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Abstract

We present a general and modular method for
privacy-preserving Bayesian inference for Pois-
son factorization, a broad class of models that
includes some of the most widely used models in
the social sciences. Our method satisfies limited-
precision local privacy, a generalization of local
differential privacy that we introduce to formulate
appropriate privacy guarantees for sparse count
data. We present an MCMC algorithm that ap-
proximates the posterior distribution over the la-
tent variables conditioned on data that has been
locally privatized by the geometric mechanism.
Our method is based on two insights: 1) a novel
reinterpretation of the geometric mechanism in
terms of the Skellam distribution and 2) a gen-
eral theorem that relates the Skellam and Bessel
distributions. We demonstrate our method’s util-
ity using two case studies that involve real-world
email data. We show that our method consistently
outperforms the commonly used naive approach,
wherein inference proceeds as usual, treating the
locally privatized data as if it were not privatized.

1. Introduction

Data from social processes often take the form of discrete
observations (e.g., edges in a social network, word tokens
in an email). These observations often contain sensitive
information. As more aspects of social interaction are digi-
tally recorded, the opportunities for social scientific insights
grow; however, so too does the risk of unacceptable privacy
violations. As a result, there is a growing need to develop
privacy-preserving data analysis methods. In practice, social
scientists will be more likely to adopt these methods if doing
so entails minimal change to their current methodology.
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Toward that end, we present a method for privacy-preserving
Bayesian inference for Poisson factorization (Titsias, 2008;
Cemgil, 2009; Zhou & Carin, 2012; Gopalan & Blei, 2013;
Paisley et al., 2014), a broad class of models for inferring
latent structure from discrete data. This class contains some
of the most widely used models in the social sciences, in-
cluding topic models for text corpora (Blei et al., 2003;
Buntine & Jakulin, 2004; Canny, 2004), population models
for genetic data (Pritchard et al., 2000), stochastic block
models for social networks (Ball et al., 2011; Gopalan &
Blei, 2013; Zhou, 2015), and tensor factorization of dyadic
data (Welling & Weber, 2001; Chi & Kolda, 2012; Schmidt
& Morup, 2013; Schein et al., 2015; 2016b). It further in-
cludes deep hierarchical models (Ranganath et al., 2015;
Zhou et al., 2015), dynamic models (Charlin et al., 2015;
Acharya et al., 2015; Schein et al., 2016a), and many others.

Our method assumes that observations are privatized (or
noised) via a randomized response method before they are
aggregated into a data set for analysis. This ensures that
no single location need ever store the non-privatized data
set. We introduce limited-precision local privacy (LPLP)—a
generalization of local differential privacy—in order to for-
mulate appropriate privacy guarantees for sparse count data.
We focus specifically on the geometric mechanism of Ghosh
et al. (2012) and prove that it is a mechanism for LPLP.

Under local privacy, a data analysis algorithm sees only
the privatized data set. Inferring latent structure (including
model parameters) that accurately reflects the non-privatized
data set is therefore a key statistical challenge. One option
is a naive approach, wherein inference proceeds as usual,
treating the privatized data set as if it were not privatized.
In the context of maximum likelihood estimation, the naive
approach has been shown to exhibit pathologies when
observations are discrete or count-valued. Researchers
have therefore advocated for treating the non-privatized
observations as latent variables to be inferred (Yang et al.,
2012; Karwa et al., 2014; Bernstein et al., 2017; Bernstein &
Sheldon, 2018). We embrace this approach and extend it to
Bayesian inference for Poisson factorization, where our goal
is to approximate the locally private posterior distribution
over the latent variables conditioned on the privatized data
set and the randomized response method. Toward that
goal, we present a Markov chain Monte Carlo (MCMC)
algorithm that is asymptotically guaranteed to draw samples
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Figure 1. Block structure recovery: our method vs. the naive approach. We generated the non-privatized data set synthetically. We then
privatized the data set using three levels of noise. The top row depicts the data set, using red to denote positive counts and blue to denote
negative counts. As the privacy level increases, the naive approach overfits the noise and fails to recover the latent structure j.;;, predicting
high values even for sparse parts of the matrix. In contrast, our method recovers the latent structure, even for high levels of privacy.

from the locally private posterior. This algorithm is modular,
allowing social scientists to extend (rather than replace)
their implementations of non-private Poisson factorization.

Our main technical contribution is the derivation of a closed-
form, computationally tractable way of “inverting” the ran-
domized response method—i.e., sampling values of the
non-privatized data set from its complete conditional. This
derivation relies on two insights: 1) a novel reinterpreta-
tion of the geometric mechanism in terms of the Skellam
distribution (Skellam, 1946) and 2) a general theorem that
relates the Skellam and Bessel (Yuan & Kalbfleisch, 2000)
distributions. These insights may be of independent interest.

We present two case studies applying our method to 1) topic
modeling for text corpora and 2) overlapping community
detection for social networks. Using real-world data from
the Enron email corpus (Klimt & Yang, 2004), we show that
our method consistently outperforms the naive approach
according to a variety of intrinsic and extrinsic evaluation
metrics. We provide an illustrative example in figure 1.
Finally, we note that our method sometimes outperforms
Poisson factorization of the non-privatized data, suggesting
that non-private Poisson factorization may be overfitting.

2. Background and problem formulation

Differential privacy. Differential privacy (Dwork et al.,
2006) is a rigorous privacy criterion that guarantees that no
single observation in a data set will have a significant influ-
ence on the information obtained by analyzing that data set.

Definition 1. A randomized algorithm A(-) satisfies e-
differential privacy if for all pairs of neighboring data sets
Y and Y’ that differ in only a single observation

P(A(Y)eS) <eP(AY') €S), (D)
for all subsets S in the range of A(-).

Local differential privacy. We focus on local differential
privacy, which we refer to as local privacy. Under this crite-
rion, the observations remain private from even the data anal-
ysis algorithm. The algorithm sees only privatized versions
of the observations, constructed by adding noise from spe-
cific distributions. The process of adding noise is known as
randomized response—a reference to survey-sampling meth-
ods originally developed in the social sciences prior to the
development of differential privacy (Warner, 1965). Satisfy-
ing this criterion means that no single location (e.g., a cen-
tralized server) need ever store the non-privatized data set.

Definition 2. A randomized response method R(-) is
e-private if for all pairs of observations y,y' € )

P(R(y) €S)<eP(R(Y)€S), 2

Sor all subsets S in the range of R(-). If a data analysis
algorithm sees only the observations’ e-private responses,
then the data analysis itself satisfies e-local privacy.

The meaning of “observation” in definitions 1 and 2 varies
depending on the context. For example, in the context of
topic modeling, an observation is an entire document—i.e.,
a vector of counts representing the number of times each
word type occurs in that document. To guarantee local
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privacy, a randomized response method must satisfy the
condition in equation 2 for all pairs of observations. This
typically involves adding noise that scales with the maxi-
mum difference between any pair of observations N (™) =
max, ||y —¥'|l;. When an observation is a document,
N (M%) can be prohibitively large, meaning that the noise
can overwhelm the signal in the data set. This challenge mo-
tivates the following alternative formulation of local privacy.

Limited-precision local privacy. Local privacy requires
that a randomized response method render indistinguishable
pairs of observations that are arbitrarily different. In some
contexts, this requirement is unnecessarily strong. For
example, the author of a document may only wish to conceal
the occurrence of a handful of word types. To achieve this
goal, a randomized response method need only render indis-
tinguishable pairs of similar documents, such as a document
in which those word types occur and an otherwise-identical
document in which they do not. We operationalize this kind
of privacy guarantee by generalizing definition 2 as follows.

Definition 3. For any positive integer N, we say that a
randomized response method R(-) is (N, €)-private if for
all pairs of observations y,y' € Y such that ||y —y'||1 < N

P(R(y) € S) <eP(R(Y)eS), 3)

for all subsets S in the range of R(-). If a data analysis algo-
rithm sees only the observations’ (N, €)-private responses,
then the data analysis itself satisfies (N, €)-limited-precision
local privacy. If ||lylli < N forall y € Y, then (N,e)-
limited-precision local privacy implies e-local privacy.

Limited-precision local privacy (LPLP) is the local privacy
analog of limited-precision differential privacy, originally
proposed by Flood et al. (2013) and subsequently used
to privatize analyses of geographic location data (Andrés
et al., 2013) and financial network data (Papadimitriou et al.,
2017). Like profile-based privacy (Geumlek & Chaudhuri,
2019), LPLP generalizes local privacy by flexibly specifying
pairs of observations to be rendered indistinguishable. In
section 3, we describe the geometric mechanism of Ghosh
et al. (2012) and prove that it is a mechanism for LPLP.

Differentially private Bayesian inference. In Bayesian
statistics, we begin with a probabilistic model M that
relates observable variables Y to latent variables Z via a
joint distribution Py (Y, Z). The goal of inference is then
to compute the posterior distribution Py(Z |Y) over the
latent variables conditioned on observed values of Y. The
posterior is almost always analytically intractable and thus
inference involves approximating it. The two most common
methods of approximate Bayesian inference are variational
inference, wherein we fit the parameters of an approximat-
ing distribution Q(Z | V'), and Markov chain Monte Carlo
(MCMC), wherein we approximate the posterior with a

finite set of samples {Z(*) 9| generated via a Markov

chain whose stationary distribution is the exact posterior.

We can conceptualize Bayesian inference as a randomized
algorithm A(-) that returns an approximation to the
posterior distribution Pyq(Z |Y). In general A(:) does
not satisfy e-differential privacy. However, if A(-) is
an MCMC algorithm that returns a single sample from
the posterior, it guarantees privacy (Dimitrakakis et al.,
2014; Wang et al., 2015; Foulds et al., 2016; Dimitrakakis
et al., 2017). Adding noise to posterior samples can also
guarantee privacy (Zhang et al., 2016), though this set of
noised samples { Z(*)}5_, approximates some distribution
Pr(Z|Y) that depends on e and is different than the exact
posterior (but close, in some sense, and equal when € — 00).
For specific models, we can also noise the transition kernel
of the MCMC algorithm to construct a Markov chain whose
stationary distribution is again not the exact posterior, but
something close that guarantees privacy (Foulds et al.,
2016). We can also take an analogous approach to privatize
variational inference, wherein we add noise to the sufficient
statistics computed in each iteration (Park et al., 2016).

Locally private Bayesian inference. We first formalize the
general objective of Bayesian inference under local privacy.
Given a generative model M for non-privatized data set
Y and latent variables Z with joint distribution Ppy (Y, Z),
we further assume a randomized response method R (-) that
generates privatized data sets: Y ~ Pr (Y |Y). The infer-
ence goal is then to approximate the locally private posterior

PMA,R(Z ‘ Y) = EPM,R(Y|Y/) [PM(Z ‘ Y)}
_ / Pu(Z|Y) Pur(Y |V)dY. @)

This distribution correctly characterizes our uncertainty
about the latent variables Z, conditioned on all of our
observations and assumptions—i.e., the privatized data
set 37, the model M, and the randomized response
method R. The expansion in equation 4 shows that this
posterior implicitly treats the non-privatized data set Y as
a latent variable and marginalizes over it using the mixing
distribution Prq (Y |Y) which is itself a posterior that
characterizes our uncertainty about Y. The key observation
here is that if we can generate samples from Py (Y |Y),
we can use them to approximate the expectation in
equation 4, assuming that we already have a method for
approximating the non-private posterior Pyq(Z |Y). In the
context of MCMC, iteratively re-sampling values of the
non-privatized data set from its complete conditional—i.e.,
V)~ Pyr(Y|Z%D Y)—and then re-sampling
values of the latent variables—i.e., Z(*) ~ Py (Z | Y(*))—
constitutes a Markov chain whose stationary distribution
is Prpqz(Z,Y |Y). In scenarios where we already have
derivations and implementations for sampling from
Pym(Z|Y), we need only be able to sample efficiently
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from Py = (Y | Z,Y) in order to obtain a locally private
Bayesian inference algorithm; whether we can do this
efficiently depends heavily on our choice of M and R.

We note that the objective of Bayesian inference under
local privacy, as defined in equation 4, is similar to that
of Williams & McSherry (2010), who identify their key
barrier to inference as being unable to analytically form the
marginal likelihood that links the privatized data set to Z:

Pur(Y|Z) = / Pr(Y|Y) Pu(Y | Z)dY. (5)

In the next sections, we show that if M is a Poisson factor-
ization model and R is the geometric mechanism, then we
can analytically form an augmented version of this marginal
likelihood and derive an MCMC algorithm that samples
efficiently from the locally private posterior in equation 4.

3. Locally private Poisson factorization

In this section, we describe a model M—i.e., Poisson
factorization—and a randomized response method R—i.e.,
the geometric mechanism—each of which is a natural choice
for count data. We prove two theorems about the geometric
mechanism: 1) it is a mechanism for LPLP and 2) it can be
re-interpreted in terms of the Skellam distribution (Skellam,
1946). We rely on the second theorem to show that Poisson
factorization and the geometric mechanism combine to yield
a novel generative process for privatized count data, which
we then exploit in section 4 to derive our MCMC algorithm.

M: Poisson factorization. We assume that Y is a data
set that consists of counts, each of which y; € Z, is an
independent Poisson random variable y; ~ Pois(u;) where
the rate parameter p; is defined to be a deterministic
function of the latent variables Z. The subscript i is a
multi-index. In Poisson matrix factorization, i = (i, iz);
however, this notation also supports Poisson tensor
factorization, where i = (iy,...,ipr), and multiview
models, where the multi-index may differ in the number
of indices. This class of models includes some of the most
widely used models in the social sciences, as described in
section 1. In section 5, we present case studies involving
two different models—specifically, the mixed-membership
stochastic block model for social networks (Ball et al.,
2011; Gopalan & Blei, 2013; Zhou, 2015) and latent
Dirichlet allocation (Blei et al., 2003). Although both of
these models are instances of Poisson matrix factorization,
our method applies to any Poisson factorization model.

R: Geometric mechanism. The two most commonly used
randomized response methods in the differential privacy
toolbox—the Gaussian and Laplace mechanisms—privatize
observations by adding noise drawn from real-valued distri-
butions. They are therefore unnatural choices for count data.
Ghosh et al. (2012) introduced the geometric mechanism,

which can be viewed as the discrete analog of the Laplace
mechanism and involves adding integer-valued noise 7 € Z
drawn from the two-sided geometric distribution. The PMF
for the two-sided geometric distribution is as follows:

l-«o
1+
Theorem 1. (Proof in appendix) Let randomized response
method R(-) be the geometric mechanism with parameter

a. Then for any positive integer N, and any pair of obser-
vations y,y' € Y such that ||y — y'||1 < N, R(-) satisfies

2Geo(T; ) = ol (6)

P(R(y) € S) <eP(R(y) € S) (7
for all subsets S in the range of R(-), where
1
c=Nln (&) )

Therefore, for any positive integer N, the geometric mech-
anism with parameter o is an (N, €)-private randomized re-
sponse method with e = N In (é) Ifjf,—/, = +, then the geo-
metric mechanism with parameter « is also (N', €')-private.
Theorem 2. (Proof in appendix) A two-sided geometric

random variable T ~ 2Geo(«) can be generated as follows:
T~ Skel(AT,N7), A ~ Exp(125), )

where Exp(-) and Skel(-) are the exponential and Skellam
distributions. The latter is the marginal distribution of the
difference 7 = ¢\t —¢(=) of two independent Poisson
random variables g©*) ~ Pois(\*)), where x € {+, —}.

Combining M and R. We assume that each non-privatized
count y; is generated by M and then privatized by R
7 ~ 2Geo(a),

~(E)

yi = yi+Ti7 (10)

where g, is the privatized count, which we superscript
with (£) to denote that it may be non-negative or negative
because the additive noise 73 € Z may itself be negative.

Via theorem 2, we can express the generative process for
gji(i) in four equivalent ways, shown in figure 2, each of
which provides a unique and necessary insight. Process 1 is
a graphical representation of the generative process as de-
scribed above. Process 2 represents the two-sided geometric
noise in terms of a pair of Poisson random variables with
exponentially distributed rates; in so doing, it reveals the
auxiliary variables that facilitate inference. Process 3 repre-
sents the sum of the non-privatized count and the positive
component of the noise as a single Poisson random variable

9" =y; + g;7. Process 4 marginalizes out the remaining

Poisson random variables to yield a representation of g’

as an exponentially randomized Skellam random variable:
g ~Skel (A7 +pui, A7), A ~Exp(2). (11

The derivations of generative processes 2, 3, and 4 rely on
properties of the two-sided geometric, Skellam, and Poisson
distributions. We provide these properties in the appendix.
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Figure 2. Four generative processes that yield the same marginal distribution P(g(i> | 1, ).
4. MCMC algorithm Via theorem 3, m; represents the minimum of two latent

Given a privatized data set Y &), our inference goal is to
approximate the locally private posterior using MCMC. To
do this, we need to be able to sample values of the non-
privatized data set Y from its complete conditional, as ex-
plained in section 2. By assuming that each privatized count
y(i) is a Skellam random variable, as in equation 11, we can
exploit the following general theorem that relates the Skel-

lam and Bessel (Yuan & Kalbfleisch, 2000) distributions.

Theorem 3. (Proof in appendix) Consider two Poisson
random variables y; ~ Pois(A'") and yy ~ Pois(A7)).
Their minimum m = min{y1,y2} and their difference
T = Y1 — Yo are deterministic functions of y1 and yo.
However, if not conditioned on vy, and yo, the random
variables m and T can be marginally generated as follows:

T ~ Skel(A, X)), m ~ Bes (\T|, 2\/)\<+>/\(*>) . (12)

Theorem 3 means that we can generate two independent
Poisson random variables by first generating their difference
7 and then their minimum m. Because 7 = y; — yo, if 7 is
positive, then yo must be the minimum and thus y; = 7+m.
In practice, this means that if we only get to observe the
difference of two Poisson-distributed counts, we can still
“recover” the counts by sampling a Bessel auxiliary variable.

By assuming that i ~ Skel(A{"+pu;, A{™) via theorem 2,
we can sample an auxiliary Bessel random variable m;:

(mi| —) ~ Bes (z}ﬂ 2 (AE*’m)Aé’) . (13)

Yuan & Kalbfleisch (2000) give details of the Bessel distri-
bution, which can be sampled efficiently (Devroye, 2002).

Poisson random variables whose difference equals y<i>

these latent variables are depicted in process 3 of figure 2—

S 2 () _ E RS
1ei 97 =g;" — g;” and m; = min{g;"’, g; "’ }. Given
7, and a sampled value of m;, we can compute 7", g\~

(+) _ 1CO N
Yi = mj, gl =Y

(=) . (+)
9 =mi, Y; - gl

GE if g
gy ity <0
D+

(14)

otherwise.

Because i " =y; +¢{ " is itself the sum of two independent
Poisson random variables, we can then sample y; from its
conditional posterior, which is a binomial distribution:

(yi| —) ~ Binom (yi”, -+M)i\.(+>) . (15)

Equations 13 through 15 constitute a way to draw samples
from Pug 7 (vi | 1,957, Ai). We can also sample the aux-
iliary variables A\{*, Ai ) from their complete conditional:

A=) ~T (T4g p25 + 1), (16)

Iteratively re-sampling y; and \; constitutes a chain whose
stationary distribution over y; is Pur(4i | i, 7). as
desired. Given a sampled non-privatized data set Y, we
can then sample values of the latent variables Z from their
complete conditionals, which are the same as in non-private
Poisson factorization. Equations 13-16, along with the
complete conditionals for Z, define an efficient MCMC
algorithm that is asymptotically guaranteed to generate
samples from the locally private posterior Pag (Z | Y (¥)).
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Figure 3. Topic recovery: our method vs. the naive approach. (a) We generated the non-privatized data set synthetically so that the true
topics were known. We then privatized the data set using (b) a low noise level and (c) a high noise level. The heatmap in each subfigure
visualizes the data set, using red to denote positive counts and blue to denote negative counts. With a high level of noise, the naive
approach overfits the noise and therefore fails to recover the true topics. In contrast, our method is still able to recover the true topics.

5. Case studies

We present two case studies applying our method to 1) topic
modeling for text corpora and 2) overlapping community
detection for social networks. In each one, we formulate pri-
vacy guarantees, ground them in examples, and demonstrate
our method’s utility using synthetic and real-world data.

Real-world data. For our experiments using real-world
data, we derived count matrices from the Enron email
corpus (Klimt & Yang, 2004). For the topic modeling
case study, we randomly selected D =10, 000 emails with
at least 50 word tokens. We limited the vocabulary to
V = 10,000 word types by selecting the most frequent
word types with document frequencies less than 0.3. For the
community detection case study, we obtained a V' x V" adja-
cency matrix Y where y;; is the number of emails sent from
actor ¢ to actor j. We included an actor if they sent at least
one email and sent or received at least one hundred emails,
yielding V' =161 actors. When an email included multiple
recipients, we incremented the corresponding counts by one.

Reference methods. We compare the performance of our
method to two references methods: 1) non-private Poisson
factorization of the non-privatized data and 2) the naive
approach, wherein inference treats the privatized data as if it
were not privatized. The naive approach must first truncate
any negative counts 7~ < 0 to zero and thus implicitly uses

the truncated geometric mechanism (Ghosh et al., 2012).

Performance measures. Each method uses MCMC to ap-
proximate the posterior with a set of S samples of the latent
variables. We can therefore use these samples to approxi-
mate each method’s posterior expectation of y; as follows:

S

-1 s

[ = EE ) Eprreziyeon bl A7)
s=1

We can then calculate the mean absolute error (MAE) of

[1; with respect to y;—i.e., the reconstruction error. In the
topic modeling case study, we also compare the quality of
the inferred topics using two standard metrics: 1) normal-
ized pointwise mutual information (NPMI; Lau et al., 2014)
and 2) coherence (Mimno et al., 2011). We use the non-
privatized data set as the reference corpus for both. For each
metric, we use only the top ten word types for each topic,
and we average the topics’ scores to yield a single value.

5.1. Case study 1: Topic modeling

Topic models (Blei et al., 2003) are widely used in the
social sciences (Ramage et al., 2009; Grimmer & Stewart,
2013; Mohr & Bogdanov, 2013; Roberts et al., 2013) to
characterize the high-level thematic structure of text corpora
via latent “topics”—i.e., probability distributions over the
word types in some vocabulary. However, in many scenarios,
documents can contain sensitive information, so people may
be unwilling to share them without privacy guarantees.

Limited-precision local privacy. In the context of topic
modeling, a data set Y is a D x V count matrix, where
each element y4, € Z, represents the number of times
that word type v € [V] occurs in document d € [D]. It is
natural to consider each document y ;= (Y41, . - -, Y4y ) to
be a single observation. Under LPLP, N determines the
neighborhood of documents within which e-local privacy
holds. For example, if N =4, then a document in which
a word type occurs four times and an otherwise-identical
document in which it does not occur at all would be rendered
indistinguishable after privatization, assuming e is small.

Poisson factorization. Latent Dirichlet allocation (Blei
et al., 2003), the most commonly used topic model, can be
thought of as a special case of Poisson factorization where
Y isa D xV count matrix and pq, = Zszl 0ar. Prv. The
factor 64 represents how much topic & is used in document
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Figure 4. Each subplot compares our method to the two reference methods for increasing levels of privacy. The left subplot depicts
reconstruction error (lower values are better), the center subplot depicts NPMI (higher values are better), and the right subplot depicts
coherence (higher values are better). Our method has lower reconstruction error and higher quality topics than the naive approach.

d, while the factor ¢, represents how much word type
v is used in topic k. The set of latent variables is thus
Z = {©,d}, where © and ® are D x K and K x V non-
negative, real-valued matrices, respectively. It is standard
to assume independent gamma priors over the factors—i.e.,
Oak, Prv ~ IT'(ag, bo), where ag and by are shape and rate
hyperparameters respectively. We set ap=0.1 and bg=1.

Experiments using synthetic data. We generated a syn-
thetic data set of D = 90 documents, with K = 3 topics
and V = 15 word types. We set &* so that the topics
were well separated, with each putting the majority of its
mass on five different word types. We also ensured that
the documents were well separated into three equal groups
of thirty, with each document putting the majority of its
mass on a different topic. We then sampled a data set
Ya, ~ Pois(uy,) where pj, = 37, 07,0%,. We then
generated a heterogeneously-noised data set by sampling
the d™ document’s noise level g ~ Beta(c g, ¢ (1—ay))
from a Beta distribution with mean «g and concentration
parameter ¢ = 10 and then sampling 74, ~ 2Geo(ay) for
each word type v. We repeated this for a small and large
value of oy. For each method and data set, we ran 6,000
MCMC iterations, saving every 25" sample after the first
1,000. We selected & to be the sample from the posterior
with the highest joint probability. (Due to label switching,
we could not average samples of ®.) Following Newman
et al. (2009), we then aligned the topic indices of P to
using the Hungarian bipartite matching algorithm. We visu-
alize the results in figure 3. The naive approach performs
poorly at recovering the topics under high levels of privacy.

Experiments using real-world data. We used three pri-
vacy levels ¢/N € {3,2,1}. We generated five privatized
data sets for each privacy level by adding noise drawn from
a two-sided geometric distribution with & = — exp(e/N)
independently to each element of the non-privatized data
set. We applied our method and naive approach to each of
the fifteen privatized data sets and applied non-privatized
Poisson factorization to the non-privatized data set. For
each method and data set, we used &' = 50 topics and ran
7,500 iterations of MCMC, saving every 100™ sample of

the latent variables after the first 2,500. We used the fifty
saved samples to compute fig, = & DD S Gfl?qbg)).
We also computed NPMI and coherence using each saved
sample, and averaged the resulting values over the samples.

Results. We find that our method has both lower recon-
struction error and higher quality topics than the naive
approach. The reconstruction error for each method and
data set is shown in left subplot of figure 4. Our method
has almost the same reconstruction error as non-private
Poisson factorization of the non-privatized data. In contrast,
the naive approach has a higher reconstruction error
that increases dramatically as the privacy level increases.
The center and right subplots of figure 4 depict NPMI
and coherence, respectively. According to both metrics,
our method yields higher quality topics than the naive
approach. Surprisingly, the topics inferred by our method
have better coherence than the topics inferred by Poisson
factorization of the non-privatized data. This result suggests
that non-private Poisson factorization may be overfitting;
in contrast, our method may avoid overfitting by attributing
small counts to the added noise and ignoring them. Because
NPMI places more emphasis on rarer word types, excluding
less reliable rare word types from topics does not benefit
the metric, as is reflected in the center subplot of figure 4.

5.2. Case study 2: Overlapping community detection

Organizations often want to know whether their employees
are interacting as productively as possible. For example, are
there missing links between their employees that, if present,
would reduce duplication of effort? Do the “communities”
that emerge naturally from employee interactions match the
formal organizational structure? Although social scientists
may be able gain answer such questions using employee in-
teraction data, sharing such data increases the risk of privacy
violations. Moreover, standard anonymization procedures
can be reverse-engineered adversarially and thus do not pro-
vide privacy guarantees (Narayanan & Shmatikov, 2009).

Limited-precision local privacy. In this context, a data set
Y is a V' x V count matrix, where each element y;; € Z
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Figure 5. Each subplot compares our method to the two reference methods for increasing levels of privacy. The left subplot and the center
left subplot depict reconstruction error (lower values are better) for C' = 5 and C' = 20; the center right subplot and the right subplot
depict held-out reconstruction error (lower values are better) for C' = 5 and C' = 20. We provide results for C' = 10 in the appendix.

represents the number of interactions from actor i € [V]
to actor j € [V]. It is natural to consider each count y;;
to be a single observation. Under LPLP, if y;; < N, then
its privatized version will be indistinguishable from the
privatized version of y;; = 0. In other words, an adversary
will be unable to tell from the privatized count whether ¢
had interacted with j at all, assuming € is small. If y;; > N,
then only the exact number of interactions will be concealed.

Poisson factorization model. The mixed-membership
stochastic block model (Ball et al., 2011; Gopalan & Blei,
2013; Zhou, 2015) is a special case of Poisson factor-
ization where Y is a V x V count matrix and p;; =
Zf:l ZdC=1 8ic 0ja meq. The factors ;. and ;4 represent
how much actors ¢ and j participate in communities ¢ and
d, respectively, while the factor 7.4 represents how much
actors in community c¢ interact with actors in community d.
The set of latent variables is thus Z = {0, II} where © and
IT are VxC and CxC' non-negative, real-valued matrices, re-
spectively. As with latent Dirichlet allocation, it is standard
to assume independent gamma priors over the factors—i.e.,
Oic, mea ~ T'(ag, bp), where ag and by are shape and rate
hyperparameters, respectively. We set ag=0.1 and bg=1.

Experiments using synthetic data. We generated social
networks of V' = 20 actors with C' =5 communities. We
randomly generated the true parameters 6}, 75, ~T'(ag, bo)
with ap = 0.01 and by = 0.5 to encourage sparsity; doing
so exaggerates the block structure in the network. We
then sampled a data set y;; ~ Pois(u1;;) and added noise
Ti; ~ 2Geo(a) for three increasing values of «. For each
data set, we set N = E[y;;] and then set @ = exp(—¢/N)
for e € {2.5,1,0.75}. For each method and data set, we
ran 8,500 MCMC iterations, saving every 25" sample after
the first 1,000 and using these samples to compute //;;. In
figure 1, we visually compare our method’s estimates of fi;;
to those of the reference methods. The naive approach over-
fits the noise, predicting high values even for sparse parts
of the matrix. In contrast, our method approach reproduces
the sparse block structure even for high levels of privacy.

Experiments using real-world data. We used the same
experimental design that we used in the topic modeling
case study. For each method and data set, we used C' €
{5,10,20} and we used the saved samples to compute
ITEE DD DD Dyl ng)ﬁﬁl) 78 However, instead
of computing NPMI and coherence, we ran link-prediction
experiments. Specifically, prior to inference, we held out
all elements of the count matrix that involved the top fifty
senders or recipients. After inference, we used the saved
samples to compute fi;;, but only for the held-out elements,
and then calculated the corresponding reconstruction error.

Results. We find that our method generally obtains lower
reconstruction and lower held-out error than either the
naive approach or non-private Poisson factorization of the
non-privatized data. The results for C € {5, 20} are shown
in figure 5. We provide results for C'=10 in the appendix.

6. Conclusion and future work

We presented a general and modular method for privacy-
preserving Bayesian inference for Poisson factorization.
Our method satisfies limited-precision local privacy, a gen-
eralization of local differential privacy that we introduced
to formulate appropriate privacy guarantees for sparse count
data. In two case studies, we demonstrated that our method
generally outperforms the commonly used naive approach,
wherein inference treats the privatized data as if it were
not privatized. Surprisingly, our method also outperformed
non-private Poisson factorization. In the context of topic
modeling, it inferred more coherent topics; in the context
of overlapping community detection, it obtained lower held-
out error in link-prediction experiments. These findings
are consistent with known connections between privacy-
preserving mechanisms and regularization (Chaudhuri &
Monteleoni, 2009). Because our method can attribute small
counts to the added noise, it can therefore ignore them. In
turn, it may be less susceptible to inferring spurious struc-
ture. Initial results suggest that y; ~ Skel(A{™ +ps, A{™)
may be a robust alternative to non-private Poisson factoriza-
tion. We therefore highlight this direction for future work.
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