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Abstract

We derive finite time error bounds for estimating
general linear time-invariant (LTT) systems from
a single observed trajectory using the method of
least squares. We provide the first analysis of the
general case when eigenvalues of the LTI system
are arbitrarily distributed in three regimes: stable,
marginally stable, and explosive. Our analysis
yields sharp upper bounds for each of these cases
separately. We observe that although the under-
lying process behaves quite differently in each of
these three regimes, the systematic analysis of a
self-normalized martingale difference term helps
bound identification error up to logarithmic fac-
tors of the lower bound. On the other hand, we
demonstrate that the least squares solution may be
statistically inconsistent under certain conditions
even when the signal-to-noise ratio is high.

1 Introduction

Finite time system identification—the problem of estimat-
ing the parameters of an unknown dynamical system given
a finite time series of its output—is an important problem
in the context of time-series analysis, control theory, eco-
nomics and reinforcement learning. In this work we will
focus on obtaining sharp non—asymptotic bounds for linear
dynamical system identification using the ordinary least
squares (OLS) method. Such a system is described by
Xiy1 = AX; + 141 where X; € R? is the state of the
system and 7 is the unobserved process noise. The goal
is to learn A by observing only X;’s. Our techniques can
easily be extended to the more general case when there is a
control input Uy, i.e., X411 = AXy + BU; + 1;11. In this
case (A, B) are unknown, and we can choose U.

Linear systems are ubiquitous in control theory. For exam-
ple, proportional-integral-derivative (PID) controller is a
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popular linear feedback control system found in a variety
of devices, from planetary soft landing systems for rock-
ets (see e.g. (Agikmese et al., 2013)) to coffee machines.
Further, linear approximations to many non-linear systems
have been known to work well in practice. Linear systems
also appear as auto—regressive (AR) models in time series
analysis and econometrics. Despite its importance, sharp
non—asymptotic characterization of identification error in
such models was relatively unknown until recently.

In the statistics literature, correlated data is often dealt with
using mixing—time arguments (see e.g. (Yu, 1994)). How-
ever, a fundamental limitation of the mixing-time method is
that bounds deteriorate when the underlying process mixes
slowly. For discrete linear systems, this happens when
p(A)—the spectral radius of A—approaches 1. As a result
these methods cannot extend to the case when p(A) > 1.
More recently there has been renewed effort in obtaining
sharp non—asymptotic error bounds for linear system identi-
fication (Faradonbeh et al., 2017; Simchowitz et al., 2018).
Specifically, (Faradonbeh et al., 2017) analyzed the case
when the system is either stable (p(A) < 1) or purely ex-
plosive (p(A) > 1). For the case when p(A) < 1 the
techniques in (Faradonbeh et al., 2017) are similar to the
standard mixing time arguments and, as a result, suffer from
the same limitations. When the system is purely explo-
sive, the authors of (Faradonbeh et al., 2017) show that
finite time identification is only possible if the system is
regular, i.e., if the geometric multiplicity of eigenvalues
greater than unity is one. However, as discussed in (Sim-
chowitz et al., 2018), the bounds obtained in (Faradonbeh
et al., 2017) are suboptimal due to a decoupled analysis
of the sample covariance, Z;T:l XX/, and the martingale
difference term Zthl Xin;1. A second approach, based
on Mendelson’s small-ball method, was studied in (Sim-
chowitz et al., 2018). Such a technique eschewed the need
for mixing-time arguments and sharper error bounds for
1—-C/T < p(A) <1+ C/T could be obtained. The au-
thors in (Simchowitz et al., 2018) argue that a larger signal-
to-noise ratio, measured by Apin ( tT;()l AtAY), makes it
easier to estimate A. Although this intuition is consistent
for the case when p(A) < 1, it does not extend to the
case when eigenvalues are far outside the unit circle. Since
Xr = Zf:l AT=tp, . the behavior of X7 is dominated by
{n,n2,...}, i.e, the past, due to exponential scaling by
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{AT-1 AT=2 ). Asaresult, X; depends strongly on
{Xs,..., X} and standard techniques of creating “inde-
pendent” blocks of covariates fail.

The problem of system identification has received a lot
of attention. Asymptotic results on identification of AR
models can be found in (Lai & Wei, 1983). Some of the
earlier work on finite time identification in systems theory
include (Campi & Weyer, 2002; Vidyasagar & Karandikar,
2006). A more general setting of the problem considered
here is when X is observed indirectly via its filtered version,
i.e.,Y; = C'X,; where C is unknown. The single input single
output (SISO) version of this problem, i.e., when Y;, U; are
numbers, has been studied in (Hardt et al., 2016) under
the assumption that system is stable. Provable guarantees
for system identification in general linear systems was also
studied in (Oymak & Ozay, 2018). However, the analysis
there requires that ||A||< 1. Generalization bounds for
time series forecasting of non—stationary and non-mixing
processes have been developed in (Kuznetsov & Mobhri,
2018).

2 Contributions

In this paper we offer a new statistical analysis of the or-
dinary least squares estimator of the dynamics X1 =
AXy + ng41 with no inputs. Unlike previous work, we do
not impose any restrictions on the spectral radius of A and
provide nearly optimal rates (up to logarithmic factors) for
every regime of p(A). The contributions of our paper can
be summarized as follows

e At the center of our techniques is a systematic analysis
of the sample covariance 3,_, X; X/ and a certain
self normalized martingale difference term. Although
such a coupled analysis is similar in flavor to (Sim-
chowitz et al., 2018), it comes without the overhead
of choosing a block size and applies to a general case
when covariates grow exponentially in time.

e Specifically, for the case when p(A) < 1, we recover
the optimal finite time identification error rates previ-
ously derived in (Simchowitz et al., 2018). For the
case when all eigenvalues are outside the unit circle,
we argue that small ball methods cannot be used. In-
stead we use anti—concentration arguments discussed
in (Faradonbeh et al., 2017; Lai & Wei, 1983). By lever-
aging subgaussian tail inequalities we sharpen previous
error bounds by removing polynomial factors. We also
show that this analysis is indeed tight by deriving a
matching lower bound.

e We provide the first analysis of the general case when
eigenvalues of A are arbitrarily distributed in three
regimes: stable, marginally stable and explosive. This
involves a careful analysis of the noise-covariate cross
terms as the underlying process behaves differently in
each of these regimes.

e We show that when A does not satisfy certain reg-
ularity conditions, OLS identification is statistically
inconsistent, even when signal-to-noise ratio is high.
Our result indicates that consistency of OLS identifi-
cation depends on the condition number of the sample
covariance matrix, rather than the signal-to-noise ratio
itself.

3 Notation and Definitions

A linear time invariant system (LTI) is parametrized by a
matrix, A, where the observed variable, X, indexed by ¢
evolves as

Xiy1 = AXy + 041 (D

Here 7 is the noise process. Denote by p;(A) the absolute
value of the i*" eigenvalue of the d x d matrix A. Then

pmaX(A) = p1 (A) > pZ(A) Z.. 2z pd(A) = pmin(A)-

Similarly the singular values of A are denoted by o;(A).
For any matrix M, ||M||op= ||M|]2.

Definition 1. A stable LTI system is that where ppax(A) <
1. An explosive LTI system is that where pmin(A) > 1.

For simplicity of exposition, we assume that Xy = 0 with
probability 1. All the results can be obtained by assuming
X to be some bounded vector.

Definition 2. A random vector X € R% is called isotropic
if for all * € R we have

E(X, 2)? = |3

Assumption 1. {n;}2°, are i.i.d isotropic subgaussian and
coordinates of n; are i.i.d. Further, let f(x) be the pdf of
each noise coordinate then the essential supremum of f(-)
is bounded above by C' < c.

We will deal with only regular systems, i.e., LTI systems
where eigenvalues of A with absolute value greater than
unity have geometric multiplicity one. We will show that
when A is not regular, OLS is statistically inconsistent.

Define the data matrix X and the noise matrix E as

X m

Xi s
=| .|, E= .

X7 77/T+17

where the superscript a’ denotes the transpose. Then X, E/
are (T + 1) x d matrices. Consider the OLS solution

T
A = arg min ZHXtH — BX,|}3.
B 1o

One can show that

A—A=(XX)"X'E) 2)
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where M is the pseudo inverse of M. We define

T T
Yr=XX=Y XX|, Sr=XE=) X,
t=0 t=0

To analyze the error in estimating A, we will aim to bound
the norm of (X'X)*X'.

We will occasionally replace X; (or X (¢)) with the lower-
case counterparts x; (or 2(t)) to denote state at time ¢, when-
ever this does not cause confusion. Further, we will use C, ¢
to indicate universal constants that can change from line to
line. Define the Gramian as

t
Ty(A) =) ArA¥ 3)
k=0

and a Jordan block matrix J4(\) as

A1 o0 0
0 A 1 ... 0

JaQ)= |+ “)
0 ... 0 A 1
0 0 0 A,y

We present the three classes of matrices that will be of
interest to us:

e The perfectly stable matrix class, Sy

c
(A) <1 =
pl()— T

forl <i<d.
e The marginally stable matrix, S;

C
1— = < pi(A) <1
T<pz( ) <1+

SIQ

forl <i<d.
e The regular and explosive matrix, Sz

»>1+g
pi E

forl <i<d.

Slightly abusing the notation, whenever we write A € S; U
S; we mean that A has eigenvalues in both S;, S;.

Critical to obtaining refined error rates, will be a result
from the theory of self-normalized martingales. We let
Fi=0om,m2, -0, X1, ..., X¢) to denote the filtration
generated by the noise and covariate process.

Proposition 3.1. Let V' be a deterministic matrix with V' >
0. Forany 0 < 6 < 1 and {n;, X;}I_, defined as before,

we have with probability 1 — ¢

T-1
(Vo) ™2 Xomjyalla
t=0
det Y _ 1/2dd t —1/2d
< R,|8dlog (5 llr=y) et ) 5)

where Y1 = (Y, + V)~ and R? is the subGaussian
parameter of 1.

The proof can be found in appendix as Proposition 9.2. It
rests on Theorem 1 in (Abbasi-Yadkori et al., 2011) which is
itself an application of the pseudo-maximization technique
in (Pena et al., 2008) (see Theorem 14.7).

Finally, we define several A-dependent quantities that will
appear in time complexities in the next section.

Definition 3 (Outbox Set). For the space R? define the
a—outbox, S4(a), as the following set

Sa(a) = {v| min |v;[> a}

Sa(a) will be used to quantify the following norm-like quan-
tities of a matrix:

T

Gmin(A) = veig'ldf(l) amin(;A—erlvv/A—zH/) ©)
T

max(A) = > max A—i+lyy! A=) (T)

where A = P~YAP is the Jordan normal form of A.

1(A) is defined in Proposition 3.2 and is needed for error
bounds for explosive matrices.

Proposition 3.2 (Proposition 2 in (Faradonbeh et al., 2017)).
Let pmin(A) > 1 and P~'AP = A be the Jordan decom-

position of A. Define zp = A™T Zle AT=n; and

P(A, ) = sup{y eR: P<1I§nz‘1£dPiZT|< y) < (5}

where P = [Py, Ps, ..., Pd}/. Then

¥(A,8) = ¥(A)d >0

_ 1 . .
Here (A) = 57 T where C'x is the essential
supremum of the pdf of X.

‘We summarize some definitions in Table 1 for convenience
in representing our results.
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< Gmin(A)?$(A)?5?

) + TUKA*T*IFT(A*1L4*T*“))
5

j

2o'max(P)
H(A)P)I

T,(5) = ( log 2 + dlog 5)
T,(6) = (dlog (tr(Tr(A)) + 1) + 2dlog g)
(A, 0) = T(35
A0 = {08 (725
(5) 1nf{T‘T > %}
) = {7](ar20R(a L ue(0r (4
max (A)202 (A

(A 0) = ¢Ir.li?A)2(3l)n< st (14 ¢ log §)u(P(T
7s(A,8) = \/Sd(log () + % 1og (4tr(rr(4)) + 1))
Yms(A,0) = \/16d10g (tr(T'7(A)) + 1) + 32d log (15T)

%(A4,6) = Yttt Jlog § + 210g5 + log (1+7(4,9))

Table 1. Definitions of key quantities in the paper

4 Main Results

We will first show non—asymptotic rates for the three sep-
arate regimes, followed by the case when A has a general
eigenvalue distribution.

Theorem 1. The following non-asymptotic bounds hold,
with probability at least 1 — 6, for the least squares estima-
tor:

° F()rAESoUSl
0

14— All2< \E 7(4,%)
e

4
=0(v/1og (3))
whenever T' > max (Tn<g),Ts (g))
o forAec S;
C mdx(A_l) 0\ 2
4= A= )T an:n <A>L’”(A_/’2)
=0(log (%))
whenever
1) 1) 1)

T > max (21, (37 )20 (57 ) Tons (5) )

=0(logT) =0(logT) =O(logT)
Since amm(FL ) (A)) > a(d)%, we have that
2
)
T i )
=\ a(d) T
o forAe S,

R )

_ < =T Z

14 = All>< Comax(A™") 7 (4, 2)

=o(h)

whenever T € Tu(%) Since omax(AT) <

a(d)(pmin(A))~T for A € S, the identification er-
ror decays exponentially with T.

Here C, c are absolute constants and o(d) is a function that
depends only on d.

Remark 1. T,(9) is a set where there exists a minimum
T, < oo such that T € T, (5) whenever T > T.. However,
there might be T < T, for which the inequality of T,,(9)
holds. Whenever we write T € T,,(0) we mean T > T..

Proof. We start by writing an upper bound

14 = Allop < [1Y7"S7lop

<O 2 lop | (V) 251 llop-— (8)

The rest of the proof can be broken into two parts:

e Showing invertibility of Y7 and lower bounds on the
least singular value

e Bounding the self-normalized martingale term given
by (Y:Fr )1/ St

The invertibility of Y7 is where most of the work lies. Once
we have a tight characterization of Y7, one can simply ob-
tain the error bound by using Proposition 3.1. Here we
sketch the basis of our approach. First, we find determinis-
tic Viup, Van, To such that

Eo={0=< Vg 2Yp XV,p,, T > T}
P(&)>1-94

(€))
(10)

The next step is to bound the self-normalized term. Under
&y, it is clear that Y7 is invertible and we have

(Y)Y2Sr = v 28y
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Define event &; in the following way

£ =

5det(Yp V" 4 1)1/
51/d

{||5T|(YT+Vd,,L)1§ 8d10g<

It follows from Proposition 3.1 that P(€;) > 1 — §. Then
o = Yr+ Vi, 22Yr = (Yr+Vy,) ' = %Y:Fl7
and we have that under &

157 [ly-1< V2USTl| (v i) -
Now considering the intersection & N &1, we get

ExNE =

det(V,,, Vit + 1)t/2d
600{|ST|YT1§ 16dlog <5 et(VupVy, +1) )}

51/d
(In

We replaced the LHS of &£; by the lower bound obtained
above and in the RHS replaced Y by its upper bound under
&o. Vup. Further, observe that P(E; N &1) > 1 — 26. Under
Eo N &1 we get

14 = Allop

1
<——,116dlo
o Umin(vdn) & (
—_———

ar

5det(V,, V1 + I)1/2d
5i/d

Br
(12)

where o goes to zero with 1" and S is typically a constant.
This shows that OLS learns A with increasing accuracy as T'
grows. The deterministic V,,,, Vay,, Tp differ for each regime
of p(A) and typically depend on the probability threshold
0. We now sketch the approach for finding these for each
regime.

YT behavior when A € Sy U S;
The key step here is to characterize Y7 in terms of Y7 _.

Yr = 1‘01‘6 + AYTflAl—l—

T-1 T
+ Z(AIH];.H + e A) + Z My
=0 t=1
= AV A+
T-1 T
+ Z(Axm;H + gz, A) + Z . (13)
t=0 t=1

Since {n;}_; are i.i.d. subgaussian we can show that
ZtT:I ne1); concentrates near 11, 4 with high probability.
Using Proposition 3.1 once again, we will show that with
high probability

T-1 T
Z(A:vmiﬂ + 12y A) = —e(AYp_ 1A' + an,’s)
t=0 t=1

where € < 1/2 whenever p;(4) <1+ C/Tand T > T,
for some Ty depending only on A. As a result with high
probability we have

T
Yr = (1= A7 1A+ (1—¢) > nen}
t=1

T
= (=)D menm- (14)

t=1
The details of this proof are provided in appendix as Sec-
tion 10. When 1 — C/T < p;(A) < 1+ C/T we note
that the bound in Eq. (14) is not tight. The key to sharp-
ening the lower bound is the following observation: for
T > max (2T77 (%) , 2T (%) s T (g)) we can ensure
with high probability

t
> nen) =tI
T=1

V= (1—AY, 1A + (1 —etl  (15)

simultaneously for all ¢ > T'/2. Then we will show that
€ = Bo(0) in Table 1. The sharpening of € from 1/2 to 5o(9)
is only possible because all the eigenvalues of A are close
to unity. In that case by successively expanding Eq. (15) we
get

) 1/Bo(8)
Yo o= (1= e)Y/%® Ay, 0 A + 5 > (1-e)tata”

t=1

(16)
and then Eq. (16) can be reduced to

IKIH/BM6)04)_’IX

Yr = (1= /%@ Ay, A+ "

We show that

1/60(6) > a(d)TR2omin (AA)

8ec(A, )

and by Proposition 8.5, Y7 = a(d)T? for some function
a(-) that depends only on d. The details of the proof are
provided in appendix as Section 11.

To get deterministic upper bounds for Y7 with high proba-
bility, we note that

T
Yr < tr <Z XtXt’> I.

t=1
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Then we can use Hanson—Wright inequality or Markov in-
equality to get an upper bound as shown in appendix as
Proposition 9.4.

Y7 behavior when A € S,

The concentration arguments used to show the convergence
for stable systems do not work for unstable systems. As
discussed before X; = Zle A'~7n; and, consequently,
X7 depends strongly on X7, Xs,.... Due to this depen-
dence we are unable to use typical techniques where X;s
are divided into roughly independent blocks of covariates.
to obtain concentration results. Motivated by (Lai & Wei,
1983), we instead work by transforming x; as

Zt = A_t.lft

t
=30+ » AT, (17)
=1

The steps of the proof proceed as follows. Define

T
Up=A""Y wuiA™" = A~ Typ A"
t=1

T
— ZA—T+tZtZ£A—T+t/
t=1
T-1
FT = Z A_tZTZTA_t/ (18)
t=0

‘We show that
|Fr — Ur|lop< €.

Here € decays exponentially fast with 7". Then the lower and
upper bounds of Ur can be shown by proving correspond-
ing bounds for F'r. A necessary condition for invertibility
of Fr is that the matrix A should be regular (in a later sec-
tion we show that it is also sufficient). If A is regular, the
deterministic lower bound for Fr is fairly straightforward
and depends on @iy (A) defined in Definition 3. The upper
bound can be obtained by using Hanson—Wright inequality.
The complete steps are given in appendix as Section 12. [

The analysis presented here is sharper than (Faradonbeh
et al., 2017) as we use subgaussian matrix inequalities such
as Hanson—Wright Inequality (Theorem 4) to bound the er-
ror terms in contrast to uniformly bounding each noise vari-
able and applying a less efficient Bernstein inequality. An-
other minor difference is that (Lai & Wei, 1983),(Faradon-
beh et al., 2017) consider ||[Ur — F|| instead and as a result
they require a martingale concentration argument to show
the existence of z4..

Lower bounds for identification error when p(A4) < 1 have
been derived in (Simchowitz et al., 2018). In Table 1 and

Theorem 1, the error in identification for explosive matri-
ces depends on § as % unlike stable and marginally stable
matrices where the dependence is log %. Typical minimax
analyses, such as the one in (Simchowitz et al., 2018), are
unable to capture this relation between error and J. Here we
show that such a dependence is unavoidable:

Proposition 4.1. Let A = a > 1.1 be a 1-D matrix and
A = G be its OLS estimate. Then whenever Ca’*T?a~T >
82, we have with probability at least § that

| al> C(1—a"2)§

a—al> ——=5
— —a2(logd)3

where C' is a universal constant. If Ca*T?a~T < §2 then

with probability at least § we have

Our lower bounds indicate that % is inevitable in Theorem 1,
i.e., when Ca2T2a~T < §2. Second, when Ca2T2%a~T >
2, our bound sharpens Theorem B.2 in (Simchowitz et al.,
2018). The proof and an explicit comparison is provided in
Section 17.

For the general case we use a well known fact fqr matrices,
namely, that there exists a similarity transform P such that

o [4e 0 0]
A=P ' 0 A,., O|P (19)
0 0 A,

Here A, € Sy, Ains € S1, As € So. Although one might
be tempted to use Theorem 1 to provide error bounds, mix-
ing between different components due to the transformation
P requires a careful analysis of identification error. We
show that error bounds are limited by the slowest compo-
nent as we describe below. We do not provide the exact
characterization due to a shortage of space. The details are
given in appendix as Section 14.

Theorem 2. For any regular matrix A we have with proba-
bility at least 1 — 6,

o forAe S USy, A—A||2§ w when-

ever

T> poly( log %)

N l og ,O'l
e For A e S§oUS UGS, A_AH?SW

whenever

T> poly( log %)

Here poly(-) is a polynomial function.
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Proof. Define the partition of A as Eq. (19). Since

t
= Z AT_lnt—T-i-l

ZAT "Pyr (20)

Mt —741

Xt == P_lXt

then the transformed dynamics are as follows:
Xt+1 = AX; + Ti41-

Here {7};}{_, are still independent. Correspondingly we
also have a partition for X, 7,

i Xt U
X, = | X, i = | 210

X; U

Then we have

T e Xp(Xp)  Xpxame) Xp(Xxp)
Z X =3 |xpe(xgy XXyt X (Xp)f
P =1 Xe(XS) Xp(xe) Xp(X))
(22)

The next step is to show the invertibility of Zthl X, X
Although reminiscent of our previous set up, there are some
critical differences. First, unlike before, coordinates of 7,
ie., {ng,n"*, ni} are not independent. A major implication
is that it is no longer obvious that the cross terms between
different submatrices, such as Zthl Xg(X[™*), go to zero.
Our proof will have three major steps:

e First we will show that the diagonal submatrices are in-
vertible. This follows from Theorem 1 by arguing that
the result can be extended to a noise process { P } 1,
where {n;}~_; are independent subgaussian and ele-
ments of 7, are also independent for all ¢. The only
change will be the appearance of additional o2 (P) sub-
gaussian parameter (See Corollary 9.1). We will then
show that

X (Xp)

Xmss s s
Xy (Xp)

sy
2| Xp(xpm)
is invertible. This will follow from Theorem 1 (its
dependent extension). Specifically, since X,,4s con-
tains only stable and marginally stable components, it
falls under A € Sy U S;. It should be noted that since
X", X{ are not independent in general, the invertibil-
ity of X,,,ss can be shown only through Theorem 1. In
a similar fashion, Zthl X7 (Xg) is also invertible as
it corresponds to A € S,.

1.04

Il CDF of x
I PDF of x & 3.5

0.8 1

—~
< 0.6

cdf(

0.4 1

0.2 1

0.0
—0.6 —0.4 —0.2 0.0 0.2 0.4

X

Figure 1. CDF and PDF of Bo

e Since invertibility of block diagonal submatrices in
Zthl X, X/ does not imply the invertibility of the en-
tire matrix we also need to show that the cross terms
[ XE(XE*) |2, [| X (XE)||2 are sufficiently small rel-
ative to the appropriate diagonal blocks.

e Along the way we also obtain deterministic lower and
upper bounds for the sample covariance matrix follow-
ing which the steps for bounding the error are similar
to Theorem 1.

The details are in appendix as Section 14. O

5 Inconsistency of OLS

We will now show that when a matrix is irregular, then
it cannot be learned despite a high signal-to-noise ratio.
Consider the two cases

1.1 1 1.1 0
Ar = {0 1.1}’140_ [0 1.1}
Here A, is a regular matrix and A, is not. Now we run

Eq. (1) for A = A,, A, for T = 10?. Let the OLS estimate
of A., A, be A,., A, respectively. Define

Br=[A
B =A

]127602[ o] 1,2
]12,502[ o] 1,2

Although 3, =~ Br, Bo does not equal zero. Instead Fig. 1
shows that Bo has a non—trivial distribution which is bimodal
at {—0.55,0.55} and as a result OLS is inconsistent for A,.
This happens because the sample covariance matrix for A, is
singular despite the fact that ' (A4,) = (1.1)71, i.e., a high
signal to noise ratio. In general, the relation between OLS
identification of A and its controllability Gramian, I'r(A),
is tenuous for unstable systems unlike what is suggested
in (Simchowitz et al., 2018). To see this singularity observe
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that
P (1)
Xepr = 4o | Lio| +|76)
Xt t+1
T 1 T 1 2
Yr= | ZmX? L (&))
i (XX X (X)?

where Xt(l), Xt(2) are independent of each other. Define
a=1.1.

Proposition 5.1. Let {n;}._, be i.i.d standard Gaussian
then whenever T2 < aT, we have that

|4, — Ao||= vr

where vy is a random variable that admits a continuous pdf
and does not decay to zero as T — oco. Further, the sample
covariance matrix has the following singular values

(Y- X x[)=0*), ()X, X)) = 0(VTa")
t=1 t=1

The proof is given in Section 20 and Proposition 20.2. Propo-
sition 5.1 suggests that the consistency of OLS estimate
depends directly on the condition number of the sample
covariance matrix. In fact, OLS is inconsistent when con-
dition number grows exponentially fast in 7" (as in the case
of A,). The proof requires a careful expansion of the (ap-
propriately scaled) sample covariance matrix inverse using
Woodbury’s identity. Since the sample covariance matrix
is highly ill-conditioned, it magnifies the noise-covariate
cross terms so that the identification error no longer decays
as time increases. Although for stable and marginally stable
A this invertibility can be characterized o i, (I'r(A)) such
an intuition does not extend to explosive systems. This is
because the behavior of Y7 is dominated by “past” n;s such
as 71,72 much more than the ny_1, 77 etc. When A is
explosive, all singular values of || AT|| grow exponentially
fast. Since X7 = AT + AT 2y + ...+ Anr_1 +np
the behavior of X7 is dominated by A7 7. This causes a
very strong dependence between X1 and X4 and some
structural constraints (such as regularity) are necessary for
OLS identification.

6 Discussion

In this work we provided finite time guarantees for OLS
identification for LTI systems. We show that whenever A is
regular, with an otherwise arbitrary distribution of eigenval-
ues, OLS can be used for identification. More specifically
we give sharpest possible rates when A belongs to one of
{So, S1,S2}. When the assumption of regularity is violated,
we show that OLS is statistically inconsistent. This sug-
gests that statistical consistency relies on the conditioning
of the sample covariance matrix and not so much on the

signal-to-noise ratio for explosive matrices. Despite sub-
stantial differences between the distributional properties of
the covariates we find that time taken to reach a given error
threshold scales the same (up to some constant that depends
only on A) across all regimes in terms of the probability
of error. To see this, observe that Theorem 1 gives us with
probability at least 1 — ¢

. Co(d)log %
AeS) = ||[A-A|< M

T
o Od), (T
A8 = ||A-Al< Tlog(g)
T
AES = ||A-Al< CQ(d)““?xm ) @3

The lower bounds for A € Sy and A € S; are given in (Sim-
chowitz et al., 2018) Appendix B, F.1 which are

R By(d)log L
Aesy = A Az Zoldloes

. Bi(d), /1
Aes = [lA-Allz = 1og(5) (24)

with probability at least §. For A € S we provide a tighter
lower bound in Proposition 4.1, i.e., with probability at least
)

2(d)‘7maX(A7T)
—dlogd

. B
AeS, = ||[A-Al> (25)

Now fix an error threshold €, from Eq. (23) we get with
probability > 1 — ¢

AeSy = [|A—A||<eif T > log 5
0 = = 20d)
log L
AeS = [[A-Al|< eif T > 53
- _€Cl(d)

) log L + log Cy(d

AES = ||[A— A< cifT > Ogéelog 0g C2(d)

Pmin

From Eq. (24),(25) we also know this is tight. In summary
to reach a certain error threshold, T must be at least as large
as log 1 for every regime.

Another key contribution of this work is providing finite
time guarantees for a general distribution of eigenvalues. A
major hurdle towards applying Theorem 1 to the general
case is the mixing between separate components (corre-
sponding to stable, marginally stable or explosive). Despite
these difficulties we provide error bounds where each com-
ponent, stable, marginally stable or explosive, has (almost)
the same behavior as Theorem 1. The techniques introduced
here can be used to analyze extensions such as identifica-
tion in the presence of a control input U; or heavy tailed
distribution of noise (See Sections 15 and 16).
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7 Road Map of Results

We sketch the road map of our results here. Critical to the results our finding matrices V., Vg, that satisfy Eq. (9), (10).

e For the case when p;(A) < 1+ C/T, we find these matrices in Section 10. We show that V,,;,, Vg, = O(T')1.

e The bound for Vy,, can be sharpened to Vy, = Q(T?)I when all the eigenvalues of A lie in (1 — ¢/T, 1+ ¢/T). This
result is proven as part of Section 11.

e Section 12 (specifically Proposition 12.2) discusses the proof technique for finding V,,,, Vg, for explosive systems.
Non-trivial bounds on the matrix rely critically on the regularity of the explosive matrix.

e When the regularity condition is violated, we show via a simple construction of a scaled identity matrix that OLS is
inconsistent in Section 20. This involves explicitly showing that the error is a random variable which has a non-zero
norm even when 1" — oco. These are Propositions 20.1, 20.2.

e We then combine the separate cases of stable, marginally stable and explosive matrices to show that even with an
arbitrary distribution of eigen values (albeit regular), OLS is consistent. Furthermore, the rate of convergence is limited
by the slowest component. The proof requires a careful transformation of the matrix into blocks of stable, marginally
stable and explosive and showing that the cross terms zero out. This is proven in Section 14.

e Other minor extensions of our results can be found in Section 15 (when there is an additional control input) and Section
16 (when the noise is heavy-tailed).

8 Matrix Inequalities
In this section we present some probabilistic and matrix inequalities that will be used in our main results.

Proposition 8.1. Let P,V be a psd and pd matrix respectively and define P = P + V. Let there exist some matrix Q for
which we have the following relation

1P712Ql|< +

For any vector v such that v' Pv = o, v'Vv = f it is true that

QI VB +ay
Proof. Since

1P~12Q5< +?
for any vector v € S~! we will have

U’P1/2P_1/2QQ’I5_1/2P1/211
v' P

<7
and substituting v’ Pv = a + f3 gives us
V'QQ'v < ' Pv = (a + B)y?
O

Proposition 8.2. Consider a Jordan block matrix J4(\) given by (4), then J4(\)~* is a matrix where each off-diagonal
(and the diagonal) has the same entries, i.e.,

aq as as AP Qaq
0 a1 as ... ag_1
JaNTE= o (26)
0 e 0 aq ag
0 0 PN 0 al

dxd

for some {a;}%_,.
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Proof. J4(\) = (M + N) where N is the matrix with all ones on the 1°¢ (upper) off-diagonal. N* is just all ones on the
k" (upper) off-diagonal and N is a nilpotent matrix with N¢ = 0. Then

d—1
AL+ M)~ = (3 (~1)A- N
1=0
d-1 dk—l/\—l—l d-1
(DR = DI+ V)7 = (YD) i) = (D (D )
1=0 1=0
and the proof follows in a straightforward fashion. O

Proposition 8.3. Let A be a regular matrix and A = P~YAP be its Jordan decomposition. Then

d
inf ||Z aiA_iH | |2> 0

llall=1 =
Further ¢min(A) > 0 where ¢pumin(+) is defined in Definition 3.

Proof. When A is regular, the geometric multiplicity of each eigenvalue is 1. This implies that A~! is also regular.
Regularity of a matrix A is equivalent to the case when minimal polynomial of A equals characteristic polynomial of A (See
Section 19 in appendix), i.e.,

inf HZa AT >0

llall2=1

Since A=J = P~'A~J P we have

\|Zaz “IATHLP|, >0

|aH2 1
ol ||Zaz AT owin(P) > 0

d

inf aiA_'H'l Omin(P)0min P_l >0
A o (Pl (P

lallz= ”Zal R

Since A is Jordan matrix of the Jordan decomposition, it is of the following form

Ji (A1) 0 0 0
0 sz()\g) 0 0
A= S ; @)
0 0 Jkl(/\l) 0
0 0 .. 0 N/ (Ai+1)

where J, (\;) is a k; x k; Jordan block corresponding to eigenvalue \;. Then

T F () 0 . 0 0
0 JF) 0 0
ATF= SR : (28)
0 0 J,5(N) 0
0 0 0 Tk ()
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Since HZZIZI a; A= ]3> 0, without loss of generality assume that there is a non—zero element in k1 x k; block. This
implies

d
1> a7 (A)l2> 0

i=1

=S

By Proposition 8.2 we know that each off-diagonal (including diagonal) of S will have same element. Let j, =
inf {j]S;; # 0} and in column j, pick the element that is non—zero and highest row number, io. By design .S;, j, > 0 and
further

0,50

S/fl—(jo—io)Jﬁ = Sioyju
because they are part of the same off-diagonal (or diagonal) of S. Thus the row k; — (jo — ig) has only one non—zero
element because of the minimality of jp.

We proved that for any ||a||= 1 there exists a row with only one non-zero element in the matrix 2?21 a; A=, This
implies that if v is a vector with all non—zero elements, then ||Zf:1 a; A= |o> 0, de.,

d
inf a; A" ol >0
I\a\\2:1||; i

This implies

Hailr‘lf_1||[v,Aflv, o AT al|e > 0
.

Omin([v, A7 0, A*de]) >0

By Definition 3 we have
¢min (A) >0
O

Proposition 8.4 (Corollary 2.2 in (Ipsen & Lee, 2011)). For any positive definite matrix M with diagonal entries m,
1 < j < dand p is the spectral radius of the matrix C with elements

Cij = 0 ifi=j
My e,
=——— ifi#]
then
[T,y my; — det(M)

0< <1-—e ™imin

d
ITj=1 my;
where )\min = minlgjgd )\j (C)
Proposition 8.5. Let 1 — C/T < p;(A) <1+ C/T and A be a d x d matrix. Then there exists o(d) depending only on d

such that for every 8d <t < T
Umin(Ft(A>) Z ta(d)

Proof. Since A = P~'AP where A is the Jordan matrix. Since A can be complex we will assume that adjoint instead of
transpose. This gives

T
Tr(A) =1+ A'(AYY

t=1

T T
=T+ P 'Y APP(A) P = I+ 0min(P)?P1 Y A'(A) PV

t=1 t=1
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Then this implies that

Tmin (C7(4)) > 1+ omin(P)?omin (P~ ET: AAY Py > 1+ Umin(P)Qamin(P_l)2Umin(§: AH(AYY)
>1+ %amm(g AT(AYY)
Now
Yo JE )L, () 0 . 0
S A — 0 i S Q)L )" 0 _
- 0 - 0 XL I )

Since A is block diagonal we only need to worry about the least singular value corresponding to some block. Let this block
be the one corresponding to Jx, (A1), i.e.,

T T

oumin (D AT (AD)) = oY JE, ), ())7) (29)

t=0 t=0

Define B = ZtT:o Ji, (M) (Jg, (A1))*. Note that Jy, (A1) = (A I + N) where N is the nilpotent matrix that is all ones on
the first off-diagonal and N*1 = 0. Then

t
MI+ N =Y <t) ATINT
0

t t
(M + N (M + N = (Z <t> At_JNj) (Z (é)(/\]“)thjv
7=0 J Jj=0 J
t ¢ 2 . ) ] j=t,k=t t t . .

=3 <) A2 NI (NT) + (k) ( > M ADFNT (NFY

Jj=0 J Diagonal terms s g
t ¢ 2 . ) ] j=t k=t t t . .

=30 () e wievy 4030 (1) (4) Moty
Jj=0 J Diagonal terms 3>k 5N
Tk 3 t J(\*\knTd ky\/

+ 3 () ()Rt

j<k
t " 2 ‘ ) ] J=tk=t t t . .

-y <) M2 NI(NTY 43 (k) ( > M [FATENTTRNE (N
i=o M Diagonal terms 3>k g On (j — k) upper off-diagonal
j=t,k=t ¢ + ) ) ) ) )

+ D (k) (J) (A1 (A} NI (NT) (NT=FY

<k

On (k — 7) lower off-diagonal

Let \; = 7¢%, then similar to (Erxiong, 1994), there is D = Diag(1, e 0 e=20 e*i(kl’l)e) such that D(A\ ] +
N)t((A\I + N))*D* is a real matrix. Observe that any term on (j — k) upper off-diagonal of (A1 + N)*((A 1 + N)*)*
is of the form roe’U=)?_ In the product D(A;T 4+ N)*((A1I + N)*)* D* any term on the (;j — k) upper off diagonal term
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now looks like e ~90+ik0p 0i(i=k)0 — 1.0 which is real. Then we have

t 2 j=t, k=t
D()\lf—l—N)t(()\lI—l—N)t)*D* _ Z (t> |)\1|2(t—j) Nj(Nj)/ + Z (Z) (t) |)\1|2k‘)\1|j—k’Nj—ka(Nk)/
=0 M Diagonal terms 4> J On (j — k) upper off-diagonal
Jj=t,k=t " ' o ‘ _
+ ( ) (J> M| A [FINT(NT) (N7 (30)
i<k On (k — j) lower off-diagonal

Since D is unitary and D(A1 1 + N) (A I + N))*D* = (|A1|1 + N)*((JA1 | + N)*)’, we can simply work with the case
when A; > 0 and real, as the singular values remain invariant under unlta% transformations. Now we show the growth of
i7" term of the product D(A11 + N)*((A1I + N)*)*D*), Define B = >,_, (|\1|1 + N) ((|A1 |1 + N)Y

T
By :Z[(/\11+N)t((/\1[+N)t)*]ll 31)

T ki—1
ZZ ( ) A 27) (32)

Since 1 — C/T < |\1|< 14 C/T, then for every ¢t < T we have

e—C g |)\1|t§ eC

Then

T k-l T kil
Bll—z () A2 j)>€_2022 ()

t=1 j=0 t=1 j=0
o—2C — —2c t%l o 2k —20+1
Z Z >e Z g, ——— > C(ky) T (33)
t=T/2 j=0 t=T/2
An upper bound can be achieved in an equivalent fashion.
T ki—l ‘ kil
Bu=3Y_Y" ( ) IMPEI<2OT YT < Cky) TR 2! (34)
t=1 j=0 j=0
Similarly, for any By, x4; we have
T ki—k—l ¢ T T k=l .
Bigri =), Y. ( )( iy >|)\1|2j|)\1 = Z N <> ('Jrl) (33)
t=1 j=0 J t=1 i=1/2 j=0 N J
k
cT T/2 T/2> 2k —2k—1
- , > C (k)T 1 36
22(3)(3+l(1) 0

and by a similar argument as before we get Bj, = C(k;)T?*1=3=*+1_ For brevity we use the same C (k1) to indicate
different functions of k; as we are interested only in the growth with respect to 7". To summarize

Bjj, = O(ky )T —i=k+1 (37

whenever T' > 8d. Recall Proposition 8.4, let the M there be equal to B then since

B T2k1—j—k+1

C’L] = C(kl) /7B“BJJ = C(kl) /7T4k1—2j—2k+2
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it turns out that C;; is independent of T" and consequently A,,;,(C), p are independent of T" and depend only on k1 : the
1p2

Jordan block size. Then H;ﬁ:1 Bj; > det(B) > H;“:l Bjje_“r(kmin = C(ky) H;“:l Bjj. This means that det(B) =
C(k1) Hflzl B;; for some function C'(k1) depending only on k;. Further using the values for B;; we get

det(B) = C(ky) [[ Bj; = [[ C(k)T? =2+ = C(k1)TH (38)

j=1 j=1

Next we use Schur-Horn theorem, i.e., let o;(B) be the ordered singular values of B where 0;(B) > 0;41(B). Then o;(B)
majorizes the diagonal of B, i.e., for any k < k;

Observe that B;; < Bj; when 7 < j. Then from Eq. (37) it implies that

Bk, = Cl(kl)T 2 O, (B)
k1
Z Bjj = Cg(kl)T3 + Cl(kl)T > O’klfl(A) + ok, (A)

j=k1—1

Since k; > 1 it can be checked that for ' > 17 = 2k, / g;gji; we have op, _1(A) < (1+ (2k1)"2)Ca(k1)T3 <

(1 + k1) Co(ky)T? as for every T > Ty we have Cy (k1 )T > 4k?Cy (k)T Again to upper bound oy, _o(A) we will use
a similar argument

k1
Z Bj; = C3(k1)T® + Oo(k1)T3 + Cy (k)T > ok, —2(A) + 0k, —1(A) + ok, (A)
j=k1—2

and show that whenever

Cz(kl) )
Cs(kq)

we get o, _o(A) < (14 (2k1) 72 + (2k1) ") C3(k1)T® < (1 4 ky1)C3(k1)T® because T > T; ensures Cy (ki )T >

4k3C, (k)T and T > Ty = 2ky 4/ gigii; ensures C3(k1)T? > 4k3C(k1)T3. The C; (k) are not important, the goal is to

show that for a sufficiently large 7" we have an upper bound on each singular values (roughly) corresponding to the diagonal
element. Similarly we can ensure for every i we have o;(A) < (1 + k; 1)Ch, i1 (k1)T?*1 =2+ whenever

T > max (Tl, %,

_ Ci(k1)
T > Tl = max (Tl—la 2](31 m)

Recall Eq. (38) where det(B) = C’(kl)ka. Assume that oy, (B) < % Then whenever T >

max (8d7 sup; 2k; Cci(llz,lc)l))

det(B) = C/(ky)TH

k1
H g; = C(k‘l)Tk%
i=1

k1
o, (B)(1+ k- 1ki-1 [[Cis1 = Cer)T*
=2
C, T . Ck)T

(L4 kR T2, i eIL2 Copa (k)

Ok, (B) >
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C(k)T

which is a contradiction. This means that oy, (B) > —————.
k(B) 2 T o

This implies

min P 2
Goin(Tr(A)) > 14 Tmin(P)

(P2 0 FT

for some function C'(k;) that depends only on k;. O

It is possible that «(d) might be exponentially small in d, however for many cases such as orthogonal matrices or diagonal
matrices a(A) = 1 [As shown in (Simchowitz et al., 2018)]. We are not interested in finding the best bound «.(d) rather
show that the bound of Proposition 8.5 exists and assume that such a bound is known.

Proposition 8.6. Let t1/ts = > 1 and A be a d x d matrix. Then
M(Ty (A)T5H(A)) < C(d, B)
where C(d, 3) is a polynomial in (3 of degree at most d* whenever t; > 8d.
Proof. Since A1 (T, (A)T,'(4)) >0
(A)r,*(4))

_ I‘ A)x

M(Ty, (AT (A)) < tr<rt1<A>r;1<A>> < tr(Ft;W(A)rt

1

Now
t; ”
D (4) = PO S A PP (A) PV < o (PP Y AR P
t=0 =0
ti
Ffw, (A) = O'min(jt))21:)71 ZAt(At)*Pill
t=0
Then this implies
Ty, (A max (P 2 ANzl AF(AT)*
qup PL6A _ omn (PP 0 S A A s
[|z|]£0 L Ft2 (A) Umin(P) [|||£0 x! ZtQ:O At(At)*x
Then from Lemma 12 in (Abbasi-Yadkori et al., 2011) we get that

' Yo ATAD) e _ det(35,L, AT(A))
sup =
llell0 @' Yop o AT(AT)*e ~ det(3237 AT(AY)*)

Then
det(32 AT (AD)Y) <dlet(Hz (00 T ) (T, (20)D)))
det(32,1o AY(AY)) T det(TTimy (1L Jhs (M) (Jki (A)1)*))

Here [ are the number of Jordan blocks of A. Then our assertion follows from Eq. (38) which implies that the determinant
of Z?:o T, (N (Jk, (Ni)F)* is equal to the product of the diagonal elements (times a factor that depends only on Jordan
2

block size), i.e., C (kl)t];l . As a result the ratio is given by

det(TTioy (Sr2 T ) (T A))) 17 ai?
det(TT_y (0o Jr, (M)t (Ji, (A0))*)) 1'1;[15

whenever to,¢; > 8d. Summarizing we get

xlrtl (A) Umax P k2
sup < | I B
l|z[|#0 T Ft2 (A) Gmln P 2
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9 Probabilistic Inequailities

Proposition 9.1 ((Vershynin, 2010)). Let M be a random matrix. Then we have for any € < 1 and any w € S that

P(IM|[> 2) < (1 +2/e)P(||Mw]|> (1 - €)2)

The proof of the Proposition can be found, for instance, in (Vershynin, 2010).

Proposition 9.1 helps us in using the tools developed in de la Pena et. al. and (Abbasi-Yadkori et al., 2011) for self-
normalized martingales. We will define S; = Zt;:lo X, 7ir+1 where 7j; = w” 7, is standard normal when w is a unit vector.

Specifically, we use Lemma 9 of (Abbasi-Yadkori et al., 2011) which we state here for convenience:

Theorem 3 (Theorem 1 in (Abbasi-Yadkori et al., 2011)). Let {F.}52, be a filtration. Let {n:}$2, be a real valued
stochastic process such that 1y is F measurable and ny is conditionally R-sub-Gaussian for some R > 0., i.e.,

A2 R2

VAER E[eM|F, 1] <e 2

Let {X}22, be an R%—valued stochastic process such that X, is JF measurable. Assume that V is a d x d positive definite
matrix. For any t > 0 define

t t
Vi=V 4> XX, S =Y n1X,
s=1

s=1

Then for any § > 0 with probability at least 1 — § for all t > 0

det(V,)/2det(V)~1/?
1Sel[3 -+ < 23210g< et(V;)'/2det(V) )

)
Proposition 9.2. Let P have full row rank and
Xiy1 = AXy + P

where {n;}L_| is an i.i.d. subGaussian process with variance proxy = 1 and each 1, has independent elements. For any
0 < 0 < 1, we have with probability 1 — ¢

H(YT—1)71/2 TX_:lXtU;/HP/HQS R, | 8dlog <5det(YT—1)16/12/dddet(V)1/2d> 9)
t=0
where Y1 = (37_, Xy X[ + V)~! and any deterministic V with V = 0.
Proof. Note that Pn, is a non-trivial subGaussian if P has full rank.
Define S; = 30 _, Xn, 1 P'. Using Proposition 9.1 and setting e = 1/2, we have that
P25l ) < 5P(IT 27 yulla< &) = 57P(17; 2Sr- i< L) (40)

Setting Sp_1w = Zst_ll X1, 1 P'w we observe that 7, ; P'w satisfies the conditions of Theorem 3 with variance proxy
Omax(P)?. Then replace in Eq. (40)

v 1/2 —1/2

which gives us from Theorem 3
PV {*Sralla< y) < 0
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Theorem 4 (Hanson—Wright Inequality). Given a subGaussian vector X = (X1, Xo, ..., X,,) € R withsup;||X; ||y, < K
and X; are independent. Then for any B € R"*"™ and t > 0

t t?
Pr(|X'BX — E[X'BX]|< 1) < 2exp — cmin , ) (41)
K2(|B||" K*||Bl|%s

Proposition 9.3 (Theorem 5.39 (Vershynin, 2010)). Let E be an T' x d matrix whose rows 1, are independent sub-Gaussian
isotropic random vectors with variance proxy 1 in R%. Then for every t > 0, with probability at least 1 — 2¢=°t" one has

VT — CVd—t < oqin(E) < VT + CVd + 1 (42)

The implication of Proposition 9.3 is as follows: E'E = (/T — CVd — t)2I with probability at least 1 — 2e=t". Let
t = /2 log 2, and ensure that
2
T > T,(8) = C(d+log 5)

for some large enough universal constant C'. Then for T' > T,,(J) we have, with probability at least 1 — 4, that

fI < = me < 4 (43)

H/_/
E'E

Further with the same probability

3Ur2nin(P) 1 o ! D/ Jr2nax(
?Ij TZPW%P = ?I

t=1

T,(5) = C(d + log %) (44)

Corollary 9.1 (Dependent Hanson-Wright Inequality). Given independent subGaussian vectors X; € R such that X;; are
independent and sup,; || Xi;||y, < K. Let P have full row rank. Define

PX,
PXy
X — . 6 Rd’n
PX,
Then for any B € R and t > 0

. t t2
r(IX'BX - E[X'BX]|< ) < QGXP{ ~ cmin (KQof(P)HBH’ K4a%<P>||B||%Is)} “

Proof. Define
X1
- Xo
X=1.
Xn
Now X is such that X; are independent. Observe that X = ([,,x, ® P)X' Then X'BX = X’(Inxn ® P)B(Inxn ® P’)X.
Since

|(Znxn @ P)B(Inxn ® P')|| < 7 (P)||B|
t((Inxn @ P)B(Inxn @ P')(Inxn @ P)B(Inxn @ P')) < 07 (P)tr((Inxn @ P)B*(Inxn ® P'))
< o}(P)tr(B?)

and now we can use Hanson—Wright in Theorem 4 and get the desired bound. O
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Let Xt = Z;;(l) Aj’f]f_]
Proposition 9.4. Let P have full row rank and

Xip1 = AXy + Py

where {n.} is an i.i.d. process and each 1, has independent elements. Then with probability at least 1 — §, we have

T
1> XiX]|l2 < o1 (P)

t=1

Sy Ttr(Tr_1(A))
0

L, Ttr(Dp(A) — 1)

T
I} AXXIA |l < 0y (P2

t=1

Let § € (0,e™1) then with probability at least 1 — §

T T-1 1 1
1 XXl o1 (Per(3 Pu(A)) (1 + ¢ log (5) )
t=0

t=1

for some universal constant c.

P

Png
Proof. Define ) = .| - Then 7 is a non—trivial subGaussian whenever P has full row rank.

Pnr
As in Corollary 9.1 by defining A as

I 0 0 0
A 1 0 0
A= (Inxn ® P')
AT— 1 AZL—Q Af—3 I
observe that
Xy
. Xo
A= .
Xr

Since
|| X X{||= X7 X,

we have that
T T o 3
1Y X X< Y X(X, =i A Aij = w(Aqi AT).
t=1 t=1
The assertion of proposition follows by applying Markov’s Inequality to tr([lfm’ A ). For the second part observe that each
block matrix of A is scaled by A, but the proof remains the same. Then in the notation of Theorem 4 B = A’A, X =7
1Bl|s = u(A'A)
T-1
= Z tr(I':(A))

t=0

1817 < [|Bllsl|Bll2
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Define ¢* = min (¢, 1). Sett = CH*[|3|‘1|3%\| log (§) and assume & € (0,e~!) then

t < 12
c*||B|| — ¢*||Bll%

we get from Theorem 4 that

7 A A < Zrt B'| (%) ZFt + 1Bl ()<“2Ft D(1+ s (5))

1 c||B||%
5)} Since = VT > 1 it follows that

c||Bl|% }
exp o log — <9
{< 1Bl[3 )

and we can conclude that with probability at least 1 — 9

i A’ Afy < tr(TX:_l Ti(A)) (1 + Cfl*log (%))
t=0

B
with probability at least 1 — exp{ (

Corollary 9.2. Whenever § € (0,e~1), we have with probability at least 1 — &

I XT: X X][||2a< a‘f‘(P)tr(TZ_1 Ft(A))(l + élog (%))
t=k

t=k+1

for some universal constant c.

Proof. The proof follows the same steps as Proposition 9.4. Define

I 0 0 ... 0
A 0 ... 0

A= : : - D Inxn @ P
AT-1 qT-2 AT-3 ]

Define Ay, as the matrix formed by zeroing out all the rows of A from k + 1 row onwards. Then observe that

T T T k
1Y XXl <u( > XuX))=u(d XX - X X))
t=1 t=1

t=k+1 t=k+1
=i (A A — AL Av)iy

Since tlr(ZtT:1 X X, — Zle X:X/) > 0 for any 7 it implies B

I
B
N
I
=
~~
N
z
Y
o

1B]|s = u(A'A) = ) w(ly(4))

1817 < [|Blls]1Bll2

Define ¢* = min (¢, 1). Set t = C'L]ﬂﬁl log () and assume § € (0, e™!) then

t - 12
c*||B|| ~ ¢*||B||%
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we get from Theorem 4 that

7200 < 1B+ L0 g (5) < 18l1s+ 1205 0g (5) < Blls(1+ 108 (5))

with probability at least 1 — exp{ ( — Zl ‘HBB”‘%Q log %) } Since
2

2
AIBIE |
[1BIB

c||BlE }
exp log <94
{< || Bl[3 )

and we can conclude that with probability at least 1 — ¢

o T—1 1 1
WA A < u(Y T A)(1+ S log (5))
t=k

it follows that

O
Proposition 9.5. Whenever the pdf of X, f(-), satisfies ess sup, f(z) = Cx < oo we have
P(IX]< ) <2C0x6
Proof. Since the essential supremum of f(-) is bounded. Then
5
PIXISH) = [ fla)dn < 20xs
r=—0
O

Proposition 9.6 (Pro ]posnion 2 in (Faradonbeh et al., 2017)). Let P~'AP = A be the Jordan decomposition of A and
define zp = AT Yo AT 'n;. Further assume that 1, is continuous, subGaussian with variance proxy = 1 then

Y(A,d) = sup {y €eR: P(lrglgdﬂzTK y> < 5}

where P = [Py, P, ..., Pd]/. If pmin(A) > 1, then
P(A,0) > (A)5 >0

where 1(A) depend only on A.

Proof. Define the event € = {mini<;<q4|P; 27|< y}, & = {| P, 20| < y}. Clearly € = U%_,&;, then

d
P(€) < P(UL,&) Z

From Proposition 9.5 and Assumption 1, we have P(&;) < 2€, Pl gV Then we get

d
7(220“3;2 )y <2d sup C|Pz Yy
— 1<i<d

where C v, | is the essential supremum of the pdf of |P, zr|. Then ¢p(A) = 5 suplg,-; o . O

’
[P zp|
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10 Lower Bound for Y7 when A € S, U S;

Here we will prove our results when p(A) < 1+ C/T. Assume for this case that ), = Lij; where {7, }_, are i.i.d and all
elements of 7j; are independent. Further L is full row rank. This result is a generalization from the case when {7; }~_; are
ii.d., i.e., L = I. Recall from Eq. (13) that

T-1 T
Yr = AYp A"+ Z Ay g + meprzp A+ Z i (46)
t=0 t=1

In this section we will find V,,, V,,;, such that V,, < Y7 < V,,,,. The way we will approach this is by first controlling the
erTor Cross terms, i.e., ||X:tT:_01 Azen), 1 + ney12,A’||2= O(VT) and then showing that ZtT:1 nen, = Q(T)I with high
probability. By the inequality in Eq. (46) we will then conclude that Y = Q(T)1.

Define opmin(LL') = R? > 0. Let 0ax(LL') = 1 (this does not affect our result: R is just the inverse of the condition
number). Define

P=AYr A
T-1

Q= Z A$t77£+1
7=0

V=TI

T, :C’(log§+dlog5)

5ddet(P + V)'/2det(V)~1/2
&1(6) = {IIQII?pW)_lg 8log ( ( )5 (V)

&S L Tu(Tr(A) — 1)
52<6>—{||TZ_OAxTxTA||s5}

3R? 1<~ . 5
57,(5) = {T > Tn((S), TI = T me = ZI}
t=1

£(5) = £,(6) N E1(8) N E5(5)

Proposition 10.1. If p;(A) < 1+ ¢/T and
2 d )
T > max (C(log -+ dlog5>7C’R2(§ log (tr(T'r — I) + 1) + dlog 7)>

) )
then with probability at least 1 — 36 we have Yp > sz L

Proof. Our goal here will be to control ||Q||2. Following Proposition 3.1, Proposition 9.4, it is true that P(&;(d) N E2(5)) >
1 —26. We will show that R
5(5) :571(5) ﬁ51(5) ﬁ52(5) — Umin(YT) > 1/4

Under &,(9), we get

T—1 T

Yr = AYp 1 A+ Az 4 ezt A+ men;
t=0 t=1
T—1 3

YT - AYTflAI + Z Al’t’f];Jrl + ’17t+1(EQAI + ZR2TI
t=0

T—1
U'YrU > U AYp AU+ U’ Z (Axm;H + m+1x;A’> U+ zTRQ YU € 891 (47)
t=0
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Intersecting Eq. (47) with & (5) N &E2(J), we find under £(J)

5%et(P 4 V)'/2det(V)~1/?
1QI7p41)-1 < 8log ( 5
< al 5edet( LD | 71)1/2de(TT)~1/2
og B

d _ 1/2
~ Slog <5 det(tr(FT(Aé)d DI+1) )

Using Proposition 8.1 and letting x? = U’ PU then

QU2
d . 1/2
< T 8108 (5 det(tr(l"T(A(S)d NI+1) )

So Eq. (47) implies

U'YrU > k* — /(K2 + T)\/16d10g (tr(Dp — 1)+ 1) + 32d10g§ + %T}?

which gives us

Yr K2 \/f# \/16d 32d. 5 3

LU > — — — +1 —1 I'r—1)+1 Zlog = +ZR? 4

UTU_T (T+) Tog(tr(T )+)+T g5+4R (48)

=8
If we can ensure .

TR d 5
> = _ -
55 = 2log(tr(I‘T I)+1)+dlog6 (49)

then 3 < R?/2,i.e.,

164 324 5 R
10 e (T — D)+ 1) + 2221
\/T og (tr(ly = I) +1) + —5~ log 5 < =

Let T be large enough that Eq. (49) is satisfied then Eq. (48) implies

k2 \JUE+DR? 3p2 g2 2
Y > Y - 0 47 > 4
U U T 2 + 4 — 4 + 2T (50)

Since U is arbitrarily chosen Eq. (50) implies

2
Yr = TR 1 (51
4
with probability at least 1 — 39 whenever
C
(A) <1+ —
pi(A) T
2 5rd 5
T> (C(log +dlog 5) CR (5 log (tr(Ty — 1) + 1) + dlog 5)) (52)

O

£

Remark 2. Eq. (49) is satisfied whenever tr(I'r — I') grows at most polynomially in T'. This is true whenever p(A) < 14 .
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11 Sharpened bounds when 1 — 7 < pi(A) <1+ 7

Here we show that the bound for Y7 in Eq. (51) can be sharpened to have quadratic growth in 7". The key idea towards
sharpening will be that

T—1 T
Yr = AYr A+ Z Az + mezi A+ Z e}
. =0 t=1
~(1-2)Yr
~CTI
Yy = CT?I

Formally,
Proposition 11.1. Let 1 — ¢/T < p;(A) <1+ ¢/T and

T > max (C’(log% +dlog5),C<glog(tr(I‘T -I)+1) +dlog§>)

then with probability at least 1 — § we have

Va(d)T?Riomin (AA)
Yy = I
256e2¢(A, J)

where a(+) is a function of only d, R is an absolute constant and

15T
c(A,§) = 16dlog (tr(Tr — I) + 1) + 32d log %

Proof. For this we want Eq. (51) satisfied for every ¢ > % simultaneously, i.e., we need

tR?
Y; - TI (53)

simultaneously for ¢ > % with high probability. By similar arguments as before as long as we have
pi(4) <1

2 d 5
t > max (C’(log = +dlog 5) CR? (5 log (tr(Ty — I) + 1) + dlog 5)) (54)
we can conclude with probability at least 1 — 24 that Y; >~ %I . This means that with probability at least 1 — 35% we have

fort > % simultaneously
tR?
Y, = —1I
4

when Eq. (54) is satisfied for each ¢. Since the LHS of Eq. (54) is least at t = 7'/2 and RHS is greatest at ¢ = T, a sufficient
condition for every t > % satisfying Eq. (54) is the following

7 > max (€ log 2 + dlog5), €5 log ((Dr — 1) + 1) + dlog 7))

Then by substituting 6 — g—% we can conclude with probability at least 1 — § that

tR?
Yoz 1
simultaneously for every ¢ > % whenever
3T o(d 15T
> - Z _ il
T > max (C(log % —|—d10g5),CR (2 log (tr(I'r — I) + 1) + dlog % )) (55)
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Define ;1 = /U’ A’Y;_1 AU and Eq. (50) becomes

157 3
UY,U >~ — /(72 +1) \/16dlog (tr(Ty — I) + 1) + 32d log -5 +ZtR2

Under Eq. (55) is< B5VE

157 3t
> — (-1 + ﬂ)\/mmog (tr(Ty = 1) + 1) + 82dlog — = + ZR2
157 3tR? 15T
>, - 'yt_l\/16dlog (tr(Ty — I) 4+ 1) + 32dlog =5 + 1 \/Iz\/16dlog (tr(Ty — I) 4+ 1) + 32dlog o5
<R2E
16dlog (tr(Ty — I) + 1) + 32dlog 15T\ ¢R2
27371(1_ 5 25)_’_7
V-1 4
16dlog (tr(T'y — I) + 1) + 32dlog 12T TR?
27?_1(1—\/ (il 7)2 ) )+ — (56)
t—1
_ c(A,$)
Vi
Observe that
— TR?
V-1 = VU AY; 1 AU > onin(A) 3e (57)
Eq. (56) will give us a non—trivial bound only when w < 1/4 which is true whenever
64ec(A, 9)
>~ T 7
’ B R2gr21'11n(A) (58)
The scaling 1 — @ in Eq. (56) depends on v;_1 itself. We will show that
t—1
Y, =TN1) = 77 =TQ< T )
t—1 t—1 C(A, 5)
L=ro((g) ) = t=rel() )
V-1 = C(A,(s) V-1 = C(A,(s)
T N5 ) T Ser
= =m0((G) )
-1 ((C(A, 3) T (4,9)
T
. = TQ )
o T I T Ay
From Eq. (56),(57) since
c(A, 0 16ec(A, o
(4.9) _ [16ec(ao) _
’thl O’min(AA )T
it follows that
16ec(A, 6) R?TI
YVir[1— | ————— |AY, A 59
t—( oo (AANTR? ) 1Ay (59
=B

The goal here is to refine the upper bound for 49) guch that

t—1

c(4,9)

C
2 ==
Vi-1 T
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Eq. (59) implies that

R*TI

T k Ak Ak
e D ) T

®) o min o
) TR S AR R2TI

— 16e 16
k=1
T 2TT
ER I (4) R
16e ‘51 16
Here
B 16ec(A, 0)
b= Oumin (AA))R2T (60)

Due to the choice of 7', d we will usually have Léj 2 < L. (a) follows by successively expanding Eq. (59), (b) follows
because (1 — 51) 77 > % since $1 < 1/2 by Eq. (58). Then we can conclude that
%2—1 > Umin(AY;‘/A/)
R*Tmin(AA")omin (T L (A))
> A
- 16e

(61)
which gives us

c(A,9) ( 16ec(A, 9) )1/2
v, " RQTUmin(AA’)amin(FL%J(A))

= f2 (62)

It is clear from Eq. (62) that we get a recursion during the refinement process. Specifically at the k*" repetition of Eq. (59)
up to Eq. (62) we get,

B = ( 16ec(A, 0) )1/2
T\ R T (AA ) o (T 1 (A))
k—1

(63)

Now [ is a non-increasing sequence. We show this by induction. Since o, (I't(A)) > 1 and
16ec(A, 0) <1
Omin(AA)R2T —

it follows trivially that 82 < (3;. Assume our hypothesis holds for all k& < m. Then since I';, (A) = I, (A) whenever
t1 > to we have
( 16ec(A, 0) )1/2 < ( 16ec(A, 0) )1/2
RQTJmin(AA’)amin(FL‘%J (4)) - RQTamin(AA’)amin(FLﬂ L (A))
m m—1

6m+1 S Bm

and we have proven our hypothesis. To now find the best upper bound for # we find the steady state solution for

Eq. (63), i.e. o

16ec(A, 0)

2 X . _ ’

/BOUHHH (FL%J (A)) <R2T01nin (AA/) ) (64)
Now a solution for 3, € (#ﬁ,)ﬂp, 1). To see this set 3y = 1, then LHS > RHS. Next set 3y = #ﬁ,)m then

since pmin(AY) > omin(A?) and p; <1+ C/T we see that
2 i Omin 2R? ¢
4C O-mln(Fl_%J (A)) 4Zt:O (A)*R*T/2C pmin(A)Qf
Umin(AA/)2T2 o R40min (AAI)2T2/02
2eC 16ec(A, 9)
< <
o O'min(A)QT o (RQTUmin(AA/))
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and LHS < RHS because C is a constant but ¢(A, ¢) is growing logarithmically with 7" (and we can pick T" accordingly).
By ensuring that

64ec(A,9)
T> /— "
B R2UInin(A)2

we also ensure that 8; < 1/2 and as a result all subsequent 35, < 1/2. Now we can conclude that whenever T' > iiii((‘:)‘sg)

we get Eq. (59)

TR%I
Vi=(1— Bo)AYi1 A" + 3 (65)
and following as before we get with probability at least 1 — §
TR? TR?I
- -
Y= T5e T A+ 5 (66)

where [y is solution to
16ec(A, 0)
2 _ ) _ )
Boamm(r\_%J (A)) (TRQUmm(AA/))

and

15T
c(A,6) = 16dlog (tr(Ty — I) + 1) + 32dlog 25—6

/ 2 . ’
It should be noted that % will equal a(d)f(;i((;"_";’)’(AA ), i.e., grow linearly with T, as shown in Proposition 8.5. Then it
can be seen from Eq. (66) that '

TR? TR2I
—
Yz 35 T+ 5
TR? TR2I
- Omi .
Yr = g om0 () + =5
. TR? TRQ\/a(d)amin(AA’)I B \/a(d)T2R4omin(AA’)I 67
~ 16e  16ec(A,)C(d) N 256¢e2¢(A, 6)
O

12 Invertibility of Y7 in explosive systems

Assume for this case that 1, = L#7; where {ﬁt}thl are i.i.d and all elements of 7, are independent. Further L is full row
rank. Define oy, (LL') = R? > 0. In this section we show the invertibility (with high probability) of Y7 when A is regular
and explosive.

Let omax(LL") = 1. Recall that

Zt = A_tl't
t
=9+ Z A_Tn'r
T=1
Define

-1
2(T,t) = (Z A_SnT+1—t+s>

s=0

where z(T,t) = 0fort < 0,t > T + 1. An observation that will be useful is that z(¢) is statistically independent of
2(T) — 2(t). Recall from Eq. (18) that Uy = A~T 1 a2} AT Fp = Y21 A=tHlo02 A=V Up is a scaled
version of Y7 and we will show that ||Ur — Fr||2< ¢ with high probability. Then we show that Fr = 2c¢I as a result
Ur = cI with high probability. This behavior is only possible due to the regularity of the matrix A and significantly different
from Section 10.
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Bounding || Fr — Ur||op

Proposition 12.1. We have with probability at least 1 — 26,
11
Uz — Pr|2< <4T20‘f(A<T+1>6)tr(rT(A1)) + (1 + = log 6>Ttr(AT1I‘T(A1)AT1’)>

whenever ) )
T>Ty)= E(logg +log2 + 2dlog5)

Proof. Observe that

t—1
2(T) — 2(T —t) = A~ TH1 (Z ASnT+1—t+s> = ATTH=1 (T ) (68)
s=0
Then
T ’ ’ !
1Ur = Frllop=|1D>_ A~ (2(T = )2(T = ) = 2(T)2(T) )(A™") ||
t=1

Letu = 2(T — t),v = 2(T) and since uv’ — vv’ = (u — v)u' + u(u — v)’ — (u — v)(u — v)" we have

T
[Ur = Frllop < 3 A (T — ) = () (T~ £) = (1)) A~ |1

t=1

T
HIDY AT =) — 2(T)(T — 1) + 2(T = t)(2(T — 1) — 2(T) )A™" || (69)

The reason we decompose it in such a way is so that we can represent the cross terms (z(T — t) — 2(T))z(T — t)’ as the
product of independent terms. This will be useful in using Hanson—Wright bounds as we show later.

First we bound

T
1D AT =) = 2(T)((T — 1) = 2(T) A"l

From Eq. (68) we see that A~!(2(T — t) — 2(T)) = —A~T=12(T,t), then

m

2

AT (T ) = AT 0,0,..., T ATL AT AT
~—

T —t+1 term :

nr

Since Zthl(z(T —t) = 2(T)(2(T —t) — 2(T)) < Ethl trace((z(T — t) — 2(T))(2(T — t) — 2(T"))")I. Based on these
observations we have

T T
IS ATH AT = t) = 2(T)) (2T = t) — 2(T)) A~ [[a= [|> AT (T, 1)2(T,6) ATV
t=1 t=1
T T o
< trace(A™T I (T (T t) A7) = AT ) ATV AT (T ) = i A Aj
t=1

t=1
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m
72
where 7 = | . | and

nr
0 0 o 0 AT
0 0 . AT pT2

A =

A—.T—l A—.T—Q . ) A—2'T+1 A_.2T

Since tr(AA") = Ttr(A-T'Tp(A~1)A-T-V). Applying Markov’s Inequality (See Proposition 9.4), we have with
probability at least 1 — ¢ that

tr(E[A7i A']) _ a(L)*Ta(A™ " (A~ AT Y)
) - )

Although this bound can be tightened by dependent Hanson—Wright (See Corollary 9.1), there is no reason to do so as §

depends only logarithmically on 7. In fact we get with probability at least 1 — § that

i A'An < (70)
i A AR < (1 + élog %)(01(L)thr(A’T’ll“T(A’l)A’T’l’)) (71)
Next we analyze the second term
T ’ ’ ’ ’
1D AT (T = 1) = 2(D)=(T =) +2(T = )(=(T =) —=(T) )A™" Iz
t=1
Consider the summand ZtT:l A7H(2(T —t) — 2(T))2(T — t) A", then
T T
STATH(AT —t) = 2(T)a(T —t) A" = AT " 2T )2(T — 1) A~ (72)
t=1 t=1

We define scaled version of z(T,t), z(T — t).

Uit
12
HTt) = AT (T ) = AT7L0,0,..., I ATLATZ L ATH
T—t+1 term .
A(T,b) nr
_Aftfll'
A7t72/

HT —t) =2(T —t) AV = [, ny,....n5%) | AT | 4o

7’

Then the probability of the second term can be written as

T
PN (T )T — 1) + AT — )Z(T,1) )| |2> 2) S 2% 527 x P( ) > z/4)

T
> 2w AT AT —t) v
t=1

§2><52de<

i ( STAT ) ATV AT — 1) + AT — t) v’ AT A(T, t))ﬁ

t=1

< z/4> (73)
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To Eq. (73) apply Hanson-Wright inequality. For any u, v, due to the statistical independence of z(T — t), z(T, t) we have
T
ED) 20 2(T,)5(T —t) v] =0
t=1

We now need an upper bound on ||S||z2, ||S||r. Since CD' + DC" < CC’' + DD’

AT ) ATV A(T — t) + A(T — t)/ v/ A= T-LA(T 1)

i
M=

o~
I
s

A(T7 t)/A—(T+1)e/A—(T+1)(1—e)/ule(T _ t) +A(T _ t)/’l}u/A_(T+1)(1_€)A_(T+1)€A(T, t)

Il
] =

~
Il
—

=C =D’
T T
AT ) AL ATTHEA(T, 1) 4 © AT — 1) v’ AZTHDO=) A=THEDO= 0/ A(T — 1)
t=1 =Ccr t=1 —DD’
T
<ot (AT N AT, 1) AT, t) + w/ A= (THD0=9 4= (T )= uZA — )0’ A(T — t)
t=1 t=1
T T
< o (A (THDe (ZA t))IJraf(A (T+DA=e)y¢ (ZA (Tft))l
t=1 t=1

(a)
< 2T o2 (A~ TV (D (AT
Here (a) follows because

AT, AT, ) = To_1(A), AT = ) A(T — 1)) = Dr_y(A)

Then whenever 5 L
TzTozz(logg—HogZ—&-leogS) (74)
Eq. (73) becomes with probability at least 1 — § that

T
1Y (AT = t) = 2T)2(T = 1) + 2(T = t)(2(T — ) — 2(T))||2< AT? 03 (A~ TH) (D7 (A7Y)  (75)

Then combining Eq. (70),(75) we get for T' > T} given in Eq. (74),

(76)

Ttr(A~T-'Pp(A) ATV
[|[Ur — Fr||2< <4T20%(A_(TH)e)tr(FT(A‘l)) T tr( (A7) ))

]

with probability at least 1 — 25. We pick € such that (7" + 1)e = [ ZF |. In fact using Eq. (71) instead of Eq. (70) we get
||Ur — Frl||2< <4T2o—§(A—(T“)f)tr(rT(A—l)) + (1 + = log 6)Ttr(A T=ir (A—l)A—T—l’)> (77)
O

Bounding U

Proposition 12.2. We have with probability at least 1 — 46
¢min(A)2¢(A)262 ATAT/
20 max (P)?

3pmax(4)?
2Umirl (P)2

Yr

Y

Yr

A

(1+ élog %)tr(P(FT(A_l) — )P AT AT
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whenever

<4T205<A<T+1>6)tr<rT(A1)> " Ttr(ATlFT(Al)AT”) g Pmin(A) AV

) 20 max (P)?

Proof. To give lower and upper bounds on U, we need to bound Frr. The steps involve

|[Ur — Fr|l> <A
Fr=Vg =0
= Ur > Vy, — A
Fr 2 Vup

- UTj‘/up+AI

From Proposition 13.1 we get, with probability at least 1 — 26,

FT > ¢min( )2w(A)2520min(P71)21

Fr i’;a;‘((ﬁ))z (1+ élog %)tr(P(FT(A_l) —1)P)I
Define
2
A= L in (M(l + Zlog Su(PIr(A™) = NP, ¢mm<A>2w<A>2a%mm<P1)?)
_ ¢min(A)Qw(A)252Umin(P71)2
2

Then in Eq. (76) by ensuring that

<4T20%(A(T+1)6)tr(FT(A1)) + Ttr(ATlI‘T(Al)ATI/)> - ¢minl(A)27/1(A)252

4] 20 max (P)?

we get with probability at least 1 — 40 (since this is the intersection of events governed by Eq. (76),(83),(84))

¢min(A)2w(A)252I ¢m1n( ) w(A)252I

. 2 2¢2 —1\27
Ur 2 Gmin(A)"0(A)° 0 amin(PTH)T = =50 =g 20max(P)?

Similarly, for the upper bound

Ur = 3220 14 Lo Du(PCe (A7)~ NP1

Thus with probability at least 1 — 40 we have

YT — d)min (A)Qw (A)252

T AT
= 20man(P)? At AT

Y < ?;fm"ép)) (1+ ilog %)tr(P(FT(A_l) )P AT AT

whenever

<4T205(A<T+1>6)tr<rT(A1>>+ Ttr(ATlFT(Al)AT”) < GminlA) O (A"

4] 20 max (P)?

(78)

(79)

(80)

81)
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13 Regularity and Invertibility

Through a counterexample in (Nielsen, 2008), Remark 4 in (Phillips & Magdalinos, 2013) it is shown that unless a matrix is
regular, the estimation of the parameters maybe asymptotically inconsistent.

Recall Fr from Eq. (18). Assume again that 1, = L7, where {f]t}tT:l are i.i.d isotropic subGaussian and all elements of 7;
are independent. Further L is full row rank. Define oin(LL") = R? > 0. Let oyax(LL') = 1 (this does not affect the
main result as it appears only as a scaling). For the invertibility of Y7 in explosive systems, it will be important that F7 is
invertible with high probability. It will turn out that invertibility of F7r can be ensured by assuming regularity of A. This
is Proposition 1 in (Faradonbeh et al., 2017) and has been presented here for completeness. It will be useful to recall the
definitions of ¢uin (A), Pmax(A) from Definition 3.

We will show F indeed has rank d with probability 1. Formally,
Proposition 13.1. Let A be regular, then we have with probability at least 1 — 20

. ¢mln( ) 22
gIIlln(FT) O'max(P) ¢(A) 6
(

ﬁ::(?;( log (15) r(P(Tr(A™Y = 1)P)

where A = P~YAP is the Jordan decomposition of A.

Umax(FT)

Proof. Let Sy, = [z, A" op, ..., A7 *2p] where 20 = A~ Tar = A7T( {:—01 Ak Ljr_4). Note that L#; is continuous
whenever L is full row rank. Then Fr = S7.5/.. Observe that

A_tZT = P_IA_tPZT
Define the event

£+(0) = {min |Plzr]> w(4)3}

where 1)(A) is the lower bound shown in Proposition 3.2 (which we can use due to the continuity of L#};) and v = Pzy.
Under &4 (4), |v;|> 0. Now we need a lower bound for o, (Fr) under £ ()

T T
Fr=pP! Z AT P PPAT Y PV = prt Z A~/ AT prl (82)
i=1 i=1
- ¢min(A)2¢(A)252P*1P*1'>7¢mm(A)2 P(A)?6%T (83)
- _Umax (P)2
Further, since A is regular we have that @i, (4) > 0 from Proposition 8.3. Then with probability at least 1 — 0 we have
Pmin(4)? 262
min F > — A 6
0 ( T) e O-max(P)Qw( ) >0

For the upper bound, observe that Pz is a sub-Gaussian random variable. Since
||Pzp2p P'||< 277 P' Pzp

and recalling that

m
2
ap=[A"H A2 AT
4 nr
we can use dependent Hanson Wright inequality (Corollary 9.1) to bound 2. P’ Pzy. In Theorem 4,

B=AP'PA
E[zP' Pzr| = t(P(Tp(A™Y) — I)P)oy(L)? = tr(P(Dp(A™Y) — I)P')
[1Bl2, ||Bl|r< u(A'P'PA) = u(P(Pp(A™Y) = I)P')
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Then with probability at least 1 — § we have
1 1
2pP'Pzp < (14 =log g)tr(P(FT(A_l) — )P
c

and we get from Eq. (82)

T T

Fr <P~ IZA P2 PPATTY P < (2P Par) sup O'mlx( 712/\7”1@1}%7”1'1371’)]
=1 [lv]]2=1 i=1

2

= (bmax(A)

o a’min(jj)2

Then we have with probability at least 1 — 20

1+ % log %)tr(P(PT(A_l) —)P)I (84)

i -
Fr = 2200 (14 S log Du(P(T(A™) = P @9
O

14 Composite Result

In this section we discuss error rates for regular matrices which may have eigenvalues anywhere in the complex plane. The
key step is to recall that for every matrix A it is possible to find P such that

o [4e 0 0]
A=P'l0 A., O|P (87)
0o 0 A
A

Here A, A5, As are the purely explosive, marginally stable and stable portions of A. This follows because any matrix A
has a Jordan normal form A = P~1AP, where A is a block diagonal matrix and each block corresponds to an eigenvalue.
We can always find ) (a rearrangement matrix) such that A is partitioned into two diagonal parts: explosive, marginally
stable and stable, i.e.,

Ae 0 0
A=P7'QT |0 A, 0]|QP (88)
0 0 A,

Clearly, P= QP. Since

t
T—1
= E A MNt—r+1
T=1

t

Xy =PX, =) AT Py (89)
=1 -
Nt—7+1

Now, the transformed dynamics are as follows:
Xip1 = AX; + e

where A has been partitioned into explosive and stable components as Eq. (87). Corresponding to A partition X, Nt

Xe= | X e = | e (90)
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5 T T XP(XP) Xp(X) XP(Xp)
Vr=3 X X[ =3 | X(Xp) Xpe(Xe) Xpe(Xp) 1)
= S X Xy Xy

We analyze the error of identification in the transformed system instead and show how it relates to the actual error. Note that
P is unknown, the transformation is done for ease of analysis. The invertibility of submatrix corresponding to stable and
marginally stable components, i.e.,

Xtrnss — |:Xt :|

X7
follows from Theorem 1. To see this let A, be a d. X d. matrix. Define
Pmss:p[de+]—:da:}

i.e., P ss is the rectangular matrix formed by removing the rows of P corresponding to the explosive part. Then, by
definition, we have that

nms

|: ¢ :| =P, mssTt

U
and
A 0 nms
X mss _ ms X mss + i»+1:|
o { 0 AS] ! {ntJrl
A
Further
E[Pmssntngprlnss} = PmSSPT/nss -0

! s is invertible and { P,,,5sm;}Z_; are independent subGaussian vectors.
Now this is the same set up as the general version of Theorem 1 discussed in Section 10. Since A,,,ss € Sp U S; only has
stable and marginally stable components, it follows from the Eq. (51) that

Since all rows of P are independent then P, P/

d T
ZXZTLSS(X?SS)/ t *Umin(PmssP/

4 mss
t=1

)

mss

) > omin(P)? = R2, we have that 3, X7 (Xs5) = TR T Let
Omax(P) = 1. (this makes no difference to the results and R can be interpreted as the inverse condition number)

Recall the definition of S4(0)

with high probability. Then since opmin (Prss P,

Bo(6) = inf {B‘BQUmin(F[%j(A)) > (M)}

we refer to 5y (9) as Bp. Following our discussion in Proposition 8.5 we see that 8y > 0 and since oy (I't(A4)) > a(d)t we
have that

B < 8ec(A, 8) 1 TR2%02, (A)C(d)
0= TR262, (A)C(d) Bo = Bec(A,d)
Define .
_ e(yeyy 1 TR? _(TR?
Ve = (; Xt (Xf) ),VS = 4 Ia Vins = ( Se Ftﬁj (Ame))

where the invertibility in V, holds with high probability. Observe that V,,,s < (31—, X8 (X[™)), Ve = (X1, X5 (X?))
with high probability (follows from Eq. (51),(66)). This observation will be useful in proving the composite invertibility.

Although the technique to prove the invertibility of Zthl X, X 1 is similar in spirit to that of (Faradonbeh et al., 2017), it
addresses additional difficulties arising due to the presence of a marginally stable block.

%_1/2 0 0

Bixa=| 0 2 (92)
0 0 stl/z
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We will show that BY";_, X, X/B' is positive definite with high probability, i..,

. oy SPUEISETV  SLVE
=4 - ms e - ! - ms ms - ! - ms s - !

D> BXXIB = |2 Vi Xy <X>v1/2 S Vit PXP XVl S Vi, <X>v1/2

= - s e —1/27 - s ms - 4 - s s —1/2

= Yo Vs X (XY S Ve X (XTS) Vi Yo Ve X ()

(93)
We already showed that lower submatrix is invertible. To show that the entire matrix is invertible we need to show
T
V2D X (XY Vi Vi ZXC VIV|< /8
t=1
with high probability for some appropriate v and
‘/7;«91/2 0 mss mss 7;91/2 0
Tmin 1/ ZX (X S| | Za>0
( 0 Vs P 0 Vs
14.1 Cross Terms have low norm
Define the following quantities:
A ) B0max(Ae 0 (Ae) (1+ #1083 (P (Pr (4 ~ D)) 94
) = (A rmin (AL AP oD
2
Tmc(é) — {T O((Ae, 5)tr(AgT+kmc(T) (A(:T“kac(T))/) < 2’756} (95)
R2 2
ke = kme(T) = T (1 - 2 ) (96)
2048de (FT(AmS)F L (Ams)(l + llog§))
L 55057 e
2
T, (8) = { (A, $)tr(A7THEe (D) (A=T+Hhee(D))y < 2756} (97)
R2 2
kse = kse(T) = T(l — ) (98)
1024, (Tr(A,) (1 + L1og 3 )

Remark 3. Note that T,,.(8) (and Ts.(0)) is a set where there exists a minimum Ty, < 0o such that T' € T, .(6) whenever
T > T,. However, there might be T < T, for which the inequality of Tp,.(6) holds. Whenever we write T € T,.(6) we
meanT > T,.

Second note that for every 7', since R,y < 1 we have

ksc(T)a kmc (T) >

v N

These quantities will be useful in stating the error bounds. We have

T k T
VY23 X (XY Vo < VY2 3 X (XY Vo IV 2D X (XY v 2|
t=1 t=1 t=k+1

We will need a more nuanced argument to upper bound Eq. (99) than that provided in (Faradonbeh et al., 2017) (although it
will be similar in flavor).

T
POV, X7 (X)) Vi d ) (99)

t=1
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For any v, vo we break |v] 1/2 Xo(Xme VmS v2 into two parts
y ) 1 t 1 p

k
V2D XX Vs P
t=1

and
T

V2N T XE (X Vi d P
t=k+1

CFor [y Ve AT XE (XY Vins 2 va| we have

T T T
RV T KPS Vi Pual < [0l VYD XXy Ve oy oV DT X (X Vil P
t=k+1 t=k+1 t=k+1

<1

T
UéV,,,:Sl/Q Z Xtms(Xtms)/Vnzsl/sz < . Jo1(Vim 1/2 Z X (XY V,y 1/2)

<
t=k+1 t=k+1
T
<y MDD X (Xe) Vins) (100)
t=k+1

To upper bound Eq. (100) we simply need to upper bound Vina /2 Zth e X¢° (Xmsy VT}/SZ. We can use dependent
Hanson—Wright inequality (Corollary 9.1) and Corollary 9.2. Then from Corollary 9.2 and since V,;,s is deterministic we
can conclude that with probability at least 1 — § we get

1.1
~1/2 Z XM (X vol? < Z (V12T (A )Vn;sl/2)(1+flog 5)1 (101)
t=k+1 t=k+1 ¢

We can upper bound the deterministic quantity in Eq. (101) as

T T
7 (VAT (AR <dh(Y ] Ti(Ams)Vind)
t=k+1 t=k+1
— 1
—d)\1(TR2 Z Ft ms Lﬁo(‘i)J(AmS) )
t=k+1
8e(T — k _
< dxl(%m(/&ms)nm (A ™) (102)

The last inequality holds because the eigenvalues of P~1/2QP~1/2 are the same as Q P~ ' and non—negative whenever

P, ) are psd matrices. The normalized gramian term, Ft(AmS)I‘Lﬁ - (A,s) 7L, appears in Eq. (102) only because V;, is
0

deterministic. This will help us in getting non—trivial upper bounds for the cross terms of explosive and marginally stable pair.
The key is the choice of k. In Proposition 8.6 we showed that \; (I‘tlI‘t2 ) only depends on the ratio of ¢1 /t5 and A,,,s and

not on the specific values of ¢1, t5. Note that due to Proposition 8.6 the normalized gramian term FT(AmS)FL; | (Apms)
Bo (3)

log T

has spectral radius that is at most polynomial in 7'y (d). Since 5y(0) = x log %, we get that

_ 1
M(Tr(Ans)TTL,  (Ams)) = poly(log T, log 5 )

50(5)

Our choices of T},,.(9), kme(T) in Eq. (95),(96) are motivated by the preceding discussion. We set k = k,,,.(T") and we

have that d)\; (SGTII;Qk) FT(AmS)FL%l(&)J (Ams)_l) < % (check by directly substituting k = k,,.(T) in Eq. (102)) and
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as a result from Eq. (100)

T
- e ms - 2
‘Ull‘/e 12 Z Xt (Xt )/‘/msl/2U2|S E
t=k+1
for arbitrary vy, vo. Similarly for the second part

k k k
RV 2D D XE X VPl <\ V2 YD XXV o sV Y X (X Vi P (103)
t=1 t=1 t=1
ay <1
For the choice of k = k,;,. the other term can be simplified as
k k k
TR P e AU AN LA A PP e AL AR ENPHO PP Ge Sl
t=1 t=1 t=1
k
<\ e Xs(xpyveh) (104)
t=1

By ensuring that both T, k = ky,,.(which is > T/2) € T,,(0) (from Table 1) we have from Eq. (80) that

k
e ey/ 3¢H13X(AG)2 1 1 -1 / k pk/
> OXP(XP) = o (B (Lt G los Pu(P(Cr(A) — DP)ALA;
=1
¢min(A6)2w<Ae)252 T AT/
> AlA
Y T B e

Define
3Pmax(Ae)?02 1 (Ae) (1 + ¢ log %)tr(Pe(FT(A?) —I)P))

max

a(Ae,d) = Gmin(Ae)20min(Ac)2 P(Ae)20?

and we can conclude

k
tr(z Xe(Xg)yveh < \/a(Ae’5)tr(AgT+k(AgT+k),)
t=1
with probability at least 1 — 20. Since T’ € T,,,.(4) we have

a1 < \Jal(Ae, O)e(AT T (AT THY) < (105)
16
with probability at least 1 — 26. Then combining Eq. (100),(101),(103),(105) we get with probability at least 1 — 46 that
T
oV 2 XX Vi Pl < (106)
t=1 8

This implies with probability at 1 — 46 we have

T
V2 3D X (X Va2l < (107)
t=1

We have a similar assertion for the stable—explosive block but with 7' € T.(0) and k = k4.(T).

T
Vo2 XX v < g (108)
t=1

It should be noted that ' € T.(8), Tyne(8) are both poly logarithmic in § because of A=T+*me (or A=T+*s¢) term which is
exponentially decaying.
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Remark 4. Whenever T € Ts.(0), Tyne(9), the other conditions on T such as T/2 € T, (6) or T > T5() V Tms(%)for
the invertibility of the individual stable, marginally stable blocks are satisfied simultaneously (or are trivial to satisfy) and
we do not state them explicitly.

14.2 Norm of scaled Z;T:l X755 (X %) is high

Now we need to check

Jmin( ) 27>0

Since from Theorem 1 and its extension in Section 10 it is known that with probability at least 1 — § we have

Zthl X[ss(X[ss) = RQ% for some fixed R = oyin(P) > 0, then we know that the Schur complement of
ZZ;I X7##(X[**)" is invertible too. For shorthand let

T
Z inss (inss)/

t=1

Vil 0
O V9_1/2

Vid? 0
0o v

T
o mss mss\/ __ Mll Q/
N A s

Then the Schur complement is
M/My = Mz — QM ' Q'
Since opin(M) > R? TTI then from Corollary 2.3 in (Liu, 2005) we have that

T
Umin(M/Mll) Z RQZ

Since Moo = ZtT;()l tr(T':(Ay)) (1 + 1 log %) I with probability at least 1 — §. We see that with probability at least 1 — &

_ _ _ _ _ _ R?
MY (MMM = T — MY 2oM Y2 2o vt 2 - I 109
22 ( / 11) 22 22 Q 11 11 Q 22 - 4tr(FT(AS))(1—|— %log%) ( )

Since A; is stable tr(I'r(As)) < tr(Too(As)) < co. Define
R2

d) = >0 110
“O) = T (A A+ Tog ) (10
Then this implies that
MG o et 0 I M 2Q My | w(d)
0 MLz 0 ML M71/2QM71/2 7 S
22 22 22 11
because for any v = [zl} we have
2
7 M1_11/2QM2_21/2
v’ - v = vjvy + v} Dvg + vy D vy + vhvo
M2;1/2Q’Mﬂ1/2 7

= vjv1 — 2¢/1 = w(0)||va][|v1][+vhve

w(d
> o 2(1 = ) g -0,

Since from Eq. (109) it follows that || D||>< 1 — w(§) we obtain

w(d
vion = 2/ T= @l l+52 = vgor - 2(1 = A2 ol o +v02

R
= (1= Y por i oal® + (1 = /1= ) on 2 eal )

> (L) o P+
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Combining these observations we get

I M2QM,,
) N2 w(9)
v =D ”2( 1 )
My QM I

‘We have that

S iy
O'min( Mlél 2 M;le] M [Mlél 2 Mgl/zl ) 2 (@>

Since Moy = Vi, My, = Vs we have with probability at least 1 — §

—1/2 T —1/2
o.min B Xmss X77L39 B Z > 0 11]
< 0 v ;:1 Ha O Gl 0 v ) (74 ) (111)

Now we replace in Eq. (107),(108) v — ~ w( . Then that implies

w(d
64

~

T
V2D XX V2 2

T
1)
Vo2 Y Xp(xpey vl > Y0
— 64

14.3 Lower Bound on Zthl X, X/
Recalling that

T —1/2 vre s vmsyit,—1/2 —1/2 vesvsvr —1/2
N T 12[ 1/2 Zt_lv1gX(X )msf; Ztleng(X) f;

_ — i — / /
> BXXB = |5 msl//;m?(m Vi 1/2 . msj/zxmxm ’”f/ﬁ S jﬂxw )Vsl/i
= s e ! s ms - ! s s !
- Ztl XP(XP)' Ve Ztl X (X)) Vins Ztl XP(X?P) Vins

then it follows from Eq. (111) that

T I POHIR AR €10 ¢ U YLD SHINR D €10 ¢ (Al
S OBX,X(B = | ST Vi P X (Xe)y v M 20y, 0
— —1/2 vs/ve —1/2 w(d
= Vi Ve Py v 0 P
U1
Let v = |vg| Then v/ Y1, BX, X[B'v = ||v1][>+22(||va| 3+||vs]13) + 20} 1, Vi /2 XE (XY Vi /P vy +
U3

—1/2 vre/vsyir,—1/2 w(é \/w(tS \/
200 S Ve X (X Ve ug > o] P2 ([ a3+ s [3) — o1 11| [— Y2222 [vy][[v3]]. Then we get

) w(d w(d
o3 BB 2 onl P+ 2 ol ) - Z ol el — 2 e

t=1

Thus amin(thzl BX,X|B) > @. Summarizing we have with probability at least 1 — C§.  The

Cd comes because we are considering the intersection of invertibility of Zthl X5 (X[5)  and
T e e T S S T ms ms
2=y XE(XE) 200 XP (X)) 2y X (X))

d v v/ R/ w(é)
omin(Y_ BX;X{B') > o
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whenever
T € Tre(6) N Tse(8)

Replacing § — % we get with probability at least 1 — ¢ that

- v v/ R/ w(%)
Cwin()_ BXX{B') > —
t=1
Define
e _ ¢min(A€)2w(A€)262 T AT/ s _ TR2 ms _ TR2
Vdn(d) - 20max(P)2 Ae Ae ’Vdn(a) - TI7Vdn (6) ( Re FLmJ(
This implies that with probability at least 1 — 2§ we have that
T 5 T 5
S BXX/B = ‘”(80)1 — Y XX - “’(gc)fr2
t=1 t=1
> X X| = 80 0 Vrs(d) 0
o 0T v
=Vian

(112)

Ans))

(113)

Vi, depends differently than the rest because V was chosen to be data dependent and we only apply the lower bound on

23:1 X (Xg) at the very end.

14.4 Finding the Upper Bound Zle X, X/

For the upper bound on Zle th(t/ . We use Lemma A.5 of (Simchowitz et al., 2018). Consider an arbitrary matrix

M, M, M. 0 0
M = | Ms|. Then 0 3Ms M 0 >= M M'’. This is because
M; 0 0 3MsMj]
oMM, —M M, —M M, M1 Jo M, 0
—MyM] 2MoM, —MoMy| = (| 0 | = [Mx|)(| 0 | = |Ma])
MM —M;M, 2M;M, 0 0 0 0
My 0 My 0 0 0 0 0
FO =100 [=]0)+(|0]|—[M]|)|0|—]|M|)
0 M3 0 Ms Ms 0 M; 0
Define
3¢max(A)20-max(ﬁ)4 1 1 —1 T AT/
Ve () = 2 14+ =log =)tr(Dp(A Al A
"p() Omin (P)? ( +c og(;)r( T(Ac) A A,
- 1 1
s - 2 - -
V2 (8) = 30max(P) Ttr(I‘T(AS))(l +~log ( 6))1
- 1 1
ms _ 2 - -
VI (8) = 30max(P) Ttr(FT(Ams))(l +~log ( 5>)I
Then with probability at least 1 — 49 we have
Y Xe(X¢) 0 0 Ve, 0 0
0 ST XS (X 0 <1 0 Vm@©) 0
0 0 S X (XY 0 0 Vip(0)
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We get these upper bounds for stable and marginally stable matrices from Proposition (9.4) and Eq. (80) for explosive
matrices. Then with probability at least 1 — 46 we have

T 3V, (6) 0 0
Z X, X! < 0 3V,m(5) 0 (114)
=1 0 0 3V25,(6)

=Vup

Note that the time requirement in Eq. (112) is sufficient to ensure the upper bounds with high probability and we do not
state them explicitly.

14.5 Getting Error Bounds

We recall the discussion for Theorem 1. We have V,;,, Vg, so we compute V,,,;, Vd;f which gives us

8 BV;p(é)(Vden(d))_l 0 0
VirVin' = — 5+ 0 BVin® () (Vire (&)™ 0
w(c) 0 0 3V (Vi) 1 (2)
—1 24 d e e —1 ms ms Y -1 s s g —1
C

Further Vdsn(%) =V (9) (only the time required to be greater than this with high probability changes). Then
0
log (det(V,,, V') = d(log 24 — log w( o)) +log det(VE, (9) (Vi 0)™h)

+log det(V3* (6) (VA (2)) ™) +log det(Vi, (0) (Vi () )

Following this the bounds are straightforward and can be computed as shown in Eq. (12). It should be noted that
Proposition 3.1 works for a general case of noise process which 7, satisfies.

Now we only know the error of the transformed dynamics, i.e.,

T T T
DO X X)TQ Xeiern) = O XeXe) T O Xeern)
=1 t=1 =1 =1 =1
T T
= Zp_ll(zXtXt)_lp_letnt+1p/
t=1 t=1
T T
=Py O X X)) Xy P
=1 t=1

Then it is clear that
T

T T
DO XX)T O Xefier)

t=1 t=1 t=1

T T
Z(ZXtXt)*letJrl Omin(P)

and we have bounded the original error term in terms of the unknown o i, (P), omin(P~!). However this factor only
depends on d and not T'.
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15 Extension to presence of control input

Here we sketch how to extend our results to the general case when we also have a control input, i.e.,
Xiy1 = AXy + BU 4+ i (115)

Here A, B are unknown but we can choose U;. Pick independent vectors {U; ~ N(0,I)}1_,. We can represent this as a

variant of Eq. (1) as follows
Xey1| _ A Bl | Xy 4|
Ut+1 0 O Ut Ut+1

A Ne+1

[ 2])

holds when A equals an eigenvalue of A or 0. The eigenvalues of A are the same as A with some additional eigenvalues that
are zero. Now we can simply use Theorem 2.

Since

16 Extension to heavy tailed noise

It is claimed in (Faradonbeh et al., 2017) that techniques involving inequalities for subgaussian distributions cannot be used
for the class of sub-Weibull distributions they consider. However, by bounding the noise process, as even (Faradonbeh
et al., 2017) does, we can convert the heavy tailed process into a zero mean independent subgaussian one. In such a case
our techniques can still be applied, and they incur only an extra logarithmic factor. We consider the class of distributions
introduced in (Faradonbeh et al., 2017) called sub—Weibull distribution. Let 1, ; be the it" element of 7, then 7 ; has
sub—Weibull distribution if

P(lnei > y]) < bexp{ (;‘Z )} (116)

When o = 2 it is subGaussian, o = 1 it is subExponential and o < 1 it is subWeibull. Assume for now that 7, ; has
symmetric distribution. The extension to asymmetric case needs some computation in finding and is not discussed here.
Consider the event

W(o) = { max [[7;]]oo < VT(5)}

1<t<T

1/«
where v (6) = (m log (M;—d) ) Then Proposition 3 in (Faradonbeh et al., 2017) shows that P(W(§)) > 1 — ¢. Clearly

t=T,i=d ___ .- e
because each {n;;},—; /—; arei.i.d and have symmetric distribution

E[ne,:slW(9)] = E[neil{Inei|< vr(0)}] =0 (117)

Then under W(§), n;,; has mean zero and {ntz}ii%::fl are independent under the event WW(¢). Further since under W(J)

these are bounded, they are also subGaussian. The subGaussian parameter or variance proxy R? < vr(§)? which is
logarithmic in 7. This appears as simply a scaling factor in Theorem 3, Proposition 3.1. We can now use all our techniques
from before.

17 Optimality of Bound

In this section we show that the upper bound for explosive systems in Theorem 1 is optimal. To that end, we analyze a 1-D
system. By explicitly calculating the propbability distribution of the error term we provide an (almost) optimal lower bound.

Let A = a be 1-D system. Assume that 7' € T,,(6) (as in Table 1). Then X;, n; are just numbers. Then let E be the error,
Le.,

T T
E=0_a)"' O wme)
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In this section, we will show that the bound obtained for explosive systems is optimal in terms of §. Assume 7; ~ N (0, 1)
i.i.d Gaussian. Let ST = ZtT:1 a Tam 1, Up = 23:1 a=?Tx2. Now E = a~TU,' Sy and Sy has the following form

0 a1 o TH .. a7t
a0 a”T ... a2 N
2Sr = [ryr,--om) | 2 T T T : (118)
: : - : : m
a=t a? a3 0 =7
=M

T _g _ a2 _ _ . _ . .
Define Fr = S a=2%2(q 2T32) = =2 —_=2T42 and 02 = Var(a—2T22). It is clear that a7 27 is a Gaussian
i=1 T T—a T T

random variable. Note that Fr, U are the same as Eq. (18) and Section 12 when A = a. We can easily calculate o2

Consider four events

820  CT?a"T 1. 1\ Ta?T 0
&1(6) {UT Fr|< = v(l—a—2 +(1+Clog6>(1_a_2))}752(5) {|ST| —Ca210g5}

CT?a~T 1 1\ Ta 2T
&5(0) = {o <Fr< 025202},54(5) - {o <Ur< ((02 + 1/0)5%2) v (1_7“2 + (1 + =~ log 5)(1_Cf2))}

From Eq. (77) we have with probability at least 1 — g that

107 = Fril, < <4T203(A S (D (AY) + (T + glog 1)03(AT1)tr(rT(A1))>

)
Eq. (77)
G (14 ~log ) T
“1—a? c %5 (1-a"2)

Assume 62 € (0, 73] then

2 1600 22
P(&(9)) = o /25 e 202dx
146 _ 25662
> e 2
21
> 146 > 26
2me

Recall T, (0) is the set of T that satisfies Eq. (81) when A = a.
171 T € T,(5)

For T € T,(9) and from Eq. (76), we have with probability at least 1 — g that

4T%-T Ta 2T Gumin(a)?y

a)%5? Cs?
Uz~ Frlla < § )

(
< <
—a—2 + (5(1 — a‘2) —~— 20maX(P)2 a (a2 - 1)
TET, (8),Eq. (81)

The last inequality follows because for 1-D systems ¢in(A), ¥(A), Omax(P) are just constants, for example P =
1, pmin(a) = 1,%(a)? = Co? < -~ which follows by definition. Note T € T,,(6) if and only if we have

a?—1

CT?a~T

6202 > ———
1—a2
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Thus, P(&;(6)) > 1 — 2. Clearly & (6) N E3(8) = &1(8) N E4(8) and
£2(0) NE4(8) = {|ST|U1:1 > #ﬁogé}
We bound P(€2(6)) in Section 18 and Eq. (121), which gives P(E2(d)) > 1 — g and then
P(gl(é) N 52((5) N 54((5)) > P(El( ) 52((5) N 53( ))
> P(£1(0)) + P(&2(8) N E5(0)) — 1
P(&2(9)

> P(£1(5)) + P(E2(5)) + P(E5(6)) — 2
1)
3

Y

Since 52(5) N 54(5) = {|ST|U;1 > #ﬂogé} whenT' € Tu(5) then
C 0
- W©Z\>Z
—02a?0logd hz 2
we have proved our claim that with probability at least § we have that

)afT > Cl-a?) _r
—o2a2dlogd — —dlogd

P{|Sr|U;* >

B> ( (119)

whenever Ca2T2a~ T < §2.
172 T & T.(6)

If Ca?T?a~T > §2, then with probability at least 1 — 3

|Ur — Fr|<

N—_——
Follows by direct computation
and we have with probability at least § that
C(1—a"?)da”
Sefu? > S a8y
{| r|Up” 2 —T2a?logd
and we can conclude with probability at least ¢
C(1—a=?%)§
Er|> —— 2~
|Br|= a2(log d)3
where Ca?T?a~T > 62 — T < —logé.
17.3 Comparison to existing bounds

Theorem 5 (Theorem B.2 (Simchowitz et al., 2018)). Fix an a. € R and define I'r = thl a?t. Fix an alternative
a' € {a, — 2¢,a. +2¢e} and § € (0,1/4). Then for any estimator a

sup P(la(T) —ax|>€) >0
ac{as,a’}

for any T such that TT'r < %.

+2

Note I'y = % Theorem 5 suggests that for a given T, § if e < a =74/ % then P(|a. —a(T')|> €) > §. However
we show that whenever Ca2T2a~ 1 < §2, we have that

R +C(1—a"?)
P(la. ez o ) >

Since =T/ =Cled < 4 ~TC0-a?) our lower bound is tighter.
T —dlogd



Near optimal finite time identification of arbitrary linear dynamical systems

Theorem 6 (Theorem B.1 (Simchowitz et al., 2018)). Let e € (0,1) and 6 € (0,1/2). Then P(|a(T) — a+|< €) > 1—0d as
long as

8 2 4lgf

T > 71 _
= max{ua* —e)?—1 %5 log (Ja.|—e)

2
+810g5}

We now compare Eq. (119) to the upper bound in Theorem 6. Eq. (119) gives us that if

a2
€< Cl-a )afT
—dlogé

we have with probability at least  that | E|> €. This reduces to whenever

1 C(1—a?)
T < log ¢ N log =———
loga loga

(120)

we have with probability at least § that | E|> €. We focus on the case a. > 1 + ¢ of Theorem 6. Let a, = 1 + € + , then
the bounds in Theorem 6 indicate that whenever

8 2 410gl 2
T, > ——log—4+ ——— +log =
T oy 42 &% log (v + 1) &5

we have with probability at least 1 — 6 |E7|< e. If ¥ = o(€), then the requirement on 7" reduces to

8 2  4log =
T, > —log -+ ——= g + smaller terms

o(e) 5 o(e)

By substituting log a & € in 7_ we note that T_ < T', . For the case when v = Q(¢) for 7'y we get

2 2log %
v 1) log 5 loga

8 4log% N 8
72 (G V) 5+ gt ) ~ (o

>(loga)~1
In either cases T_ < T,

18 Distribution of St

Recall St from Eq. (118). Since }_; ;|M|; ;> || M|, (the nuclear norm), we have that |||, < % and it is obvious
that || M||a> a~!. Since M = U " AU (because it is symmetric) and 7; are i.i.d Gaussian then U7j is also Gaussian with
each of its entries being i.i.d Gaussian. This implies that 257 = Z?jll A
Gaussian with } 5, A; = 0,3 [ A;[< 12_“(;_1 r. The characteristic function of S is

jg?- where \; are eigenvalues of M and g; are i.i.d

T+1 1 1

bs (0 H >1/2 ( )1/2
S = T oy = .
T i 1-— 2Zt>\j 1-— 4t2(zl;ﬁj )\l)\j) — 7’8t3(215£j¢k )\l)\]/\k) + 16t4(zl;ﬁj;ﬁk;ﬁp >\l>\j>\k)\p) ..

where the coefficient of ¢ vanishes because ZTH Aj = 0. Further since }_,_,; 2\ = — )\f we have and
DTOANMAR) =D N0 D NN =D N0 D NAm A D A — D> AdAn)
I#j#k#m ! I#j#k#m ! I#j#k#m l#p#m l#p#m
=MD MM = D AN = D A A+ YA A)
l JjFEk#m l#p#m l#m l#m

_ 2y Zz/\2 4 2_ 4
Z)\l AN N D> A A ZA tr(M*)

p#m l#m
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The coefficients of even powers of ¢ can be obtained in a similar fashion. Then recall by Levy’s theorem that

fon (@) = / e Sg ()t = sup fsy (z) < / (B (B)ldt < / ! dt

oo oo V141t + ot + ...

Now whenever ¢, > 0 (and not decaying asymptotically to zero) for some k > 2, we get sup,, fs,.(z) < C for some
universal constant C' and we can use Proposition 9.5 to get P(|S7|< ¢) < C4. But since that may not be always be true we
can explicitly calculate the integral

s} o] itx
) = e i t)dt ~ 67&5
forla) = [ 0,0 e

Modified Bessel Function of the Second Kind

etz cos(tz)
x)dx = —dtdx = ————dxdt
/ forle / / V1 +2a-212 / /5 1+ 2022

s *° sin(ts) 6/ sin(td) b+ 6/ sin(t0) _ sin{)) .,
- Jo V1420 7! 5tv/T + 2020 5tV/1+ 20212
< C8% — Cablog(6)

Thus
P(|St|< 6) < —Cadlogd
and replacing 6 — 2;8; 5 we get
—Cé 4]
P < < - 121
(‘STL alog5> -2 (121)

19 LemmaB
Let the characteristic and minimal polynomial be x(¢), +(¢) respectively.

k k

X(t) = H(t — )\i)ai7u(t) — H(t _ )\i)bq,

i=1 i=1

where b; < a;. b; is the size of the largest Jordan block corresponding to \; in the Jordan normal form. a; sum of size of
all Jordan blocks corresponding to ;. Now, if x(t) = p(¢) then a; = b;, i.e., there is only Jordan block corresponding
to each A;. On the other if there is only one Jordan block (geometric multiplicity = 1) corresponding to each eigenvalue
= a; = b; and x(¢) = u(t).

20 Inconsistency of explosive systems

In this section we provide proof that OLS is inconsistent when the regularity assumption of explosive matrices is violated.
In fact we show that even the simple scale identity matrix cannot be correctly learned. The proof proceeds by analyzing the
scaled sample covariance matrix a =27 Y7. Using tools from matrix analysis, we show that the error term does not decay to

zeroas ' — o0 . .
Ao - Ao = (Za_2T77t+1XtI> (a’_QT ZXtXtT)_l
t=1 t=1

=Scaled Sample Covariance matrix

The key insight in the result is that although (Zle a’QTntHX{) decays as O(a~7), (=27 Zt . X¢X,") has a singular

value o(a~7) due to which the error is a non-decaying. Let A = al where a > 1.1 and 7; are i.i.d. Gaussian random
vectors. Then

Proposition 20.1. Let {n;}_, be i.i.d standard Gaussian then whenever T? < a’', we have that
HAO = Aoll=r

where yr is a random variable that admits a continuous pdf and does not decay to zero as T — oo.
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Proof.
1 1 1
Xt(+)l —A Xt() 77§+)1
x@ | T4 yo| T @
t+1 t Ne+1

Since A is scaled identity we have that Xt(l) = ZtT_ =t (1) , X, @ = th aT’tnF). The scaled sample covariance
matrix a=27Yy = =27 2, X, X, is of the following form

_ T 1 _ 1) (2
a2 T (X2 ot X el Xt( )] (122)

a=*Yr = —ar T (D5 (2) T
a Zt:lXt Xi Zt:l( t )

Define a7 X7 = Zp with Z(Ti ) corresponding to appropriate coordinates, and recall that Z¥ ) is a Gaussian random variable
with variance in (a2, %) and each a7 X, = (a= T Xy, Z7) Zr + (a~ T Xy, Z) Z7. This implies

T T T
a?TY XX, = (X0, Z0)* 2020 + Y a7 (X, Zr) (X, Z8) Z0(Z7) T
N———’

t=1 t=1 -~ t=1

T
+Z<aiTXtva ("X, Z) 23 27 ‘|‘Z X, Z7)) 23 (Z7)
t=1 =

= =Bt =Pt
=all?ZrZ; + 18P Z7(Z23) " (o, B)(Z5 27 + Zp(ZF) ")
=M
— M (o) zez] 0 ] Z
B - T4

By using Woodbury’s matrix identity and since M ! = ||a||72Z7Z} + ||8|| 722+ (Z£)T,C = C~! we get

T
(@3 X X)) =M~ (a, /M IU(C + {0, YU MUY UM

v = llal =z a2zt )T ]

Then the error term is

Qh>>

|

&

Il
—
M =

a” nt-}-lX,) —2T ZX XT

t=1
T T

_ (Z(wTXt,Zﬂa—Tnmz; +3 ("X, ZE)a Ty (Z4) ) ‘QTZX X )"
t=1 t=1

We now check the projection of Z7, Z7 on (=27 Zthl XX, )t

TS XX - (lall 22T — g [l@Blel 1 [ lell 227
2 S XX = el 22 = sl ([P

_ —lall72Z7 + {a. B)llof| 2[18I1~*(Z7)
(o, B)?|lal[2]]B]] 72 -1

a2z — o a2 ([0 ) 2]

_ =B Z7) " + (o B)llal| 218l 227
(o, B)2[|e 721 B]| 721

(123)

T
T((IizT ZXtXtT)71
t=1

(124)
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We will show that with high probability ||a||~2= (1), ||8]| 2= Q(a?T), (o, 8) = O(a~7T) as a result Eq. (123) is Q(a”)
(2)

and Eq. (124) is Q(a?T). Note that Z% = ZT(I) where we have ignored the scaling (as these will be of constant order
—4T

with high probability). First taking a closer look at a;; = a_QTXt(l)Z;l) + a‘QTXt(Q)Z(TZ) reveals the following behaviour

_ 1 1 _ 1 71 (1) (1
a 2TX;EIZ(T):Q IZ;))Q—a T 1Z(T)77(T)

(
(ZI2 +(22)?) —a T Y20 + Z2P02))
2T x forl) _Q(Z;(pl))Q _ a—T—lz:(Flzlngrl) _ a—T—2Z(1) (1)
(

_ 1 2 —T— 1 2 2 —T— 1 1 2 2
ar—z =a~>((20)) +(2§)?) —a”T 1<Z<T>1nT’+Z§)m< a2 + 2

Since Z}l) is a Gaussian random variable with bounded variance, we see that o, decays exponentially as ¢ decreases (up to

some o~ additive terms). In a similar fashion one can show that 3, a? = 11:“;; (2502 4 ()2 + O(T2a"T)

with high probability. Clearly ||«||=2= ©(1) with high probability. For /3, note that 27(“2 ) s independent of Xt(l) and
observe that {a” ﬂt}tTgll are non—decaying and non-trivial random variables. Specifically these are subexponential random
variables with ||-||4, norm as ||a” 3:||4, = Ca~'. Here ||||, norm is the same Definition 2.7.5 in (Vershynin, 2018). To
see this consider for example t =T — 1,T — 2, then

aBroy = (Xpo1, Z¢) = X0 20 — X 2 = a (P 25 — 0P Z)
aTBrg = (Xr_1,2¢) = X3, 22 — X2 20 = a M (0P + a2 — ) + a0 2P (12s)

Clearly, a®T||3]|2= (1) and a®T||3||2= O(T') with high probability. Recall the error term

T
Za 77t+1X/> 72TZX XT

Ay -4, = (
t=1
T T
_ (Z@—Txt, Zr)a T Zp+ Y o T Xy, ZF)a Ty (Z4) ) 2T ZX X7)"
t=1 t=1

T T
(Ao = Ao)Z7 = () (a "Xy, Zrya " Z7) (@™ > XX, ) Z
t=1

T T
+ O e Xy, ZE)a T (Z5) )0 PTY DX X[ 2
t=1

t=1
(@, B)lal| 21812 <~ 7 r (1812 o re ol T
— X, 7 — Xy, 7
T Bl B2 21 X e — e gy 2 X 210 e
21T Rl—2 T
= (o aTg;|||a|||—az|ﬁa”Tﬁ||_2_1 (Z((a,aTﬁmt —aTﬁtHOfH?)mH) =T (126)

t=1



Near optimal finite time identification of arbitrary linear dynamical systems

Observe the term a” B ||| |27 41

a” Billal*nesr = [lall?

2 1 2 — 2 1 1 2 1
o 7 AR e
(@™ (i1 Zp Z ) +a”* (s 2y Zp )+ 0m

N1 N1 Nev2 Nev2
e U (nﬁ)mfﬂ(Zl()) (nin? Zg) (2% Zgi nggzzgp )ng
71((77264»1) - 77t+177t+1Z )+ (a” (77t+2Z - 77t+2Z )+ -)77t+1

1 1, @) S0 1 (2 1
Z |f7t+l t+1Z( : + (a (77§+)227(“) ( ) Z( )) +..0) t(+)

T (1) (2)
T 2 _ -1 of | =22 :1(77t+1 ZT

a’ Bellal[*ner1 = a” || [ ! 2 2 1 1 2 2
; ( 77t+1 t+1Z( )+( (77§+)2Z"EF) ( ) ( )) +. )7715-5-)1

S (nh)? 2y

t=1
—o(T)
= a”![al*(6(7)
e e e v e o e
=\ 4y ta 77t+177t Zp' +a 77t+277t Zp —a 77t+177t Zy’ — Zy

=0(VTlog L)

The O(v/T'logT) follows by applying Hanson-Wright inequality to each of a7 Z;‘FZI ; +)J17t(1) terms where we get
with probability at least 1 — §/7T that a7 ZtT:l nt(i)J ntl) < ca7O(VTlog L). Therefore simultaneously for all j <
T we have with probability at least 1 — & (using union bound) that a =7 ZtT 1 @ M < ca=70(V/T log %) =

M5t
Z]T La i nfﬂnt ) < O(Tlog 1). Plugging this in Eq. (126) we get that

A ||Oé||_2||aTﬁH_2 (i(<a aTﬁ>a —CLT/8||OA||2)77 )
T (o aTB)2[[o][ 2T Bl 2 -1\ = NI AL
—o(T)
=0(VT)
Clearly then v in Eq. (126) satisfies a non—trivial pdf, i.e., error does not decay to zero. O

Another interesting observation is that Zthl a=?Tn 1 X, decays O(a~T) with high probability, however the error is a
non—decaying random variable. This immediately gives us that

Proposition 20.2. The sample covariance matrix 23:1 X X," has the following singular values

1O XX =0(a*"),0:() XiX,[) = O(VTa")
t=1

t=1

Proof. The largest singular values of Zthl X X," = ©(a®T) this follows because

T 1-— asz T
HZ a?TX X, — ﬁZTZT l2< O(a™")
t=1

with high probability, which follows from the claims of Eq. (17), (18) in Theorem 1 and discussion in Section 12. The
second claim follows because 3, a2, 1 X, decays Q2(a~T) with high probability. To see this

T T T

ZG_2T77t+1XtT <a T’ Znént Za*2TX{Xt ~VTa T

t=1 t=1 t=1

The /T factor can be removed by similar arguments as above. However the identification error is a random variable which
implies that o5 (3, a 27X, X,1) = O(VTa™T). O

)



