Here we sketch how to extend our results to the general case when we also have a control input, i.e.,

Xt+1 = AXt +BUt + ηt+1 (115)

Here A,B are unknown but we can choose Ut. Pick independent vectors {Ut ∼N (0, I)}Tt=1. We can represent this as a
variant of Eq. (1) as follows [

Xt+1

Ut+1

]
︸ ︷︷ ︸
X̄t+1

=

[
A B
0 0

]
︸ ︷︷ ︸

Ā

[
Xt

Ut

]
+

[
ηt+1

Ut+1

]
︸ ︷︷ ︸
η̄t+1

Since

det

([
A− λI B

0 −λI

])
= 0

holds when λ equals an eigenvalue of A or 0. The eigenvalues of Ā are the same as A with some additional eigenvalues that
are zero. Now we can simply use Theorem 2.

16 Extension to heavy tailed noise
It is claimed in (Faradonbeh et al., 2017) that techniques involving inequalities for subgaussian distributions cannot be used
for the class of sub-Weibull distributions they consider. However, by bounding the noise process, as even (Faradonbeh
et al., 2017) does, we can convert the heavy tailed process into a zero mean independent subgaussian one. In such a case
our techniques can still be applied, and they incur only an extra logarithmic factor. We consider the class of distributions
introduced in (Faradonbeh et al., 2017) called sub–Weibull distribution. Let ηt,i be the ith element of ηt then ηt,i has
sub–Weibull distribution if

P(|ηt,i > y|) ≤ b exp

{(−yα
m

)}
(116)

When α = 2 it is subGaussian, α = 1 it is subExponential and α < 1 it is subWeibull. Assume for now that ηt,i has
symmetric distribution. The extension to asymmetric case needs some computation in finding and is not discussed here.
Consider the event

W(δ) =

{
max

1≤t≤T
||ηt||∞≤ νT (δ)

}

where νT (δ) =
(
m log

(
bTd
δ

)1/α)
. Then Proposition 3 in (Faradonbeh et al., 2017) shows that P(W(δ)) ≥ 1− δ. Clearly

because each {ηt,i}t=T,i=dt=1,i=1 are i.i.d and have symmetric distribution

E[ηt,i|W(δ)] = E[ηt,i|{|ηt,i|≤ νT (δ)}] = 0 (117)

Then underW(δ), ηt,i has mean zero and {ηt,i}t=T,i=dt=1,i=1 are independent under the eventW(δ). Further since underW(δ)

these are bounded, they are also subGaussian. The subGaussian parameter or variance proxy R2 ≤ νT (δ)2 which is
logarithmic in T . This appears as simply a scaling factor in Theorem 3, Proposition 3.1. We can now use all our techniques
from before.

17 Optimality of Bound
In this section we show that the upper bound for explosive systems in Theorem 1 is optimal. To that end, we analyze a 1-D
system. By explicitly calculating the propbability distribution of the error term we provide an (almost) optimal lower bound.

Let A = a be 1-D system. Assume that T ∈ Tu(δ) (as in Table 1). Then Xt, ηt are just numbers. Then let E be the error,
i.e.,

E = (

T∑
t=1

x2
t )
−1(

T∑
t=1

xtηt+1)

= a−T (

T∑
t=1

a−2Tx2
t )
−1(

T∑
t=1

a−Txtηt+1)
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In this section, we will show that the bound obtained for explosive systems is optimal in terms of δ. Assume ηt ∼N (0, 1)

i.i.d Gaussian. Let ST =
∑T
t=1 a

−Txtηt+1, UT =
∑T
t=1 a

−2Tx2
t . Now E = a−TU−1

T ST and ST has the following form

2ST = [ηT+1, . . . , η1]


0 a−T a−T+1 . . . a−1

a−T 0 a−T . . . a−2

...
. . . . . . . . .

...
...

...
. . . . . . . . .

a−1 a−2 a−3 . . . 0


︸ ︷︷ ︸

=M

ηT+1

...
η1


︸ ︷︷ ︸

=η̃

(118)

Define FT =
∑T
i=1 a

−2i+2(a−2Tx2
T ) = 1−a−2T

1−a−2 a
−2Tx2

T . and σ2 = Var(a−2Tx2
T ). It is clear that a−TxT is a Gaussian

random variable. Note that FT , UT are the same as Eq. (18) and Section 12 when A = a. We can easily calculate σ2

a−2 ≤ σ2 ≤ 1

a2 − 1

Consider four events

E1(δ) =

{
|UT − FT |≤

δ2σ2

C
∨
(CT 2a−T

1− a−2
+
(

1 +
1

c
log

1

δ

) Ta−2T

(1− a−2)

)}
, E2(δ) =

{
|ST |≥

δ

−Ca2 log δ

}

E3(δ) =

{
0 ≤ FT ≤ C2δ

2σ2

}
, E4(δ) =

{
0 ≤ UT ≤

(
(C2 + 1/C)δ2σ2

)
∨
(CT 2a−T

1− a−2
+
(

1 +
1

c
log

1

δ

) Ta−2T

(1− a−2)

)}
From Eq. (77) we have with probability at least 1− δ

2 that

||UT − FT ||2 ≤︸︷︷︸
Eq. (77)

(
4T 2σ2

1(A−
(T+1)

2 )tr(ΓT (A−1)) +
(
T +

T

c
log

1

δ

)
σ2

1(A−T−1)tr(ΓT (A−1))

)

≤ 4T 2a−T

1− a−2
+
(

1 +
1

c
log

1

δ

) Ta−2T

(1− a−2)

Assume δ2 ∈ (0, 1
128 ] then

P(E3(δ)) =
2√
2πσ

∫ 16δσ

2δσ

e−
x2

2σ2 dx

≥ 14δ√
2π
e−

256δ2

2

≥ 14δ√
2πe
≥ 2δ

Recall Tu(δ) is the set of T that satisfies Eq. (81) when A = a.

17.1 T ∈ Tu(δ)

For T ∈ Tu(δ) and from Eq. (76), we have with probability at least 1− δ
2 that

||UT − FT ||2 ≤
4T 2a−T

1− a−2
+

Ta−2T

δ(1− a−2)
≤︸︷︷︸

T∈Tu(δ),Eq. (81)

φmin(a)2ψ(a)2δ2

2σmax(P )2
≤ Cδ2

(a2 − 1)

The last inequality follows because for 1-D systems φmin(A), ψ(A), σmax(P ) are just constants, for example P =
1, φmin(a) = 1, ψ(a)2 = Cσ2 ≤ C

a2−1 which follows by definition. Note T ∈ Tu(δ) if and only if we have

δ2σ2 >
CT 2a−T

1− a−2
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Thus, P(E1(δ)) ≥ 1− δ
2 . Clearly E1(δ) ∩ E3(δ) =⇒ E1(δ) ∩ E4(δ) and

E2(δ) ∩ E4(δ) =⇒
{
|ST |U−1

T ≥ C

−σ2a2δ log δ

}
We bound P(E2(δ)) in Section 18 and Eq. (121), which gives P(E2(δ)) ≥ 1− δ

2 and then

P(E1(δ) ∩ E2(δ) ∩ E4(δ)) ≥ P(E1(δ) ∩ E2(δ) ∩ E3(δ))

≥ P(E1(δ)) + P(E2(δ) ∩ E3(δ))− 1

≥ P(E1(δ)) + P(E2(δ)) + P(E3(δ))− 2

≥ δ

2

Since E2(δ) ∩ E4(δ) =⇒ {|ST |U−1
T ≥ C

−σ2a2δ log δ} when T ∈ Tu(δ) then

P({|ST |U−1
T ≥ C

−σ2a2δ log δ
}) ≥ δ

2

we have proved our claim that with probability at least δ we have that

|ET |≥
( C

−σ2a2δ log δ

)
a−T ≥ C(1− a−2)

−δ log δ
a−T (119)

whenever Ca2T 2a−T ≤ δ2.

17.2 T 6∈ Tu(δ)

If Ca2T 2a−T > δ2, then with probability at least 1− δ
2

|UT − FT |≤
CT 2a−T

1− a−2︸ ︷︷ ︸
Follows by direct computation

and we have with probability at least δ that {
|ST |U−1

T ≥ C(1− a−2)δaT

−T 2a2 log δ

}
and we can conclude with probability at least δ

|ET |≥
C(1− a−2)δ

−a2(log δ)3

where Ca2T 2a−T ≥ δ2 =⇒ T ≤ − log δ.

17.3 Comparison to existing bounds

Theorem 5 (Theorem B.2 (Simchowitz et al., 2018)). Fix an a∗ ∈ R and define ΓT =
∑
t=1 a

2t
∗ . Fix an alternative

a′ ∈ {a∗ − 2ε, a∗ + 2ε} and δ ∈ (0, 1/4). Then for any estimator â

sup
a∈{a∗,a′}

P(|â(T )− a∗|≥ ε) ≥ δ

for any T such that TΓT ≤ log (1/2δ)
8ε2 .

Note ΓT = a2T+2−1
a2−1 . Theorem 5 suggests that for a given T, δ if ε ≤ a−T

√
−C log δ

T then P(|a∗− â(T )|≥ ε) ≥ δ. However
we show that whenever Ca2T 2a−T ≤ δ2, we have that

P
(
|a∗ − â(T )|≥ a−T C(1− a−2)

−δ log δ

)
≥ δ

Since a−T
√
−C log δ

T ≤ a−T C(1−a−2)
−δ log δ our lower bound is tighter.
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Theorem 6 (Theorem B.1 (Simchowitz et al., 2018)). Let ε ∈ (0, 1) and δ ∈ (0, 1/2). Then P(|â(T )− a∗|≤ ε) ≥ 1− δ as
long as

T ≥ max
{ 8

(|a∗ − ε|)2 − 1
log

2

δ
,

4 log 1
ε

log (|a∗|−ε)
+ 8 log

2

δ

}
We now compare Eq. (119) to the upper bound in Theorem 6. Eq. (119) gives us that if

ε ≤ C(1− a−2)

−δ log δ
a−T

we have with probability at least δ that |ET |≥ ε. This reduces to whenever

T− ≤
log 1

ε

log a
+

log C(1−a−2)
δ

log a
(120)

we have with probability at least δ that |ET |≥ ε. We focus on the case a∗ > 1 + ε of Theorem 6. Let a∗ = 1 + ε+ γ, then
the bounds in Theorem 6 indicate that whenever

T+ ≥
8

2γ + γ2
log

2

δ
+

4 log 1
ε

log (γ + 1)
+ log

2

δ

we have with probability at least 1− δ |ET |≤ ε. If γ = o(ε), then the requirement on T reduces to

T+ ≥
8

o(ε)
log

2

δ
+

4 log 1
ε

o(ε)
+ smaller terms

By substituting log a ≈ ε in T− we note that T− ≤ T+. For the case when γ = Ω(ε) for T+ we get

T+ ≥
( 8

Ω(ε)
∨ 1
)

log
2

δ
+

4 log 1
ε

log (1 + Ω(ε))
≈
( 8

Ω(ε)
∨ 1
)

︸ ︷︷ ︸
≥(log a)−1

log
2

δ
+

2 log 1
ε

log a

In either cases T− ≤ T+.

18 Distribution of ST

Recall ST from Eq. (118). Since
∑
i,j |M |i,j≥ ||M ||∗ (the nuclear norm), we have that ||M ||∗≤ 2a−1

1−a−1 and it is obvious
that ||M ||2≥ a−1. Since M = U>ΛU (because it is symmetric) and ηt are i.i.d Gaussian then Uη̃ is also Gaussian with
each of its entries being i.i.d Gaussian. This implies that 2ST =

∑T+1
j=1 λjg

2
j where λj are eigenvalues of M and gj are i.i.d

Gaussian with
∑
j λj = 0,

∑
j |λj |≤ 2a−1

1−a−1 . The characteristic function of ST is

φST (t) =

T+1∏
j=1

( 1

1− 2itλj

)1/2

=
( 1

1− 4t2(
∑
l 6=j λlλj)− i8t3(

∑
l 6=j 6=k λlλjλk) + 16t4(

∑
l 6=j 6=k 6=p λlλjλkλp) . . .

)1/2

where the coefficient of t vanishes because
∑T+1
j=1 λj = 0. Further since

∑
l 6=j 2λlλj = −∑j λ

2
j we have and

(
∑

l 6=j 6=k 6=m

λlλjλkλm) =
∑
l

λl(
∑

l 6=j 6=k 6=m

λjλkλm) =
∑
l

λl(
∑

l 6=j 6=k 6=m

λjλkλm +
∑

l 6=p 6=m

λlλpλm −
∑

l 6=p 6=m

λlλpλm)

=
∑
l

λl(
∑

j 6=k 6=m

λjλkλm −
∑

l 6=p 6=m

λlλpλm −
∑
l 6=m

λ2
l λm +

∑
l 6=m

λ2
l λm)

=
∑
l

λl(−λl
∑
p 6=m

λpλm +
∑
l 6=m

λ2
l λm) =

(
∑
l λ

2
l )

2

2
−
∑
l

λ4
l =

tr(M2)2

2
− tr(M4)
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The coefficients of even powers of t can be obtained in a similar fashion. Then recall by Levy’s theorem that

fST (x) =

∫ ∞
−∞

e−itxφST (t)dt =⇒ sup
x
fST (x) ≤

∫ ∞
−∞
|φST (t)|dt ≤

∫ ∞
−∞

1√
1 + c1t2 + c2t4 + . . .

dt

Now whenever ck > 0 (and not decaying asymptotically to zero) for some k ≥ 2, we get supx fST (x) ≤ C for some
universal constant C and we can use Proposition 9.5 to get P(|ST |≤ δ) ≤ Cδ. But since that may not be always be true we
can explicitly calculate the integral

fST (x) =

∫ ∞
−∞

e−itxφST (t)dt ≈
∫ ∞
−∞

eitx√
1 + 2a−2t2

dt︸ ︷︷ ︸
Modified Bessel Function of the Second Kind∫ δ

−δ
fST (x)dx =

∫ δ

−δ

∫ ∞
−∞

eitx√
1 + 2a−2t2

dtdx = 2

∫ ∞
−∞

∫ δ

−δ

cos(tx)√
1 + 2a−2t2

dxdt

= Cδ

∫ ∞
0

sin(tδ)

δt
√

1 + 2a−2t2
dt = Cδ

∫ δ

0

sin(tδ)

δt
√

1 + 2a−2t2
dt+ Cδ

∫ ∞
δ

sin(tδ)

δt
√

1 + 2a−2t2
dt

≤ Cδ2 − Caδ log(δ)

Thus
P(|ST |≤ δ) ≤ −Caδ log δ

and replacing δ → −Cδ
2a log δ we get

P
(
|ST |≤

−Cδ
a log δ

)
≤ δ

2
(121)

19 Lemma B
Let the characteristic and minimal polynomial be χ(t), µ(t) respectively.

χ(t) =

k∏
i=1

(t− λi)ai , µ(t) =

k∏
i=1

(t− λi)bi

where bi ≤ ai. bi is the size of the largest Jordan block corresponding to λi in the Jordan normal form. ai sum of size of
all Jordan blocks corresponding to λi. Now, if χ(t) = µ(t) then ai = bi, i.e., there is only Jordan block corresponding
to each λi. On the other if there is only one Jordan block (geometric multiplicity = 1) corresponding to each eigenvalue
=⇒ ai = bi and χ(t) = µ(t).

20 Inconsistency of explosive systems
In this section we provide proof that OLS is inconsistent when the regularity assumption of explosive matrices is violated.
In fact we show that even the simple scale identity matrix cannot be correctly learned. The proof proceeds by analyzing the
scaled sample covariance matrix a−2TYT . Using tools from matrix analysis, we show that the error term does not decay to
zero as T →∞

Âo −Ao =
( T∑
t=1

a−2T ηt+1X
′
t

)
(a−2T

T∑
t=1

XtX
>
t )−1

︸ ︷︷ ︸
=Scaled Sample Covariance matrix

The key insight in the result is that although
(∑T

t=1 a
−2T ηt+1X

′
t

)
decays as O(a−T ), (a−2T

∑T
t=1XtX

>
t ) has a singular

value o(a−T ) due to which the error is a non-decaying. Let A = aI where a ≥ 1.1 and ηt are i.i.d. Gaussian random
vectors. Then

Proposition 20.1. Let {ηt}Tt=1 be i.i.d standard Gaussian then whenever T 2 ≤ aT , we have that

||Âo −Ao||= γT

where γT is a random variable that admits a continuous pdf and does not decay to zero as T →∞.
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Proof. [
X

(1)
t+1

X
(2)
t+1

]
= A

[
X

(1)
t

X
(2)
t

]
+

[
η

(1)
t+1

η
(2)
t+1

]
Since A is scaled identity we have that X(1)

t =
∑T
t=1 a

T−tη
(1)
t , X

(2)
t =

∑T
t=1 a

T−tη
(2)
t . The scaled sample covariance

matrix a−2TYT = a−2T
∑T
t=1XtX

>
t is of the following form

a−2TYT =

[
a−2T

∑T
t=1(X

(1)
t )2 a−2T

∑T
t=1X

(1)
t X

(2)
t

a−2T
∑T
t=1X

(1)
t X

(2)
t a−2T

∑T
t=1(X

(2)
t )2

]
(122)

Define a−TXT = ZT with Z(i)
T corresponding to appropriate coordinates, and recall that Z(i)

T is a Gaussian random variable
with variance in (a−2, a−2

1−a−2 ) and each a−TXt = 〈a−TXt, ZT 〉ZT + 〈a−TXt, Z
⊥
T 〉Z⊥T . This implies

a−2T
T∑
t=1

XtX
>
t =

T∑
t=1

(a−T 〈Xt, ZT 〉︸ ︷︷ ︸
=αt

)2ZTZ
>
T +

T∑
t=1

a−2T 〈Xt, ZT 〉〈Xt, Z
⊥
T 〉ZT (Z⊥T )>

+

T∑
t=1

〈a−TXt, ZT 〉︸ ︷︷ ︸
=αt

〈a−TXt, Z
⊥
T 〉︸ ︷︷ ︸

=βt

Z⊥T Z
>
T +

T∑
t=1

(a−T 〈Xt, Z
⊥
T 〉︸ ︷︷ ︸

=βt

)2Z⊥T (Z⊥T )>

= ||α||2ZTZ>T + ||β||2Z⊥T (Z⊥T )>︸ ︷︷ ︸
=M

+〈α, β〉(Z⊥T Z>T + ZT (Z⊥T )>)

= M + 〈α, β〉[ZTZ⊥T ]︸ ︷︷ ︸
=U

[
0 1
1 0

]
︸ ︷︷ ︸

=C

[
Z>T

(Z⊥T )>

]
︸ ︷︷ ︸

=V

By using Woodbury’s matrix identity and since M−1 = ||α||−2ZTZ
>
T + ||β||−2Z⊥T (Z⊥T )>, C = C−1 we get

(a−2T
T∑
t=1

XtX
>
t )−1 = M−1 − 〈α, β〉M−1U(C + 〈α, β〉U>M−1U)−1U>M−1

= M−1 − 〈α, β〉[||α||−2ZT ||β||−2Z⊥T ]
([〈α, β〉||α||−2 1

1 ||β||−2〈α, β〉

])−1
[
||α||−2Z>T
||β||−2(Z⊥T )>

]
Then the error term is

Âo −Ao =
( T∑
t=1

a−2T ηt+1X
′
t

)
(a−2T

T∑
t=1

XtX
>
t )−1

=
( T∑
t=1

〈a−TXt, ZT 〉a−T ηt+1Z
′
T +

T∑
t=1

〈a−TXt, Z
⊥
T 〉a−T ηt+1(Z⊥T )′

)
(a−2T

T∑
t=1

XtX
>
t )−1

We now check the projection of ZT , Z⊥T on (a−2T
∑T
t=1XtX

>
t )−1

Z>T (a−2T
T∑
t=1

XtX
>
t )−1 = ||α||−2Z>T − 〈α, β〉[||α||−2 0]

([〈α, β〉||α||−2 1
1 〈α, β〉||β||−2

])−1
[
||α||−2Z>T
||β||−2(Z⊥T )>

]
=
−||α||−2Z>T + 〈α, β〉||α||−2||β||−2(Z⊥T )>

〈α, β〉2||α||−2||β||−2−1
(123)

(Z⊥T )>(a−2T
T∑
t=1

XtX
>
t )−1 = ||β||−2(Z⊥T )> − 〈α, β〉[0 ||β||−2]

([〈α, β〉||α||−2 1
1 〈α, β〉||β||−2

])−1
[
||α||−2Z>T
||β||−2(Z⊥T )>

]
=
−||β||−2(Z⊥T )> + 〈α, β〉||α||−2||β||−2Z>T

〈α, β〉2||α||−2||β||−2−1
(124)
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We will show that with high probability ||α||−2= Θ(1), ||β||−2= Ω(a2T ), 〈α, β〉 = O(a−T ) as a result Eq. (123) is Ω(aT )

and Eq. (124) is Ω(a2T ). Note that Z⊥T =

[
Z

(2)
T

−Z(1)
T

]
where we have ignored the scaling (as these will be of constant order

with high probability). First taking a closer look at αt = a−2TX
(1)
t Z

(1)
T + a−2TX

(2)
t Z

(2)
T reveals the following behaviour

a−2TX
(1)
T−1Z

(1)
T = a−1(Z

(1)
T )2 − a−T−1Z

(1)
T η

(1)
T

αT−1 = a−1((Z
(1)
T )2 + (Z

(2)
T )2)− a−T−1(Z

(1)
T η

(1)
T + Z

(2)
T η

(2)
T )

a−2TX
(1)
T−2Z

(1)
T = a−2(Z

(1)
T )2 − a−T−1Z

(1)
T−1η

(1)
T − a−T−2Z

(1)
T η

(1)
T

αT−2 = a−2((Z
(1)
T )2 + (Z

(2)
T )2)− a−T−1(Z

(1)
T−1η

(1)
T + Z

(2)
T−1η

(2)
T )− a−T−2(Z

(1)
T η

(1)
T + Z

(2)
T η

(2)
T )

Since Z(1)
T is a Gaussian random variable with bounded variance, we see that αt decays exponentially as t decreases (up to

some a−T additive terms). In a similar fashion one can show that
∑T
t=1 α

2
t = 1−a−2T

1−a−2 ((Z
(1)
T )2 + (Z

(2)
T )2)2 +O(T 2a−T )

with high probability. Clearly ||α||−2= Θ(1) with high probability. For β, note that Z(2)
T is independent of X(1)

t and
observe that {aTβt}T−1

t=1 are non–decaying and non–trivial random variables. Specifically these are subexponential random
variables with ||·||ψ1

norm as ||aTβt||ψ1
= Ca−1. Here ||·||ψ1

norm is the same Definition 2.7.5 in (Vershynin, 2018). To
see this consider for example t = T − 1, T − 2, then

aTβT−1 = 〈XT−1, Z
⊥
T 〉 = X

(1)
T−1Z

(2)
T −X

(2)
T−1Z

(1)
T = a−1(η

(2)
T Z

(1)
T − η

(1)
T Z

(2)
T )

aTβT−2 = 〈XT−1, Z
⊥
T 〉 = X

(1)
T−1Z

(2)
T −X

(2)
T−1Z

(1)
T = a−1((η

(2)
T−1 + a−1η

(2)
T )Z

(1)
T − (η

(1)
T−1 + a−1η

(1)
T )Z

(2)
T ) (125)

Clearly, a2T ||β||22= Ω(1) and a2T ||β||22= O(T ) with high probability. Recall the error term

Âo −Ao =
( T∑
t=1

a−2T ηt+1X
′
t

)
(a−2T

T∑
t=1

XtX
>
t )−1

=
( T∑
t=1

〈a−TXt, ZT 〉a−T ηt+1Z
′
T +

T∑
t=1

〈a−TXt, Z
⊥
T 〉a−T ηt+1(Z⊥T )′

)
(a−2T

T∑
t=1

XtX
>
t )−1

(Âo −Ao)Z⊥T = (

T∑
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〈a−TXt, ZT 〉a−T ηt+1Z
′
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T∑
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XtX
>
t )−1Z⊥T
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T∑
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〈a−TXt, Z
⊥
T 〉a−T ηt+1(Z⊥T )′)(a−2T

T∑
t=1

XtX
>
t )−1Z⊥T

=
〈α, β〉||α||−2||β||−2

〈α, β〉2||α||−2||β||−2−1

T∑
t=1

〈a−TXt, ZT 〉a−T ηt+1 −
−||β||−2

〈α, β〉2||α||−2||β||−2−1

T∑
t=1

〈a−TXt, Z
⊥
T 〉a−T ηt+1

=
||α||−2||aTβ||−2

〈α, aTβ〉2||α||−2||aTβ||−2−1

( T∑
t=1

(〈α, aTβ〉αt − aTβt||α||2)ηt+1

)
= γT (126)
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Observe the term aTβt||α||2ηt+1

aTβt||α||2ηt+1 = ||α||2
[
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t+1Z
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︸ ︷︷ ︸

=O(
√
T log T

δ )

)

The O(
√
T log T ) follows by applying Hanson-Wright inequality to each of a−j

∑T
t=1 η

(2)
t+jη

(1)
t terms where we get

with probability at least 1 − δ/T that a−j
∑T
t=1 η

(2)
t+jη

(1)
t ≤ ca−jO(

√
T log T

δ ). Therefore simultaneously for all j ≤
T we have with probability at least 1 − δ (using union bound) that a−j

∑T
t=1 η

(2)
t+jη

(1)
t ≤ ca−jO(

√
T log T

δ ) =⇒∑T
j=1 a

−j∑T
t=1 η

(2)
t+jη

(1)
t ≤ O(

√
T log T

δ ). Plugging this in Eq. (126) we get that

γT =
||α||−2||aTβ||−2

〈α, aTβ〉2||α||−2||aTβ||−2−1

( T∑
t=1

(〈α, aTβ〉αt︸ ︷︷ ︸
=O(
√
T )

− aTβt||α||2)ηt+1︸ ︷︷ ︸
=Θ(T )

)

Clearly then γT in Eq. (126) satisfies a non–trivial pdf, i.e., error does not decay to zero.

Another interesting observation is that
∑T
t=1 a

−2T ηt+1X
>
t decays O(a−T ) with high probability, however the error is a

non–decaying random variable. This immediately gives us that

Proposition 20.2. The sample covariance matrix
∑T
t=1XtX

>
t has the following singular values

σ1(
T∑
t=1

XtX
>
t ) = Θ(a2T ), σ2(

T∑
t=1

XtX
>
t ) = O(

√
TaT )

Proof. The largest singular values of
∑T
t=1XtX

>
t = Θ(a2T ) this follows because

||
T∑
t=1

a−2TXtX
>
t −

1− a−2T

1− a−2
ZTZ

>
T ||2≤ O(a−T )

with high probability, which follows from the claims of Eq. (17), (18) in Theorem 1 and discussion in Section 12. The
second claim follows because

∑T
t=1 a

−2T ηt+1X
>
t decays Ω(a−T ) with high probability. To see this

T∑
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a−2T ηt+1X
>
t ≤ a−T

√√√√ T∑
t=1

η′tηt

√√√√ T∑
t=1

a−2TX ′tXt ≈
√
Ta−T

The
√
T factor can be removed by similar arguments as above. However the identification error is a random variable which

implies that σ2(
∑T
t=1 a

−2TXtX
>
t ) = O(

√
Ta−T ).


