
Learning with Bad Training Data via Iterative Trimmed Loss Minimization

Yanyao Shen 1 Sujay Sanghavi 1

Abstract
In this paper, we study a simple and generic frame-
work to tackle the problem of learning model pa-
rameters when a fraction of the training samples
are corrupted. We first make a simple observation:
in a variety of such settings, the evolution of train-
ing accuracy (as a function of training epochs) is
different for clean and bad samples. Based on this
we propose to iteratively minimize the trimmed
loss, by alternating between (a) selecting sam-
ples with lowest current loss, and (b) retraining
a model on only these samples. We prove that
this process recovers the ground truth (with linear
convergence rate) in generalized linear models
with standard statistical assumptions. Experimen-
tally, we demonstrate its effectiveness in three
settings: (a) deep image classifiers with errors
only in labels, (b) generative adversarial networks
with bad training images, and (c) deep image clas-
sifiers with adversarial (image, label) pairs (i.e.,
backdoor attacks). For the well-studied setting of
random label noise, our algorithm achieves state-
of-the-art performance without having access to
any a-priori guaranteed clean samples.

1. Introduction
State of the art accuracy in several machine learning prob-
lems now requires training very large models (i.e. with lots
of parameters) using very large training data sets. Such an
approach can be very sensitive to the quality of the train-
ing data used; this is especially so when the models them-
selves are expressive enough to fit all data (good and bad)
in way that may generalize poorly if data is bad. We are
interested both in poorly curated datasets – label errors in
supervised settings, and irrelevant samples in unsupervised
settings – as well as situations like backdoor attacks (Gu
et al., 2017) where a small number of adversarially altered
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Figure 1. Observation: Evolution of model accuracy for clean
and bad samples, as a function of training epochs, for four dif-
ferent tainted data settings: (a) classification for CIFAR-10 with
40% random errors in labels, (b) classification for CIFAR-10 with
40% systematic errors in labels, (c) DC-GAN trained on unlabeled
mixture of 70% MNIST images with 30% Fashion-MNIST images,
(d) backdoor attack on classification for CIFAR-10 with 250 water-
marked backdoor attach samples as described in (Tran et al., 2018).
The CIFAR-10 classifications are done using the WideResNet-16
of (Zagoruyko & Komodakis, 2016). In all instances models are
trained on the respective tainted data. Early on, models are more
accurate on the good samples.

samples (i.e. labels and features changed) can compromise
security. These are well-recognized issues, and indeed sev-
eral approaches exist for each kind of training data error;
we summarize these in the related work section. However,
these approaches are quite different, and in practice select-
ing which one to apply would need us to know / suspect the
form of training data errors a-priori.

In this paper we provide a single, simple approach that
can deal with several such tainted training data settings,
based on a key observation. We consider the (common)
setup where training proceeds in epochs / stages, and inspect
the evolution of the accuracy of the model on the training
samples – i.e. after each epoch, we take the model at that
stage and see whether or not it makes an error for each
of the training samples. Across several different settings
with errors/corruptions in training data, we find that the
accuracy on “clean” samples is higher than on the “bad”
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samples, especially in the initial epochs of training. Figure
1 shows four different settings where this is the case. This
observation suggests a natural approach: iteratively alternate
between (a) filtering out samples with large (early) losses,
and (b) re-training the model on the remaining samples.
Both steps can be done in pretty much any machine learning
setting: all that is needed is for one to be able to evaluate
losses on training samples, and re-train models from a new
set of samples.

Our approach is related to a classical statistical objective:
minimizing the trimmed loss. Specifically, given a set
of n samples, standard estimation / model-fitting involves
choosing model parameters θ to minimize a loss function
over all n samples; in contrast, the trimmed loss estimator
involves jointly choosing a subset of αn samples and θ such
that the loss on the subset is minimum (over all choices
of subset and parameters). This objective is intractable in
general; our approach can be viewed as an iterative way
to minimize trimmed loss. We describe trimmed loss1, its
known properties, and some new results, in Section 3. Our
approach (in Section 5) is thus an iterative way to find a
trimmed loss estimator, hence we choose to call it Iterative
Trimmed Loss Minimization (ITLM).

We propose ITLM as a generic approach to the problem of
training with tainted data and investigate its performance
both theoretically and empirically. More specifically, our
contributions include:
(a) In Section 5, we analyze ITLM applied to a setting
where the clean samples come from a ground-truth general-
ized linear model, and the bad samples have the response
variables being (i) arbitrary corruption; (ii) random output;
(iii) mixture output. We show ITLM converges at least lin-
early to the ground truth model in all these settings. Our
theoretic findings are further verified with synthetic exper-
iments in Section 6.1.We also include a basic asymptotic
property for general functions in Section 3;
(b) In Section 6.2, we show ITLM can be applied to clas-
sification problems with bad labels. For CIFAR-10 clas-
sification with random labels, ITLM performs better than
previous state-of-the-art results, without using any identified
clean sample;
(c) In Section 6.3 and 6.4, we successfully apply ITLM to
image generation task with bad images and classification
task with adversarial (image, label) pairs (backdoor attacks).

Notations For integerm, [m] denotes the set {0, · · · ,m−
1}. For real number a, bac denotes the maximum in-

1Our framework sounds initially similar to EM-style algorithms
like k-means. Note however that EM needs to postulate a model for
all the data points, while we search over a subset and do not worry
about the loss on corrupted points. We are alternating between
a simple search over subsets and a fitting problem on only the
selected subset; this is not an instance of EM.

teger no greater than a. σmin and σmax are the mini-
mum/maximum eigenvalues. a∧ b and a∨ b are shorthands
for min{a, b},max{a, b}. |S| is the cardinality for set S.
For two sets S1, S2, S1\S2 is the set of elements in S1 but
not in S2. The term w.h.p. means with probability at least
1− n−c where c is an aribatrary constant.

2. Related Work
There is a vast literature on bad training data problems.
We classify the most related work from classic statistics to
machine learning frontiers into the following four genres.

Robust regression There are several classes of robust esti-
mators (Huber, 2011). Among them, Least Trimmed Square
(LTS) estimator (Rousseeuw, 1984) has high breakdown
point and is sample efficient. Following the idea of LTS, sev-
eral recent works provide algorithmic solutions and analyze
their theoretical guarantees (Bhatia et al., 2015; Vainsencher
et al., 2017; Yang et al., 2018). Different from previous
works, we provide a fine characterization of the conver-
gence in several settings, which connects to the problems
of noisy labels/adversarial backdoor attack in practice. We
also experimentally explore the overall approach for more
complex tasks with deep neural network models. Notice that
our approach is certainly not the only algorithm solution to
finding least trimmed estimators. For example, see (Hössjer,
1995; Rousseeuw & Van Driessen, 2006; Shen et al., 2013)
for algorithm solutions finding the least trimmed loss esti-
mator in linear regression setting. However, compared to
other works, our approach is more scalable, and not sensi-
tive to the selection of loss functions. Another line of recent
work on robust regression consider strong robustness where
the adversary poisons both the inputs and outputs, in both
low-dimensional (Diakonikolas et al., 2018; Prasad et al.,
2018; Klivans et al., 2018) and high dimensional (Chen
et al., 2013; Balakrishnan et al., 2017a; Liu et al., 2018b)
settings. These algorithms usually require much more com-
putation compared with, e.g., the algorithm we consider in
this paper.

Mixed linear regression Alternating minimization type
algorithms are used for mixed linear regression with conver-
gence guarantee (Yi et al., 2014; Balakrishnan et al., 2017b),
in the setting of two mixtures. For multiple mixture setting,
techniques including tensor decomposition are used (Yi
et al., 2016; Zhong et al., 2016; Sedghi et al., 2016; Li &
Liang, 2018), but require either high sample complexity or
high computation complexity (especially when number of
mixtures is large). On the other hand, (Ray et al., 2018)
studies finding a single component in mixture problems
using a particular type of side information.
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Noisy label problems Classification tasks with noisy la-
bels are also of wide interest. (Frénay et al., 2014) gives
an overview of the related methods. Theoretical guarantee
for noisy binary classification has been studied under dif-
ferent settings (Scott et al., 2013; Natarajan et al., 2013;
Menon et al., 2016). More recently, noisy label problem has
been studied for DNNs. (Reed et al., 2014) and (Malach
& Shalev-Shwartz, 2017) develop the idea of bootstrapping
and query-by-committee for DNNs. On the other hand,
(Khetan et al., 2018) and (Zhang & Sabuncu, 2018) provide
new losses for training under the noise. (Sukhbaatar & Fer-
gus, 2014) adds a noise layer into the training process, while
(Ren et al., 2018) provides a meta-algorithm for learning
the weights of all samples by heavily referencing to a clean
validation data during training. (Jiang et al., 2017) proposes
a data-driven curriculum learning approach.

Defending backdoor attack Several recent works defend
against backdoor attack samples (Gu et al., 2017). (Tran
et al., 2018) proposes using spectral signature, where they
calculate the top singular vector of a certain layer’s repre-
sentation for all the samples. (Liu et al., 2018a) proposes
pruning DNNs based on the belief that backdoor samples
exploit spare capacity. (Wang et al.) uses a reverse engi-
neering approach. (Chen et al., 2018) detect by activation
clustering. While the adversary is not allowed to train the
model, these approaches do not exploit the evolution of the
training accuracy for detecting backdoor samples.

3. Setup and (Exact) Trimmed Loss Estimator
We now describe the least trimmed loss estimator in general.
Let s1, . . . , sn be the samples, θ the model parameters to
be learnt, and loss function fθ(·). With this setting, the
standard approach is to minimize the total loss of all samples,
i.e. minθ

∑
i fθ(si). In contrast, the least trimmed loss

estimator is given by

θ̂(TL) = arg min
θ∈B

min
S:|S|=bαnc

∑
i∈S

fθ(si),

For finding θ̂(TL) we need to minimize over both the set S of
size bαnc – where α ∈ (0, 1) is the fraction of samples we
want to fit – and the set of parameters θ. In general solving
for the least trimmed loss estimator is hard, even in the
linear regression setting (Mount et al., 2014), i.e., even when
s = (x, y) and fθ(x, y) = (y − θ>x)2. Nevertheless, its
statistical efficiency has been studied. In the linear setting,
it has a breakdown point of 1/2 asymptotically (Huber,
2011), and is consistent (Vı́šek, 2006), i.e., θ̂(TL) → θ?

in probability as n → ∞. (Čı́žek, 2008) also shows this
property for more general function classes.

We now present a basic result for more general non-linear
functions. Let B be a compact parametric space, and all sam-

ples are i.i.d. generated following certain distribution. For
θ ∈ B, let Dθ, dθ be the distribution and density function
of fθ(s). Let S(θ) = Es[fθ(s)] be the population loss, and
let Sn(θ) = 1

n

∑n
i=1 fθ(si) be the empirical loss. Define

F (θ) := E
[
fθ(s)I(fθ(s) ≤ D−1θ (α))

]
as the population

trimmed loss. Let U(θ, ε) := {θ̃ | |S(θ̃) − S(θ)| < ε, θ̃ ∈
B} be the set of parameters with population loss close to θ.
We require the following two natural assumptions:

Assumption 1 (Identification condition for θ?). For every
ε > 0 there exists a δ > 0 such that if θ ∈ B\U(θ?, ε), we
have that F (θ)− F (θ?) > δ.

Assumption 2 (Regularity conditions). Dθ is absolutely
continuous for any θ ∈ B. dθ is bounded uniformly in
θ ∈ B, and is locally positive in a neighborhood of its α-
quantile. fθ(s) is differentiable in θ for θ ∈ U(θ?, ε), for
some ε > 0.

The identification condition identifies θ? as achieving the
global minimum on the population trimmed loss. The reg-
ularity conditions are standard and very general. Based on
these two assumptions, we show that TL is consistent with
θ? in empirical loss.

Lemma 3. Under Assumptions 1 and 2, the estimator θ̂(TL)

satisfies:
∣∣∣Sn(θ̂(TL))− Sn(θ?)

∣∣∣→ 0 with probability 1, as
n→∞.

4. Iterative Trimmed Loss Minimization
Our approach to (attempt to) minimize the trimmed loss, by
alternating between minimizing over S and θ is described
below.

Algorithm 1 Iterative Trimmed Loss Minimization (ITLM)

1: input: samples {si}ni=1, number of rounds T ,
fraction of samples α

2: (optional) initialize: θ0 ← arg minθ
∑
i∈[n] fθ(si)

3: for t = 0, · · · , T − 1 do
4: choose samples with smallest current loss fθt

St ← arg min
S:|S|=bαnc

∑
i∈S

fθt(si)

5: θt+1 = ModelUpdate(θt, St, t)
6: return: θT

Here ModelUpdate(θt, St, t) refers to the process of find-
ing a new θ given sample set St, using θt as the initial value
(if needed) in the update algorithm, and also the round num-
ber t. For example this could just be the (original, naive)
estimator that minimizes the loss over all the samples given
to it, which is now St.

In this paper we will use batch stochastic gradient as our
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model update procedure, so we now describe this for com-
pleteness.

Algorithm 2 BatchSGD ModelUpdate(θ, S, t)

1: input: initial parameter θ, set S, round t
2: choose: step size η, numberM of gradient steps, batch

size N
3: (optional) re-initialize θ0 randomly
4: for j = 1, · · · ,M do
5: Bj ← random subset(S,N)

6: θj ← θj−1 − η
(

1
N

∑
i∈Bj

∇θfθj−1(si)
)

7: return: θM

Note that for different settings, we use the same procedure
as described in Algorithm 1 and 2, but may select different
hyper-parameters. We will clarify the alternatives we use in
each part.

5. Theoretical Guarantees for Generalized
Linear Models

We now analyze ITLM for generalized linear models with
errors in the outputs (but not in the features): we are given
samples each of the form (x, y) such that

y =ω(φ(x)> · θ?) + e, (clean samples)
y =r + e, (bad samples)

(1)

Here x represents the inputs, y the output, embedding func-
tion φ and link function w are known (and possibly non-
linear) 2, e is random subgaussian noise with parameter
σ2 (Vershynin, 2010), and θ? is the ground truth. Thus there
are errors in outputs y of bad samples, but not the features.
Let α? be the fraction of clean samples in the dataset.

For ITLM , we use squared loss, i.e. fθ(x, y) = (y −
ω(φ(x)> · θ))2. We will also assume the feature matrices
are regular, which is defined below.

Definition 4. Let Φ(X) ∈ Rn×d be the feature matrix for
all samples, where the ith row is φ(xi)

>. LetWk = {W ∈
Rn×n|Wi,j = 0,Wi,i ∈ {0, 1}, Tr(W ) = k}. Define

ψ−(k) = min
W :W∈Wk

σmin

(
Φ(X)>WΦ(X)

)
,

ψ+(k) = max
W :W∈Wk

σmax

(
Φ(X)>WΦ(X)

)
.

We say that Φ(X) is a regular feature matrix if for k = αn,
α ∈ [c, 1], ψ−(k) = ψ+(k) = Θ(n) for n = Ω(d log d).

Regularity states that every large enough subset of samples
results in a Φ(X) that is well conditioned. This holds under

2In neural network models, for example, φ(x) would represent
the output of the final representation layer, and we assume that the
parameters of the previous layers are fixed.

several natural settings, please see Appendix for more dis-
cussion. We now first present a one-step update lemma for
the linear case.

Lemma 5 (linear case). Assume ω(x) = x and we are
using ITLM with α. The (for large enoughM and small η in
Algorithm 2), the following holds per round update w.h.p.:

‖θt+1 − θ?‖2 ≤
√

2γt
ψ−(αn)

‖θt − θ?‖2 +

√
2ϕt + cξtσ

ψ−(αn)
,

where ϕt =
∥∥∥∑i∈St\S?(φ(xi)

>θt − ri − ei)φ(xi)
∥∥∥
2
,

and γt = ψ+(|St\S?|), ξt =
√∑n

i=1 ‖φ(xi)‖22 log n.

This Lemma 5 bounds the error in the next step based on
the error in the current step, how mismatched the set St
is as compared to the true good set S?, and the regularity
parameters. The following does the same for the more
general non-linear case.

Lemma 6 (non-linear case). Assume ω : R → R mono-
tone and differentiable. Assume ω′(u) ∈ [a, b] for all u ∈ R,
where a, b are positive constants. Then, for ITLM with α
(and M = 1 and N = |S| in Algorithm 2), w.h.p.,

‖θt+1 − θ?‖2 ≤
(

1− η

αn
a2ψ−(αn)

)
‖θt−θ?‖2+η

ϕ̃t + ξtbσ

αn

where ξt is the same as in Lemma 5, and ϕ̃t =∥∥∥∑i∈St\S?

(
w(φ(xi)

>θ?)− ri − ei
)
w′(φ(xi)

>θ?)φ(xi)
∥∥∥.

Remarks: A few comments
(1) Lemma 5 and Lemma 6 directly lead to the consistency
of the algorithm in the clean data setting (α? = 1). This
is because |St\S?| = 0, which makes both γt and ϕt(ϕ̃t)
become zero. Moreover, ξt is sublinear in n, and can be
treated as the statistical error. While this consistency prop-
erty is not very surprising (remind that Section 3 shows TL
estimator has consistent performance for very general class
of functions), the update property helps us better analyze
convergence behavior in multiple corruption settings.
(2) In (Bhatia et al., 2015), convergence of the parameter is
characterized by the linear convergence of

∑
i∈St

r2i with
constant rate. Here, by directly characterizing the conver-
gence in parameter space, we gain several additional bene-
fits: (a) generality: we can directly analyze our result under
several settings, including arbitrary corruption, random out-
put, and mixture output; (b) finer chracterization: we see
that the rate depends on αt/ψ−(αn), which goes down as
long as |St\S?| goes down. We can have a finer character-
ization of the convergence, e.g., super-linear convergence
for the latter two corruption settings.

Next, we specialize our analysis into several bad training
data settings. In the main paper we state Theorem 7 and
Theorem 8 for the linear setting ω(x) = x, while Theorems
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(a) (b) (c)

Figure 2. Synthetic experiments: (a): ‖θ? − θT ‖2 v.s. sample size under small measurement noise; (b): under large measurement noise;
(c): ‖θ? − θT ‖2 v.s. different good sample ratio. ITLM -1: ITLM with large M (full update per round); ITLM -2: ITLM with M = 1.

9 and 10 in the appendix represent the same for the non-
linear setting.

Our first result shows per-round convergence when a frac-
tion 1− α? samples are either arbitrarily or randomly cor-
rupted, and we choose the α in ITLM to be α ≤ α∗.
Theorem 7 (arbitrary/random corruptions). Assume
ω(x) = x. We are given clean sample ratio α? > cth,
and ITLM with α such that α < α? and sample size
n = Ω(d log d). Then w.h.p., we have:

‖θ?−θt+1‖2 ≤ κt‖θ?−θt‖2 + c1
√
κtσ+

c2ξt
n
σ,

where κt ≤ 1
2 when r is arbitrary, and κt ≤

c{
√
‖θt − θ?‖22 + σ2 ∨ logn

n } when r is random sub-
Gaussian output. All the c constants depend on the reg-
ularity conditions.

Remark In both settings, we show at least linear conver-
gence performance for per-round update. On the other hand,
even in the infinite sample setting, the second term would
not go to zero, which implies that our theoretic guarantee
does not ensure consistency. In fact, we show in the next
section that our analysis is tight, i.e., ITLM indeed gives in-
consistent estimation. However, if the noise is small, ITLM
will converge very closely to the ground truth. The proof is
in Appendix.

We now consider the case when the data comes from a mix-
ture model. We provide local convergence result that char-
acterizes the performance of ITLM for this setting. More
specifically, the full set of samples S = [n] is split into
m sets: S = ∪j∈[m]S(j), each corresponding to samples
from one mixture component, |S(j)| = α?(j)n. The response
variable yi is given by:

yi = ω(φ(xi)
>θ?(j)) + ei, for i ∈ S(j). (2)

Fitted into the original framework, ri = ω(φ(xi)
>θ?(j)) for

some j ∈ [m]\{0}. Similar to previous literatures (Yi et al.,
2014; Zhong et al., 2016), we consider φ(x) ∼ N (0, Id).
We have the following local convergence guarantee in the
mixture model setting:

Theorem 8 (mixed regression). Assume ω(x) = x and
consider ITLM with α. For the mixed regression setting in
(2), suppose that for some component j ∈ [m], we have that
α < α?(j). Then, for n = Ω(d log d), w.h.p., the next iterate
θt+1 of the algorithm satisfies

‖θt+1−θ?(j)‖2 ≤ κt‖θt−θ
?
(j)‖2+c1

√
κtσ+

c2ξt
n
σ,

where κt ≤ c

{ √
‖θt−θ?(j)‖

2
2+σ

2

mink∈[m]\{j}
√
‖θt−θ?(k)

‖22+σ2
∨ logn

n

}
.

Remark Theorem 8 has a nearly linear dependence (sam-
ple complexity) on dimension d. In order to let κ0 < 1, the
iterate θ0 in Algorithm 1 needs to satisfy ‖θ0 − θ?(j)‖2 ≤
C(α) mink∈[m]\{j} ‖θ0 − θ?(k)‖2 −

√
1− C(α)2σ, where

C(α) = min{ c3α1−α , 1}. For α large enough such that
C(α) = 1, the condition on θ0 does not depend on σ. How-
ever, for smaller α, the condition of θ0 tolerates smaller
noise. This is because, even if θ0 is very close to θ(j), when
the noise and the density of samples from other mixture
components are both high, the number of samples from
other components selected by the current θ0 would still be
quite large, and the update will not converge to θ(j).

6. Experiments
We first run simulations to verify and illustrate the theoreti-
cal guarantees we have in Section 5. Then, we present the
result of our algorithm in several bad training data settings
using DNNs, and compare them with the state-of-the-art
results. Although deep networks have the capacity to fit bad
samples as well as the clean samples, as we motivated in
Section 1, the learning curve for clean samples is better than
that of the bad samples (at least in early stages of training),
which aligns with the linear setting. Besides, for the noisy
label problem, we show that ITLM performs better than
previous state-of-the-art methods where additional DNNs
and additional clean samples are required. Our algorithm is
simple to implement and requires neither of them. Training
details are explained in Appendix.
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Table 1. Neural networks classification accuracy with random/systematic label error: Performance for subsampled-MNIST, CIFAR-
10 datasets as the ratio of clean samples varies. Baseline : Naive training using all the samples; ITLM : Our iterative update algorithm
with α = α? − 5%; Oracle : Training with all clean samples. Centroid: Filter out samples far away from the centroid for each label
class; 1-step: The first iteration of ITLM ; ∆α : 10%(15%): ITLM with α = α? − 10%(15%). We see significant improvement of
ITLM over Baseline for all the settings.

dataset MNIST with two-layer CNN CIFAR-10 with WideResNet16-10

Systematic Label Error
#clean
#total Baseline ITLM Oracle Centroid 1-step ∆α : 10% ∆α : 15% Baseline ITLM Oracle

60% 66.69 84.98 92.44 70.25 74.29 85.91 79.80 62.03 81.01 90.14
70% 80.74 89.19 92.82 83.42 84.07 89.76 88.00 73.47 87.08 90.72
80% 89.91 91.93 92.93 90.18 91.38 90.92 89.06 80.17 89.34 91.33
90% 92.35 92.68 93.2 92.44 92.63 91.10 90.62 86.63 90.00 91.74

Random Label Error
#clean
#total Baseline ITLM Oracle Centroid 1-step ∆α : 10% ∆α : 15% Baseline ITLM Oracle

30% 80.87 84.54 91.37 80.89 93.91 80.39 68.00 49.58 64.74 85.78
50% 88.59 90.16 92.14 88.94 89.13 89.14 86.23 64.74 82.51 89.26
70% 91.18 91.12 92.82 91.25 90.28 90.41 88.37 73.60 88.23 90.72
90% 92.50 92.43 93.20 92.40 92.42 91.48 90.25 86.13 90.33 91.74

6.1. Synthetic experiments

We consider the linear regression setting, where dimension
d = 100 and sample n = 1000, all φ(xi)s are generated as
i.i.d. normal Gaussian vectors. The outputs are generated
following (1). The results are based on an average of 100
runs under each setting. The performance for both the ran-
dom output setting and the mixture model setting are similar,
we focus on random output setting in this section. For sim-
ilar results in mixture model setting, and further results in
the general linear setting, please refer to the Appendix.

Results: (a) Inconsistency. Figure 2-(a) and (b) show that
ITLM gives an inconsistent result, since under the large
noise setting, the recovery error does not decrease as sample
size increases. Also, (a) suggests that if the noise is small,
the final performance is close to the oracle unless sample
size is extremely large. These observations match with our
theoretic guarantees in Theorem 7 and 8. (b) Performance
v.s. α?. Figure 2-(c) shows the recovery result of our
algorithm, for both large and small Mt. As α? increases,
ITLM is able to successfully learn the parameter with high
probability. (c) Convergence rates. In fact, as implied by
Theorem 7, the algorithm has super-linear convergence un-
der the small noise setting. We provide results in Appendix
to verify this.

Next, we apply ITLM to many bad data settings with DNN
models. We present the result using ITLM with large M
since (a) according to Figure 2, both large and small M
perform similar in linear setting; (b) full update could be
more stable in DNNs, since a set of bad training samples
may deceive one gradient update, but is harder to deceive
the full training process. Also, we run re-initialization for
every round of update to make it harder to stuck at bad local

minimum.

6.2. Random/Systematic label error for classification

We demonstrate the effectiveness of ITLM for correcting
training label errors in classification by starting from a
“clean” dataset, and introducing either one of two differ-
ent types of errors to make our training and validation data
set:

(a) random errors in labels: for samples in error, the label
is changed to a random incorrect one, independently and
with equal probability;
(b) systematic errors in labels: for a class “a”, all its sam-
ples in error are given the same wrong label “b”

Intuitively, systematic errors are less benign than random
ones since the classifier is given a more directed and hence
stronger misleading signal. However, systematic errors can
happen when some pairs of classes are more confusable
than others. We investigate the ability of ITLM to account
for these errors for (a) 5% subsampled MNIST (LeCun
et al., 1998) 3 dataset with a standard 2-layer CNN, and (b)
CIFAR-10 (Krizhevsky & Hinton, 2009) with a 16-layer
WideResNet (Zagoruyko & Komodakis, 2016). For each of
these, Baseline represents the standard process of training
the (respective) NN model on all the samples. Training
details for each dataset are specified in the Appendix. For
the CIFAR-10 experiments, we run 4 rounds with early
stopping, and then 4 rounds with full training. As motivated

3We subsample MNIST by retaining only 5% of its samples,
so as to better distinguish the performance of different algorithms.
Without this, the MNIST dataset is “too easy” in the sense that it
has so many samples that the differences in algorithm performance
is muted if all samples are used.
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baseline 1st iter. 3rd iter. 5th iter. baseline 1st iter. 3rd iter. 5th iter.

Figure 3. Qualitative performance of ILFB for GANs: We apply ILFB to a dataset of (1) left: 80% MNIST + 20% Fashion-MNIST;
(2) right: 70% CelebA + 30% CIFAR-10. The panels show the fake images from 32 randomly chosen (and then fixed) latent vectors, as
ILFB iterations update the GAN weights. Baseline is the standard training of fitting to all samples, which generates both types of images,
but by the 5th iteration it hones in on digit/face-like images.

in Section 1 (in the main paper), early stopping may help
us better filter out bad samples since the later rounds may
overfit on them. We set α to be 5% less than the true ratio
of clean samples, to simulate the robustness of our method
to mis-specified sample ratio. Notice that one can always
use cross-validation to find the best α. For the MNIST
experiments, we run 5 rounds of ITLM , and we also include
comparisons to several heuristic baseline methods, to give
more detailed comparison, see the caption thereof.

Results: According to Table 1, we observe significant im-
provement over the baselines under most settings for MNIST
experiments and all settings for CIFAR-10 experiments.
ITLM is also not very sensitive to mis-specified clean sam-
ple ratio (especially for cleaner dataset). We next compare
with two recent state-of-the-art methods focusing on the
noisy label problem: (1) MentorNet PD/DD (Jiang et al.,
2017) and (2) Reweight (Ren et al., 2018). These meth-
ods are based on the idea of curriculum learning and meta-
learning. MentorNet DD and Reweight require an additional
clean dataset to learn from. As shown in Table 2 (MentorNet
results are reported based on their official github page), our
method on the 60% clean dataset only drops 6% in accuracy
compared with the classifier trained with the original clean
dataset, which is the best among the reported results, and is
much better than MentorNet PD. For the extremely noisy set-
ting with 20% clean samples, our approach is significantly
better than MentorNet PD and close to the performance of
MentorNet DD.

6.3. Deep generative models with mixed training data

We consider training a GAN – specifically, the DC-GAN
architecture (Radford et al., 2015) – to generate images
similar to those from a clean dataset, but when the training
data given to it contains some fraction of the samples from a
bad dataset. This type of bad data setting may happen very
often in practice when the data collector collects a large

Table 2. ITLM compares with reported state-of-the-art ap-
proaches on CIFAR-10. We list their reported numbers for com-
parison. Reweight / MentorNet DD require an additional 1k /
5k clean set of data to learn from (ITLM does not require any
identified clean data). (acc.-1: accuracy of the algorithm; acc.-2 :
accuracy with the full CIFAR-10 dataset.)

method clean % acc.-1 / acc.-2 extra clean samples?

1. Ours 60% 86.12 / 92.40 No
2. Reweight 60% 86.92 / 95.5 Yes, 1k
4. MentorNet PD 60% 77.6 / 96 No
5. MentorNet DD 60% 88.7 / 96 Yes, 5k

6. Ours 20% 42.24 / 92.40 No
7. MentorNet PD 20% 28.3 / 96 No
8. MentorNet DD 20% 46.3 / 96 Yes, 5k

amount of samples/images, e.g., from web search engine,
to learn a generative model, and it could be difficult for the
collector to find a rule to filter those incorrect samples. All
images are unlabeled, and we do not know which training
sample comes from which dataset. We investigated the
efficacy of our approach in the following two experiments:
A mixture of MNIST (clean) images with Fashion-MNIST
(bad) images; A mixture of Celeb-A (clean) face images
with CIFAR-10 (bad) object images. We consider different
fractions of bad samples in the training data, evaluate their
effect on standard GAN training, and then the efficacy of
our approach as we execute it for upto 5 iterations.

We again use the framework of ITLM , while slightly chang-
ing the two update steps. Recall that training a GAN consists
of updating the weights of both a generator network and a
discriminator network; our model parameters θ = {θD, θG}
include the parameters of both networks. When selecting
samples, we only calculate the discriminator’s loss, i.e.,

St ← arg min
S:|S|=bαnc

∑
i∈S

DθDt
(si)

When updating the parameter, we update both the discrimi-
nator and the generator simultaneously, as a regular GAN
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Table 3. Generative models from mixed training data: A quan-
titative measure The table depicts the ratio of the clean samples
in the training data that are recovered by the discriminator when it
is run on the training samples. The higher this fraction, the more
effective the generator. Our approach shows significant improve-
ments with iteration count.

MNIST(clean)-Fashion(bad) CelebA(clean)-CIFAR10(bad)

orig 90% 80% 70% 90% 80% 70%

iter-1 91.90% 76.84% 77.77% 97.12% 81.34% 75.57%
iter-2 96.05% 91.95% 79.12% 97.33% 88.11% 76.45%
iter-3 99.15% 96.14% 85.66% 97.43% 89.48% 86.63%
iter-4 100.0% 99.67% 91.51% 97.53% 92.89% 82.15%
iter-5 100.0% 100.0% 97.00% 98.14% 92.94% 94.02%

training process. Notice that for different GAN architec-
tures, the loss function for training the discriminator varies,
however, we can always find a surrogate loss: the loss of
the discriminator for real images. Again, we set α to be 5%
less than the true ratio of clean samples.

Results: Figure 3 shows qualitatively how the learned gen-
erative model performs as we iteratively learn using ITLM .
The generated images only contain digit-type images in the
first experiment after the 5th iteration, and similar behavior
is observed for the corrupted face image. Table 3 provides a
quantitative analysis showing that ITLM selects more and
more clean samples iteratively. In Appendix, we also show
other simple heuristic methods fail to filter out bad data, and
our approach is not sensitive to mis-specified α.

6.4. Defending backdoor attack

Backdoor attack is one of the recent attacking schemes
that aims at deceiving DNN classifiers. More specifically,
the goal of backdoor attack is by injecting few poisoned
samples to the training set, such that the trained DNNs
achieve both high performance for the regular testing set and
a second testing set created by the adversary whose labels
are manipulated. We inject backdoor images using exactly
the same process as described in (Tran et al., 2018), i.e., we
pick a target class and poison 5% of the target class images
as watermarked images from other classes. See Figure 4 for
typical samples in a training set. Accordingly, we generate
a testing set with all watermarked images, whose labels
are all set to the target class. Notice that a regularly trained
classifier makes almost perfect prediction in the manipulated
testing set. We use ITLM with 4 early stopping rounds and
1 full training round, we set α as 0.98.

Results: Our results on several randomly picked poisoned
dataset are shown in Table 4. The algorithm is able to fil-
ter out most of the injected samples, and the accuracy on
the second testing set achieves zero. The early stopping
rounds are very effective in filtering out watermarked sam-
ples, whereas without early stopping, the performance is
poor.

Table 4. Defending backdoor attack samples, which poisons class
a and make them class b. test-1 accuracy refers to the true testing
accuracy, while test-2 accuracy refers to the testing accuracy on
the test set made by the adversary.

naive training with ITLM
class a→ b shape test-1 / test-2 acc. test-1 / test-2 acc.

1→ 2 X 90.32 / 97.50 90.31 / 0.10
9→ 4 X 89.83 / 96.30 90.02 / 0.60
6→ 0 L 89.83 / 98.10 89.84 / 1.30
2→ 8 L 90.23 / 97.90 89.70 / 1.20

a-“horse”
dataset-1

b-“horse” (bad)
dataset-1

c-“ship”
dataset-2

d-“ship” (bad)
dataset-2

Figure 4. Illustration of typical clean and backdoor samples in
backdoor attacked training sets. Shown on the left are a clean
“horse” image and a bird image with an ‘L’-type watermark around
the center from one dataset. Shown on the right are a clean “ship”
image and a dog image with an ‘X’-type watermark on the right
from another dataset.

7. Discussion
We demonstrated the merit of iteratively minimize the
trimmed loss, both theoretically for the simpler setting of
generalized linear models, and empirically for more chal-
lenging ones involving neural networks for classification
(with label noise) and GANs (with tainted samples). The
ITLM approach is simple, flexible and efficient enough to
be applied to most modern machine learning tasks, and can
serve as a strong baseline and guide when designing new
approaches. It is based on the key observation that when
tainted data is present, it helps to look more closely at how
the loss of each training sample evolves as the model fitting
proceeds. Specifically, and especially early in the model
fitting process, tainted samples are seen to have higher loss
in a variety of tainted settings. This is also theoretically
backed up for the (admittedly simpler) generalized linear
model case.

Our paper opens several interesting venues for exploration.
It would be good to get a better understanding of why the
evolution of loss behaves this way in neural network settings;
also when it would not do so. It would also be interesting to
characterize theoretically the performance for more cases
beyond generalized liner models.
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