Hessian Aided Policy Gradient

7. Appendix
7.1. Why SVRPG does not work

Recall the importance weight from Section 5.2, which is defined in (Papini et al., 2018)
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and the SVRPG gradient estimator
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where 0 and g are the reference point and its corresponding unbiased estimator respectively, and M is a mini-batch of
trajectories sampled from p(-|mg:).

While this importance sampling technique removes the bias, the variance of estimator (29) cannot be properly bounded since
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and the term e 1 ) in the integral can be infinity large. The lack of proper variance control deprives SVRPG of its high

sample- efﬁ01ency Even under the strong assumptlon that the variance of the importance weight w(6?, 0; ; 7) is bounded
(Assumption 4.3 in (Papini et al., 2018)), (9( ) random trajectories are still required by SVRPG to achieve an ¢-FOSP (4)
by scrutinizing the convergence result, Wthh is the same as the original policy-gradient type method.

7.2. Derivation of Policy Gradient and Policy Hessian

Let 7 = {s1,a1,...,8m,an } be a trajectory sampled according to p(7; my) and define 7, := {s1,4a1,..., s, ap} for any
h € [H]. For simplicity of notation we will denote

0y :=1logp(th;mg), RI":=~"R(an|sn)
in the following discussion. From (3) and (2), we have
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where we replace 7 by 7y, since 7_27 is independent of the randomness after a;,. To compute the policy gradient
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where we use the log-trick in the second equation

Vp(th;mg) = p(Th; ®o)V log p(Th; ) = p(Th; me) VEy" .
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The policy gradient can be further simplified:
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where in the last equality we use that ’Rfyh V log mg(a;|s;) with ¢ < h is independent of the randomness after aj,. Exchange
the summation over ¢ and h to obtain
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where ¥, := H bR ap|sn) 1s the discounted reward after action a; given state s;. Let
h=1 0 g

H
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Using such notation, we have
VI(0) = Eropirimg) VE(O;T) = /p(T;ﬂg)VfI)(G;T)dT
The second order derivative can be computed by
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7.3. Detail Hyper-parameter Settings

We present the Hyper-parameter settings in Table 1. The code for our experiments are available in
https://github.com/m1zju/HAPG.
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Table 1. Hyper-parameter Settings

CartPole | Swimmer | Reacher | Walker2d | Humanoid | HumanoidStandup

Horizon 100 500 50 500 500 500
Baseline No Linear Linear Linear Linear Linear
Number of timesteps 5-10° 107 107 107 107 107
NN sizes 8 32x32 32x32 64x64 64x64 64x64
REINFORCE learning rate | 0.01 0.01 0.01 0.01 0.01 0.01
REINFORCE batchsize 50 100 100 100 100 100
HAPG learning rate 0.01 0.01 0.01 0.01 0.01 0.01
HAPG | M| 50 100 100 100 100 100
HAPG | M| 10 10 10 10 10 10
HAPG p 5 10 10 10 10 10




