Hessian Aided Policy Gradient

7. Appendix
7.1. Why SVRPG does not work

Recall the importance weight from Section 5.2, which is defined in (Papini et al., 2018)

p(rlmg) _ 11 malanlsn)
w gt, 6, T) = 8. = b) 28
() p(7|mge) }g ot (an|sh) (28)
and the SVRPG gradient estimator
~ 1 ~ -
gl =g+g(O M)~ —— > w(,6;7)g(0; {r}), (29)
|M‘ TEM

where 0 and g are the reference point and its corresponding unbiased estimator respectively, and M is a mini-batch of
trajectories sampled from p(-|mg:).

While this importance sampling technique removes the bias, the variance of estimator (29) cannot be properly bounded since

EMIIng = V(@I

|M|E g8 {}) —w(®", 8;7)g(0; {r})|*

1 t. N ol - .
|M|/p<7r> lp(r: 7o) - g0 {}) — p(r575) - g(0; {T})|*dr,

and the term e 1) in the integral can be infinity large. The lack of proper variance control deprives SVRPG of its high

sample- efﬁ01ency Even under the strong assumptlon that the variance of the importance weight w(6?, 0; ; 7) is bounded
(Assumption 4.3 in (Papini et al., 2018)), (9() random trajectories are still required by SVRPG to achieve an ¢-FOSP (4)
by scrutinizing the convergence result, Wthh is the same as the original policy-gradient type method.

7.2. Derivation of Policy Gradient and Policy Hessian

Let 7 = {s1,a1,...,8m,an } be a trajectory sampled according to p(7; my) and define 7, := {s1,4a1,..., s, ap} for any
h € [H]. For simplicity of notation we will denote

0y :=1logp(th;mg), RI":=~"R(an|sn)
in the following discussion. From (3) and (2), we have

H H
= Z ETNI)(TUTG) [R:/h] = Z ET}LNP(T}L;ﬂe) [R;h]a
h=1 h=1
where we replace 7 by 7y, since 7_27 is independent of the randomness after a;,. To compute the policy gradient
Z/ RT’L Vo(rh; me)dT = Z R;hp(Th; 7o) VLG dTy,
Th

h=1"Th

where we use the log-trick in the second equation

Vp(th;mg) = p(Th; ®o)V log p(Th;) = p(Th; me) VEy" .

Hessian Aided Policy Gradient

The policy gradient can be further simplified:

H

VJ(6) :Z/ ﬁ;’Lp(Th;ﬂg)Vﬂgthh
h=1"Th

H ~ h

> Erp(mimg) [RY D Vlogm(ails:)]

h=1

i=1

h
Z Th~p(ThiTo) [R "'V log mg(ails;)]

tnﬁm

>
Il
—

o
M= I

ETNp(T;ﬂ'g) [,ﬁ’;}l \4 1Og o (ai |Si)]7

h=11=1

where in the last equality we use that ’Rfyh V log mg(a;|s;) with ¢ < h is independent of the randomness after aj,. Exchange
the summation over ¢ and h to obtain

H
Z rep(rime) [RYV log m(ass;)]
1 h=1

M= I[M]=

H
Erp(rimo) (Z ﬁ?) Vlog mg(ai|si)]

h=i

-
Il
_

]ETNP(T 71'9)[()VIOg 770(0%‘51)}

-

s
Il
-

where ¥, := H bR ap|sn) 1s the discounted reward after action a; given state s;. Let
h=1 0 g

H

®(0;7) = Z W;(7) log p(ailsi; me)-

i=1

Using such notation, we have
VI(0) = Eropirimg) VE(O;T) = /p(T;ﬂg)VfI)(G;T)dT
The second order derivative can be computed by
v2J(0) :/V<I>(6;7')Vp(7’;7r9)—r + p(7;79) V2D (0; 7)dT
:/p(T; o) [V@(O; T)Vlogp(rimg) | + V2B (6; 7')} dr

T

:ETNP(T;TFQ) |:vq)(9, T)v 1ng(7'7 7T9)T + VQ(I)(H, 7_):| .

7.3. Detail Hyper-parameter Settings

We present the Hyper-parameter settings in Table 1. The code for our experiments are available in
https://github.com/m1zju/HAPG.

Hessian Aided Policy Gradient

Table 1. Hyper-parameter Settings

CartPole | Swimmer | Reacher | Walker2d | Humanoid | HumanoidStandup

Horizon 100 500 50 500 500 500
Baseline No Linear Linear Linear Linear Linear
Number of timesteps 5-10° 107 107 107 107 107
NN sizes 8 32x32 32x32 64x64 64x64 64x64
REINFORCE learning rate | 0.01 0.01 0.01 0.01 0.01 0.01
REINFORCE batchsize 50 100 100 100 100 100
HAPG learning rate 0.01 0.01 0.01 0.01 0.01 0.01
HAPG | M| 50 100 100 100 100 100
HAPG | M| 10 10 10 10 10 10
HAPG p 5 10 10 10 10 10

