
Hessian Aided Policy Gradient

7. Appendix
7.1. Why SVRPG does not work

Recall the importance weight from Section 5.2, which is defined in (Papini et al., 2018)

w(θt, θ̃; τ) :=
p(τ |πθ̃)
p(τ |πθt)

=

H∏
h=1

πθ̃(ah|sh)

πθt(ah|sh)
, (28)

and the SVRPG gradient estimator

gtvr := g̃ + g(θt;M)− 1

|M|
∑
τ∈M

w(θt, θ̃; τ)g(θ̃; {τ}), (29)

where θ̃ and g̃ are the reference point and its corresponding unbiased estimator respectively, andM is a mini-batch of
trajectories sampled from p(·|πθt).

While this importance sampling technique removes the bias, the variance of estimator (29) cannot be properly bounded since

EM‖gtvr −∇J(θt)‖2

≤ 1

|M|
Eτ‖g(θt; {τ})− w(θt, θ̃; τ)g(θ̃; {τ})‖2

=
1

|M|

∫
τ

1

p(τ ;πθt)
‖p(τ ;πθt) · g(θt; {τ})− p(τ ;πθ̃) · g(θ̃; {τ})‖2dτ,

and the term 1
p(τ ;πθt)

in the integral can be infinity large. The lack of proper variance control deprives SVRPG of its high

sample-efficiency. Even under the strong assumption that the variance of the importance weight w(θt, θ̃; τ) is bounded
(Assumption 4.3 in (Papini et al., 2018)), O(1

ε4) random trajectories are still required by SVRPG to achieve an ε-FOSP (4)
by scrutinizing the convergence result, which is the same as the original policy-gradient type method.

7.2. Derivation of Policy Gradient and Policy Hessian

Let τ = {s1, a1, . . . , sH , aH} be a trajectory sampled according to p(τ ;πθ) and define τh := {s1, a1, . . . , sh, ah} for any
h ∈ [H]. For simplicity of notation we will denote

`τhθ := log p(τh;πθ), R̄τhγ := γhR̄(ah|sh)

in the following discussion. From (3) and (2), we have

J(θ) =

H∑
h=1

Eτ∼p(τ ;πθ)[R̄τhγ] =

H∑
h=1

Eτh∼p(τh;πθ)[R̄τhγ],

where we replace τ by τh since R̄τhγ is independent of the randomness after ah. To compute the policy gradient

∇J(θ) =

H∑
h=1

∫
τh

R̄τhγ ∇p(τh;πθ)dτh =

H∑
h=1

∫
τh

R̄τhγ p(τh;πθ)∇`τhθ dτh,

where we use the log-trick in the second equation

∇p(τh;πθ) = p(τh;πθ)∇ log p(τh;πθ) = p(τh;πθ)∇`τhθ .

Hessian Aided Policy Gradient

The policy gradient can be further simplified:

∇J(θ) =

H∑
h=1

∫
τh

R̄τhγ p(τh;πθ)∇`τhθ dτh

=

H∑
h=1

Eτh∼p(τh;πθ)[R̄τhγ
h∑
i=1

∇ log πθ(ai|si)]

=

H∑
h=1

h∑
i=1

Eτh∼p(τh;πθ)[R̄τhγ ∇ log πθ(ai|si)]

=

H∑
h=1

h∑
i=1

Eτ∼p(τ ;πθ)[R̄τhγ ∇ log πθ(ai|si)],

where in the last equality we use that R̄τhγ ∇ log πθ(ai|si) with i ≤ h is independent of the randomness after ah. Exchange
the summation over i and h to obtain

∇J(θ) =

H∑
i=1

H∑
h=i

Eτ∼p(τ ;πθ)[R̄τhγ ∇ log πθ(ai|si)]

=

H∑
i=1

Eτ∼p(τ ;πθ)[

(
H∑
h=i

R̄τhγ

)
∇ log πθ(ai|si)]

=

H∑
i=1

Eτ∼p(τ ;πθ)[Ψi(τ)∇ log πθ(ai|si)],

where Ψi :=
∑H
h=i γ

hR̄(ah|sh) is the discounted reward after action ai given state si. Let

Φ(θ; τ) =

H∑
i=1

Ψi(τ) log p(ai|si;πθ).

Using such notation, we have

∇J(θ) = Eτ∼p(τ ;πθ)∇Φ(θ; τ) =

∫
τ

p(τ ;πθ)∇Φ(θ; τ)dτ.

The second order derivative can be computed by

∇2J(θ) =

∫
τ

∇Φ(θ; τ)∇p(τ ;πθ)
>

+ p(τ ;πθ)∇2Φ(θ; τ)dτ

=

∫
τ

p(τ ;πθ)
[
∇Φ(θ; τ)∇ log p(τ ;πθ)

>
+∇2Φ(θ; τ)

]
dτ

=Eτ∼p(τ ;πθ)

[
∇Φ(θ; τ)∇ log p(τ ;πθ)

>
+∇2Φ(θ; τ)

]
.

7.3. Detail Hyper-parameter Settings

We present the Hyper-parameter settings in Table 1. The code for our experiments are available in
https://github.com/m1zju/HAPG.

Hessian Aided Policy Gradient

Table 1. Hyper-parameter Settings
CartPole Swimmer Reacher Walker2d Humanoid HumanoidStandup

Horizon 100 500 50 500 500 500
Baseline No Linear Linear Linear Linear Linear
Number of timesteps 5 · 105 107 107 107 107 107

NN sizes 8 32x32 32x32 64x64 64x64 64x64
REINFORCE learning rate 0.01 0.01 0.01 0.01 0.01 0.01
REINFORCE batchsize 50 100 100 100 100 100
HAPG learning rate 0.01 0.01 0.01 0.01 0.01 0.01
HAPG |M0| 50 100 100 100 100 100
HAPG |M| 10 10 10 10 10 10
HAPG p 5 10 10 10 10 10

