Scalable Training of Inference Networks for Gaussian-Process Models

Jiaxin Shi' Mohammad Emtiyaz Khan? Jun Zhu'

Abstract

Inference in Gaussian process (GP) models is
computationally challenging for large data, and
often difficult to approximate with a small number
of inducing points. We explore an alternative ap-
proximation that employs stochastic inference net-
works for a flexible inference. Unfortunately, for
such networks, minibatch training is difficult to
be able to learn meaningful correlations over func-
tion outputs for a large dataset. We propose an
algorithm that enables such training by tracking
a stochastic, functional mirror-descent algorithm.
At each iteration, this only requires considering a
finite number of input locations, resulting in a scal-
able and easy-to-implement algorithm. Empirical
results show comparable and, sometimes, supe-
rior performance to existing sparse variational GP
methods.

1. Introduction

Gaussian processes (GP) (Rasmussen & Williams, 2006)
and their deep variants (Damianou & Lawrence, 2013)
are powerful nonparametric distributions for both super-
vised (Williams & Rasmussen, 1996; Bernardo et al., 1998;
Williams & Barber, 1998) and unsupervised machine-
learning (Lawrence, 2005; Damianou et al., 2016). Such
processes can generate smooth functions to model complex
data and provide principled approaches for uncertainty quan-
tification. Despite this, their application has been limited
because Bayesian inference for such modeling requires in-
version of a matrix which is computationally challenging
(typically O(N?) for N data examples).

Many methods have been proposed to tackle this issue, and
they mostly rely on finding a small number of inducing

"Dept. of Comp. Sci. & Tech., Institute for AI, BNRist Center,
THBI Lab, Tsinghua University, Beijing, China *RIKEN Center
for Advanced Intelligence project, Tokyo, Japan. Correspondence
to: Jiaxin Shi <shijx15@mails.tsinghua.edu.cn>, Jun Zhu <dc-
szj@tsinghua.edu.cn>.

Proceedings of the 36" International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

Data Prediction

- ® @ i
I><I><]

><I><]
N

() r

Inference network

2

Gaussian
field —<f
Observations @

Figure 1. Inference networks for GPs are an alternative way to
predict output f* given test inputs x*.

points in the input! space to reduce the cost of matrix in-
version (Quinonero-Candela & Rasmussen, 2005; Titsias,
2009). Methods that employ variational inference to es-
timate inducing points (Titsias, 2009) can scale well to
large data by minibatch stochastic-gradient methods (Hens-
man et al., 2013), but the quality of posterior approxima-
tions obtained could be limited since the number of in-
ducing points needs to be small, even when the data are
extremely large (Cheng & Boots, 2017). Optimization of
inducing points is another challenging problem when the
objective is nonconvex and stochastic-gradient methods can
get stuck (Bauer et al., 2016).

A relatively less-explored approach is to approximate the GP
posterior distribution by using function approximators, such
as deep neural networks (Sun et al., 2019). By introducing
randomness in the parameters of such inference networks, it
is possible to generate functions similar to those generated
by the posterior distribution, as illustrated in Fig. 1. By
directly approximating the functions, we can obtain more
flexible alternatives to sparse variational approaches. Unfor-
tunately, unlike sparse methods, training with minibatches
is challenging in the function space. The difficulty is to
be able to maintain meaningful correlations over function
outputs while only looking at a handful of examples in each
iteration. Scalable training of such inference networks is ex-
tremely important for them to be useful for flexible posterior
inference in GP models.

'For supervised learning, these can be features, while for unsu-
pervised learning, these could be latent vectors.

Scalable Training of Inference Networks for Gaussian-Process Models

In this paper, we propose an algorithm to scalably train the
network by tracking an adaptive Bayesian filter defined in
the function space. The filter is obtained by using a stochas-
tic, functional mirror-descent algorithm which is guaranteed
to converge to the exact posterior process but is computa-
tionally intractable. By bootstrapping from approximations
given by inference networks, we can use stochastic gra-
dients to train the network with minibatches of data. We
demonstrate training of various types of networks, such as
those based on random feature expansions and deep neural
networks. Our results show that the problem caused by
incorrectly minibatching in previous works is fixed by our
method. Unlike exist works that use neural networks to pa-
rameterize deep kernel in the GP prior (Wilson et al., 2016),
our variational treatment prevents overfitting and allows
arbitrarily complex networks, which often achieve better
performance than inducing-point approaches in regression
tasks. Finally, we show that our method is a more flexible
alternative for GP inference than existing sparse methods,
which allows us to train deep ConvNets for the inference of
GPs induced from infinite-width Bayesian ConvNets.

1.1. Related work

For a scalable inference in GP models, plenty of work
has been done on developing sparse methods (Quifionero-
Candela & Rasmussen, 2005; Titsias, 2009; Hensman et al.,
2013). These works have made GPs a viable choice for
practical problems by making minibatch training possible.
Our work takes a different approach than these methods
by using inference networks for posterior approximation.
The computation complexity of our method is similar to
sparse methods, but our posterior approximations are much
more flexible. Currently, it is challenging to train such infer-
ence networks in the function space while achieving a good
performance. Our work fills this gap and shows that it is
indeed possible to scalably train them and get a similar, and
sometimes better, performance than sparse GP methods.

A few recent approaches have used inference networks for
posterior approximations in the function space, although
they have not directly applied it to inference in GP mod-
els. For example, Neural Processes (NP) (Garnelo et al.,
2018a;b) uses inference networks on a model with a learned
prior, while Variational Implicit Processes (VIP) (Ma et al.,
2018), in a similar setup, uses a GP for approximations.
Hafner et al. (2018) design a function-space prior called the
noise contrastive prior. The work of Sun et al. (2019) is
perhaps the closest to our approach, but they use an heuris-
tic procedure for minibatch training. Our work proposes a
scalable minibatch training method which is useful for all
of these existing works.

The idea of tracking a learning process to distill informa-
tion has been used in many previous approaches, e.g., Bui
et al. (2017) use streaming variational Bayes for inference

in sparse GPs, while Balan et al. (2015) track stochastic
gradient Langevin dynamics (SGLD) (the teacher) to dis-
till information into a neural network (the student). Our
method can also be interpreted in a teacher-student frame-
work, where the teacher can be obtain from the student
network by taking a stochastic mirror descent step, which
is much cheaper than simultaneously running another infer-
ence algorithm like SGLD.

Some of our inference networks are based on random feature
expansion and are related to existing work on spectrum
approximations for GPs (Lizaro-Gredilla et al., 2010; Gal &
Turner, 2015; Hensman et al., 2018). Among them Lazaro-
Gredilla et al. (2010) does function-space inference and is
similar to our work, but is a full-batch algorithm.

2. Bayesian Inference in GP Models

We start by discussing the challenges associated with exist-
ing methods for inference in GP models, and then discuss
the difficulty in scalable training of inference networks.

2.1. Gaussian Processes

A Gaussian Process (GP) is a stochastic process defined us-
ing a mean function m(x) and covariance function k(x, x’):

f(x) ~ GP (m(x), k(x,x)). (1)

A remarkable property of GPs is that, for any finite num-
ber of inputs X = [x1,...,xy] ', the marginal distribution
of the function values f = [f(x1),..., f(xN)]T follow a
multivariate Gaussian distribution: f ~ A (mp, Kpop),
where D := [1,2,..., N] are the indices of the data ex-
amples, mp is a vector with entries m(x;) and Kp p is a
matrix with (¢, j)’th entry as k(x;, x;). This property can
be utilized to obtain function approximations for the model-
ing of complex data. For example, for regression analysis
given input features X, the function values f can be used
to model the output mean: y ~ N (f, 0°I) where o is the
noise variance. Correlations in the data vector y can now
be explained through the correlation defined using the GP
prior in the function space. This approach is widely used to
design nonlinear methods for supervised and unsupervised
learning.

Given such a prior distribution, the goal of Bayesian in-
ference is to compute the posterior distribution over the
function f(x) evaluated at arbitrary test inputs x. For Gaus-
sian likelihoods such as in regression, due to the conjugacy,
the posterior distribution takes a convenient closed-form
solution, thus the predictive distribution at a test location x*
is available in closed-form:

f)y ~ N (Kl p(Kpp +0*T) ! (y — mp),
ko —kp(Kpp +0°I) 'kp), (2)

Scalable Training of Inference Networks for Gaussian-Process Models

where [k.p|; = k(x*,x;) and k., = k(x*,x*). Equa-
tion (2) is difficult to compute in practice when N is large.
The computational cost of matrix inversion is in O(N?).
This inversion is only possible when N is of moderate size,
usually only a few thousands.

2.2. Sparse Approximations for GPs

Sparse-approximation methods reduce the computation cost
by choosing a small number of M points, where M < N,
to perform the matrix inversion. These points are known as
the inducing points. A variety of such methods have been
proposed (Quifionero-Candela & Rasmussen, 2005) and
they mostly differ in the manner of selection of these points
and the kind of approximations used for the matrix inverse.
Among these, methods based on variational inference are
perhaps one of the most popular (Titsias, 2009). Given M
inducing points Z := [z, 22, . .. ,ZM]T and their function
values u := [f(z1), f(22), ..., f(zar)]", these methods
approximate the posterior distribution p(f, u|y, X, Z) with
a variational distribution ¢(f,u). By restricting the vari-
ational approximation to be ¢(f,u) := ¢(u)p(f|u), the
variational lower bound is greatly simplified,

L(q,Z) := Eqyu)p(e|u) log p(y|f)] —KL[g(u)|p(u)]. (3)

For GP regression, the optimal g(u) is a Gaussian whose
parameters can be obtained in closed-form (Titsias, 2009).
Even though the computation of ¢(u) scales linearly with
N, its covariance matrix can be inverted in O(M?) which
reduces the prediction cost drastically. The linear depen-
dence on N can be further reduced by using a minibatch
training proposed in Hensman et al. (2013), which makes
the method scale well to large data. Sparse variational meth-
ods can scale well, and also perform reasonably with enough
number of properly chosen inducing-points.

In practice, however, the number of inducing points is lim-
ited to make the matrix inversion feasible. This limits the
flexibility of the posterior distribution whose complexity
might grow with the complexity of the problem. Finding
good inducing points is another challenging issue. The
landscape of the lower bound with respect to Z presents a
difficult optimization problem, and, so far, there are no good
methods for this problem.

2.3. Function Space View and Inference Networks

The sparse variational method discussed above can be de-
rived by using a function-space view of GPs. As discussed
in several recent works (Cheng & Boots, 2016; 2017; Mal-
lasto & Feragen, 2017), a GP has a dual representation in
a separable Banach space, which contains the RKHS H
induced by the covariance kernel. This view motivates to
directly apply variational inference in the function space.
Following Cheng & Boots (2016), if we denote the dual rep-

resentation of the posterior and variational distributions by
p(f|y) and ¢(f) respectively, then the variational objective
in the function space can be written as following:

L(q(f)) = Eq(p) logp(y|f)] = KL [g(H)lp(]. 4

We recover the sparse variational GP problem in (3)
when we restrict q(f) o p(fi|u)g(u)|Ka|'/? K, —
K..K, 1Ku*\1/ 2 where f« represents the function out-
puts not covered by u. The two determinants arise from the
change of measure from function f to its outputs: f(x) =

<f’ /{J(X,)>7—l

We can improve the flexibility of the approximations by em-
ploying better choices of ¢(f). Function approximators with
random parameters, such as stochastic neural networks, are
such alternatives, where we can learn to generate functions
that mimic the samples from the posterior. This is illustrated
in Fig. 1. Drawing an analogy to the networks used for
inference in deep generative models (Kingma & Welling,
2013), we call them inference networks. When trained well,
such networks can yield much more flexible posterior ap-
proximations than sparse variational approximation which
is restricted by the choice of inducing points.

Unfortunately, training inference networks is much more
challenging than sparse methods. The sparse approach sim-
plifies the problem to a parametric form where we only need
to deal with a small number inducing points and data exam-
ples. It is challenging to design a similar procedure without
any sparse assumption on g(f).

Existing approaches have mostly relied on heuristic proce-
dures to solve this problem. For example, a recent approach
of Sun et al. (2019) proposes to match marginal distribu-
tions of ¢(f) and p(f|y) at a finite number of measurement
points X pq := [X1,Xs,...,%Xy] " sampled from a distribu-
tion c(x), by minimizing® KL [q(faq)||p(fm|y)] where faq
are the function values at X 5. This is a reasonable criterion
to match two GPs, since they are completely determined
by their first two moments and the solution is unique when
M > 2 (Sun et al., 2019). However, this is challenging to
optimize due to the dependence of the term p(f|y) on the
whole dataset y. Sun et al. (2019) propose to pick subsets
of data at each iteration but then the minimization prob-
lem no longer corresponds to matching ¢(f) and p(f|y)
faithfully. Many other existing works on function-space in-
ference with neural networks face similar challenges when
it comes to minibatch training (Wang et al., 2019; Ma et al.,
2018; Hafner et al., 2018). Such scalable training of infer-
ence network, while maintaining meaningful correlations in
function outputs for a large dataset, remains a challenging
problem.

2We drop the dependence of p and ¢ on training data X and
sampled locations X 4.

Scalable Training of Inference Networks for Gaussian-Process Models

3. Scalable Training of Inference Networks

We present a new algorithm to scalably train inference net-
works by using minibatches. Our main idea is to track a
stochastic, functional mirror descent algorithm to enable ef-
ficient minibatch training. We start with a brief description
of the mirror descent algorithm.

3.1. Stochastic Functional Mirror Descent Algorithm

We follow the functional mirror-descent method proposed
in Dai et al. (2016); Cheng & Boots (2016) to optimize (4).
The functional mirror descent algorithm is an extension of
gradient descent where gradient steps are taken in a function
space and the length of the steps is measured by using
a Bregman divergence (e.g., KL) instead of a Euclidean
distance. A stochastic version of this algorithm is analogous
to stochastic gradient descent where a minibatch of data
could be used to build a stochastic approximation of the
functional gradient. The method takes the following form:

. 1
Q1 = arg;rlaX/ﬁﬁ(Qt)Q(f)df - EKL [qllq:] -

where ¢ is the iteration, 5; > 0 is the learning rate,
@ := q:(f) is the previous approximation, and 9L(q;) =
N log p(yn|f)+logp(f)—1log g:(f) is an unbiased stochas-
tic approximation of the functional gradient of L(q) at
q = q; obtained by randomly sampling a data example n.
An attractive property is that there is a closed-form solution
given as follows,

Q1 () < p(ynl V()P e ()P (6)

This update can be seen as an adaptive Bayesian filter where
the previous posterior approximation ¢ (f) is used to modify
the prior distribution p(f) and a likelihood of the subsam-
pled data is used to update the posterior approximation. We
note that the functional mirror descent is equivalent to natu-
ral gradient for exponential family densities. In appendix A
we provide an alternative derivation of (6) by taking natural
gradient on the exponential family representation of GP.

Each step of this algorithm only requires subsampling a
single data point, which makes it attractive for our purposes.
The algorithm is also guaranteed to converge to the true
posterior p(f|y) as discussed in Dai et al. (2016), where a
particle-based approach is proposed for the update in (6).
Khan & Lin (2017) used a parametric version where the
update can be performed analytically. Our case is different
from these works because the random variable is a function,
thus infinite-dimensional and difficult to be represented in
a compact form. We instead use an inference network to
implement this filter. We will use a version of (6) to com-
pute stochastic gradients and update the parameters of the
inference network. This is explained next.

3.2. Minibatch Training of Inference Networks

We propose a tractable approximation to (6) by bootstrap-
ping from the inference network at each iteration. We
denote the inference network by ¢, (f) where « is the
set of parameters that we wish to estimate. We assume
that we can evaluate the network at a finite set of M
points X := [X1,Xs,...,Xas] " and that, just like a GP,
the evaluated points follow a Gaussian distribution, i.e.,
¢y(frm) = N(par, X pm), where g and X are the
mean and covariance that depend on the parameter ~y. In sec-
tion 4, we will give many examples of inference networks
that have this property.

With such a ¢, (f), we hope to track (6), so that ¢, (f)
moves closer to the true posterior process than g¢., (f). For
this purpose, an obvious solution is to replace ¢;(f) by
¢+, (f), i.e., we can bootstrap from the current posterior
approximation given by the inference network:

Ge+1(f) o< pynl HNPp(£)Pq, ()P (D)

The idea of bootstrap has long been used in particle filter-
ing (Doucet et al., 2001) to obtain better posterior approxi-
mations. An attractive property of (7) for GP regression is
that, given inputs X »,, all the quantities in the right hand
side follow a Gaussian distribution, therefore ¢;4; has a
Gaussian distribution whose mean and covariance are avail-
able in closed-form. The last two terms in (7) are Gaussian
and can be multiplied to get the new GP prior:

(fM’f"L)/th'Yf(fM?)1 P
([e e]) e
KMM Knmn .
n./\/l Knn

(1-8¢)
B YMmmM Bman
XN([" H Sl e

where m and K denotes the new mean and covariance.
Using this in (7) and multiplying by the Gaussian likelihood,
we get the following new GP regression problem, which has
a closed-form solution similar to (2):

Cjt+1(f./\/lafn) O(N(yn‘fnvaz/(Nﬂt))
m Kvm Kan

The marginal G;+1(fr() can be read from this directly.
Though we have access to any finite marginal distribution of
Gr+1(f), mapping this to the inference network parameters
is difficult. We can use the approach of Sun et al. (2019)
to match the marginals of the ¢, (f) and g1 (f) at finite

Scalable Training of Inference Networks for Gaussian-Process Models

Algorithm 1 GPNet for supervised learning

Input: {(x,,9,)}_1, c(x), M, T, B, 7.
1: Initialize the inference network g..
2: for t=1,...,T do
3: Randomly sample a training data (X, y»,).

4: Sample X = (x1,. .., %)) from c(x).
5. if Gaussian likelihood then
6: Compute G;y1(fr) using (10).
7: Yer1 < e — VKL g5 (Er0) | Ger1 (Er0)]-
8: else

9: Ver1 < Ve + 1V Le(Gyi e Xm)-
10: end if
11: end for

12: return g,,.

number of measurement points X o4 sampled from a distri-
bution ¢(x), i.e., we update ~ using the gradient of the KL
divergence as shown below, where 7 is the learning rate:

Yit1 = Yo = NVAKL [qv(fM)H@tH(fM)HvZ% SNCRY)

When the likelihood is non-Gaussian, ¢;+1(fx) does not
have a closed-form expression. We propose to upper bound
KL [gy (fa1) ||Ge+1 (£a4)] with the KL divergence between
the two joint distributions KL [g+ (fa4, fn)||Ge+1(Ert, fr)]-
Minimizing this is equivalent to maximizing:

Et(q% q’)’f,?XM) = Eqw(fM,fn) [NﬂtIng(yn|fn)+

Belog p(fat,fn) +(1—B) log g5, (Fa, fr) —log g5(Er,fn)] -

Our method is similar in spirit to RL methods such as tempo-
ral difference learning with function approximators (Sutton
& Barto, 1998), which also employs stochastic gradients to
bootstrap from existing value function approximation. Their
success indicates that taking a gradient step with a small
step size here might ensure good performance in practice.

3.3. Algorithm

We name our algorithm Gaussian Process Inference Net-
works (GPNet), which is summarized in Algorithm 1. For
each iteration of our algorithm, the stochastic mirror descent
update is computed by subsampling a datapoint from the
training set, then the inference network is trained to track the
update at a set of measurement locations sampled from c(x).
Though we have described the algorithm using a single data
example, it is straightforward to extend it to minibatches.

The computation cost in case of GP regression is the cost of
matrix inversion which is O(M?3). Note that, unlike sparse
methods, M does not have to be large for a flexible inference.
The inference network can be a complex model containing
neural networks which can be very flexible. Our procedure
essentially uses M locations to be able to compute stochastic
gradients to update the parameters of the network.

Choice of ¢(x): Previous works on function-space infer-
ence (Sun et al., 2019; Wang et al., 2019; Hafner et al.,
2018) have studied ways to sample the measurement points.
The general approach is to apply uniform sampling in the
input domain for low-dimensional problems; while for high-
dimensional input space, we can sample “near” the training
data by adding noise to them. A useful trick for RBF kernels
is to set ¢(x) as the training distribution convolved with the
kernel. In applications where the input region of test points
is known, we can set the ¢(x) to include it.

Hyperparameter selection: We set 3; = Bo(1+&v/t) ™!
to ensure that the original stochastic mirror descent con-
verges. Typical values are {1,0.1,0.01} for 5y, and {1,0.1}
for £&. We can update GP hyperparameters when needed
in an online fashion using the lower bound of minibatch
log marginal likelihood:), s Eq, > .o plogp(yi|fi) —
KL [¢:(f:)|lp(fi)], which is similar to sparse variational
methods. In our experiments the learning rate for GP hyper-
parameters is the same as 7).

4. Examples of Inference Networks for GPs

So far we have used ¢ (f) to denote the inference networks,
without discussing how to construct them. Below we explore
several types of networks that can be used in GPNet.

4.1. Bayesian Neural Networks (BNN)

A well-known fact in the community is: The function de-
fined by a single-layer fully-connected neural network (NN)
with infinitely many hidden units and independent weight
randomness is equivalent to a GP (Neal, 1995). Recently, the
result is extended to deep NNs (Lee et al., 2018; Matthews
et al., 2018; Garriga-Alonso et al., 2019; Novak et al., 2019).
This equivalence has motivated the use of BNNs as inference
networks to model the distribution of functions (Sun et al.,
2019; Wang et al., 2019). Given a neural network g(x; €2),
where (2 denotes the network weights, a BNN is constructed
by introducing weight randomness: € ~ A (Qg, V). Typi-
cally V is a factorized or matrix-variate Gaussian that fac-
torizes across layers. In this case the inference network
parameters should be v = {Qg, V}.

However, this approach has several problems. First, the
output density of BNN is intractable. In Flam-Shepherd
et al. (2017); Wang et al. (2019) this difficulty is addressed
by approximating the output distribution as a Gaussian and
estimating the moments from samples, but drawing sam-
ples is costly due to many forward passes through the NN.
The covariance estimate will present large variance for the
typical sample size we can afford. In Sun et al. (2019) the
situation is improved by directly estimating the gradients
Ve, log q(fa1) instead of the moments, with a low-variance
but biased gradient estimator (Shi et al., 2018). However, the
sample size still needs to be hundreds. Moreover, because

Scalable Training of Inference Networks for Gaussian-Process Models

the stochastic process defined by finite-width BNNs may
not be a GP, it is unclear whether matching finite marginal
distributions would suffice to match two processes.

4.2. Tractable Variants

Given the problems faced with BNNs, we explore two more
types of inference networks that are equivalent to GPs. Both
approaches naturally arise from the feature-space repre-
sentation of GPs. It is known that for a Bayesian linear
regression with input feature ¢(x) and Gaussian weights
w ~ N (0, X), the output distribution is equivalent to a GP
with the covariance k(x, x’) = ¢(x) " ¢p(x’) (Rasmussen
& Williams, 2006). In general, any positive definite kernel
k(x,x’) can be written as the inner product of two feature
maps ¢(x) and ¢(x’). As long as we know the ¢(x) that
corresponds to the kernel, we can interpret our GP latent
function f ~ GP(0, k) as a parametric model:

fx) =wo(x), w~N(O]I) (12)
We could define the variational process in a similar form:
o(f):) =wo(x), w~NmV), (13

where {m, V'} are the parameters of the inference network.

Random Feature Expansion (RFE) For GPs with sta-
tionary kernels (i.e., kernels that only depend on the dif-
ference between inputs, k(x,x’) = ¢)(x — x’)), Bochner’s
theorem guarantees that the covariance function can be writ-
ten as a Fourier transform:

k(x,x) = /eiST("*x/)‘TJ(S)ds7 (14)

where p(s) is a spectral density in one-to-one correspon-
dence with . Random Fourier features (Rahimi & Recht,
2008) is an approximation to kernel methods which gives
explicit feature maps. The key observation is that eq. (14)
can be approximated by Monte-Carlo:

M
1
k(x,x') ~ 1 Z cos(s, (x —x')), sy~ p(s),
m=1

where the imaginary part is zero. Defining ¢,(x) =

ﬁ[cos(s]—x), ...,cos(sh,x),sin(s{ x),...,sin(s},x)] T,

we can use it as the approximate feature map:
k(x,x') =~ ¢.(x)"¢.(x'). When using random
Fourier features, the inference network w'g,(x) is a
neural network with one hidden layer. The activation
functions for the hidden layer are cos and sin. s1,...,Su
and w serve as the input-to-hidden and the hidden-to-output
weights, respectively. This architecture is called Random
Feature Expansion in Cutajar et al. (2016), where they
use a multi-layer stack to mimic a deep GP prior, though
inference is still in the weight space. As done in their work,
we relax si,...,Ss to be trainable so that the inference
network parameters are v = {m, V,s1.5/}.

Deep Neural Networks It is not always easy to explic-
itly write the inner-product form of a given kernel except
the stationary case discussed. We may need a black-box
approach, e.g., to parameterize ¢(x) with a function ap-
proximator such as neural networks with general nonlin-
earities (e.g., ReLU and tanh) and fit it during inference.
In Snoek et al. (2015) a similar architecture called adap-
tive basis regression networks was proposed as priors in
Bayesian optimization. Similar to their observations, we
have found that this type of networks require significant
effort to tune. Inspired by the Fisher kernel (Jaakkola &
Haussler, 1999), we also considered an alternative feature
map: the vector of how much information stored in each
weight parameter, measured by the gradients of network
outputs with respect to weights Vqg(x;). Plugging into
¢(x), we get a Neural Tangent Kernel (Jacot-Guillarmod
etal,, 2018): kntk (%, X') = Vag(x; Q) " VVag(x; Q).
The performance of an inference network parameterized in
this way is similar to a BNN because the NTK can be in-
terpreted as introducing weight randomness on a first-order
expansion of neural networks:

9(x; Q) = g(x;Q0) + Vag(x; 20)(2 — Qo),

where if @ ~ N (g, V) then it is equivalent to the GP:
f~GP(g(-;Qo), kntk). As seen, the mean function is as
flexible as a deep NN, while the kernel utilizes the gradients
as features. In some of our experiments we found it faster
to converge than adaptive-basis ones, but the drawback is
much higher computational cost due to backpropagation
through Jacobians.

S. Experiments

Throughout all experiments, M denotes both the num-
ber of inducing points in SVGP and the number of mea-
surement points in GPNet and FBNN (Sun et al., 2019).
Implementations are based on a customized version of
GPflow (de G. Matthews et al., 2017; Sun et al., 2018) and
ZhuSuan (Shi et al., 2017). Code is available at https:
//github.com/thjashin/gp-infer—net.

5.1. Synthetic Data

We consider the inference of a GP with RBF kernel on
the synthetic dataset introduced in Snelson & Ghahramani
(2006). We analyze the properties of our method and com-
pare with SVGP and FBNN (Sun et al., 2019). We fit these
algorithms with minibatch size 20 on 100 data points. We
ran for 40K iterations and used learning rate 0.003 for all
methods. For fair comparison, for all three methods we pre-
train the prior hyperparameters for 100 iterations using the
GP marginal likelihood and keep them fixed thereafter. We
vary M in {2, 5,20} for all methods. The networks used in
GPNet and FBNN are the same RFE with 20 hidden units.

https://github.com/thjashin/gp-infer-net
https://github.com/thjashin/gp-infer-net

Scalable Training of Inference Networks for Gaussian-Process Models

(@)

(b)

Figure 2. Posterior process on the Snelson dataset, where shaded areas correspond to intervals of +3 standard deviations, and dashed
lines denote the ground truths. (a) Top row: SVGP with M € {2,5,20} (left to right) inducing points; Bottom row: GPNet with
M € {2,5,20} measurement points. (b) Top: FBNN, M = 20; Bottom: GPNet, M = 20.

Results are plotted in Fig. 2. We can see that the perfor-
mance of SVGP grows with more inducing points. When
M = 20, both SVGP and GPNet can recover the exact
GP prediction. GPNet fits the data better when M = 2, 5.
This is because M does not constrain the capacity of the
inference network, though it does affect the convergence
speed, i.e., smaller M causes larger variance in the training.
In Fig. 2b we take a closer look at the predictions by GPNet
and FBNN near the training data. We can see that FBNN
consistently overestimates the uncertainty. This effect can
be well explained by their heuristic way of doing minibatch,
that in each iteration they fit a different objective to match
the local effect of 20 training points in a minibatch, while
our stochastic mirror descent maintains a shared global ob-
jective that takes all observations into consideration.

5.2. Regression

Benchmarks We evaluate our method on seven standard
regression benchmark datasets. We use RFE networks with
1000 hidden units for this task. Following the settings of
Salimbeni & Deisenroth (2017), we compare to the strong
baselines: SVGP with 100 and 500 inducing points. We
also compare to FBNN using the same inference network
as in GPNet’. To put the comparison into a wider con-
text, we include the results by probabilistic backpropaga-
tion (PBP) (Hernandez-Lobato & Adams, 2015), which is
an effective weight-space inference method for BNNs. De-
tails of datasets and experiment settings can be found in
appendix B. Results are summarized in Fig. 3. We can see
that GPNet has comparable or smaller RMSE than SVGP on
most datasets, and the performance gap is often large when
comparing them given M = 100. This demonstrates the ef-
fectiveness of inference networks than inducing points given

3Though the algorithm of Sun et al. (2019) is designed for
BNN:g, it also applies to other types of inference networks.

Table 1. Large-scale regression on the airline dataset.

METRIC | M=100 \ M=500

| SVGP GPNET FBNN | SVGP GPNET FBNN
RMSE | 24261 24.055 23.801 | 23.698 23.675 24.114
TestLL | -4.618 -4.616 -4.586 | -4.594 -4.601 -4.582

similar computational complexity. The regression results on
small datasets including Boston, Concrete and Energy show
that overfitting is not observed with our powerful networks.
Note that these three datasets only contain 1-2 minibatches
of data, thus the performance of FBNN and GPNet are com-
parable because minibatch training is not an issue; while on
larger datasets such as Kin8nm, Power and Wine, GPNet
consistently outperforms FBNN. We find on Protein GPNet
is slower to converge than other methods, and increasing
the training iterations will give far better performance.

Airline Delay To demonstrate the advantage of our mini-
batch algorithm on large-scale datasets, we conducted ex-
periments on the airline delay dataset, which includes 5.9
million flight records in the USA from Jan to Apr in 2018.
Following the protocol in Hensman et al. (2013), we ran-
domly take 700K points for training and 100K for testing.
The results are shown in Table 1. Experiment details can be
found in appendix B. We can see that GPNet achieves best
RMSE among three methods and has comparable test log
likelihoods with SVGP. The RMSE gap between M = 100
and M = 500 for SVGP is larger than that of GPNet, which
again demonstrates that the power of our inference network
is not limited by M . Interestingly, larger M seems to cause
underfitting of FBNN and leads to worse RMSE, which may
also be due to the minibatch issue.

5.3. Classification

Finally, we demonstrate the flexibility of GPNet by fit-
ting a deep convolutional inference network for a CNN-

Scalable Training of Inference Networks for Gaussian-Process Models

7 7 7 7 7 7
] ! ' ' ! !
! ! ' ! ' !
PBP 1 -l i * A 1 - A I
: : : : | '
SVGP, M=50) | —i— —— Y < —Cg—— @ | =
SVGP =100 | ~— —p| | & << —~S= < s
H f
GPNet, M=500 | ~<@—— —~————— e ! *—
| < — | | & < . -
GPNet, M=100 | ~<(— —————t— < ~== < <> —_—
' ' '
PN, Nt | < — —— & << D ; <~
H i f i i 1
2 1 6 5 6 0.5 10 15 0.06 0.08 0.10 3.5 1.0 1.5 3.5 1.0 1.5 0.5 0.6 0.7
boston concrete energy kin8nm power protein wine red
; 7 7
!]]
PBP - w N N . a i
!
i p— —— R —
SVGP, M=500 —— — 2 : 'y
SVGP N=100 | ———<a— ;* —> 3 —l— 4 =
GPNet, M=500 — ————— E = — —_———
GPNet, M=100 — ——— $® — —— ——r —_——
i '
BN, M= —— i . —_—
FBNN, M=500 ‘ | -0 R *E e .

-3 -2 ~3.50
boston

20 -15 -10 05
concrete energy

H H
12 -29 -28 -27 -35 -30 ~10 -0.8
kin8nm power protein wine red

Figure 3. Regression results on benchmark datasets. Top row: Test RMSE; Bottom row: Test log likelihood. All results are drawn as
violin plots which shows a kernel density of results on different splits, except for PBP we only have the mean and standard error, so an

error bar is drawn instead.

Table 2. Image classification: Test error rates.

METHODS MNIST CIFARIO
SVGP, RBF-ARD (Krauth et al., 2016) 1.55% -
Conv GP (van der Wilk et al., 2017) 1.22% 35.4%
SVGP, CNN-GP (Garriga-Alonso et al., 2019) 2.4% -
GPNet, CNN-GP 1.12% 24.63 %
NN-GP (Lee et al., 2018) 1.21% 44.34%
CNN-GP (Garriga-Alonso et al., 2019) 0.96% .
ResNet-GP (Garriga-Alonso et al., 2019) 0.84% -
CNN-GP (Novak et al., 2019) 0.88% 32.86%

GP (Garriga-Alonso et al., 2019), whose covariance kernel
are derived from an infinite-width Bayesian ConvNet (see
appendix B.3 for detailed derivation of the GP prior).

Previously, inference for GPs with such a kernel has only
been investigated through exact prediction (Garriga-Alonso
et al., 2019; Novak et al., 2019), where the classification
problem is treated as regression so that eq. (2) applies.
Though this is done for datasets like MNIST and CIFAR10
in recent works, O(N3) complexity is impractical for the
method to be widely adopted. A scalable option would
be sparse approximations. We tried SVGP for this prior.
However, we found the training is unstable if we update
the inducing point locations. Initializing them with data or
with K-means centers both result in numerical errors that
prevent the method from learning. There are no other results
reported using SVGP for such kernels except in Garriga-
Alonso et al. (2019), where they also fix the inducing point
locations (1000 training data were used). We believe it is
due to the difficulty of finding good inducing point locations
in such a high-dimensional input space of images.

We test GPNet on MNIST and CIFAR10 with a CNN-GP
prior. The ConvNet that defines this prior has 6 residual

blocks (details in appendix B). It is natural to use the original
ConvNet with trainable weight randomness as the inference
network (¢(f)) for this CNN-GP. However, as discussed in
section 4, using a BNN results in intractable output distri-
butions which require many efforts to address. To avoid
this, we use a deterministic ConvNet with an NTK on top
of it defined using the fully-connected layers. This enables
flexible covariance modeling while still allowing an efficient
training. With the non-conjugate form of our algorithm, we
are free to use a softmax likelihood, which is more suitable
to classification tasks.

Results are compared to recent works in table 2. The
first half of the table are approximate inference approaches
with classification likelihoods, while the second half does
exact prediction by GP regression. By comparing to
carefully-designed inducing-point approaches such as Conv
GP (van der Wilk et al., 2017), we can clearly see the ad-
vantage of our method, i.e., easily scaling up GP inference
to highly-structured kernels by using flexible inference net-
works that match the structures, while getting superior per-
formance than carefully-designed inducing-point methods.

6. Conclusion

We propose an algorithm to scalably train a stochastic infer-
ence network to approximate the GP posterior distribution.
In the algorithm the inference network is trained by tracking
a stochastic functional mirror descent update which is cheap
to compute from the current approximation using a mini-
batch of data. Experiments show that our algorithm fixes
the minibatch issue of previous works on function-space
inference. Empirical comparisons to sparse variational GP
methods show that our method is a more flexible alternative
to GP inference.

Scalable Training of Inference Networks for Gaussian-Process Models

Acknowledgements

We thank Ziyu Wang, Shengyang Sun, Ching-An Cheng
for helpful discussions and Hugh Salimbeni for help with
the experiments. JS was supported by a Microsoft Research
Asia Fellowship. This work was supported by the National
Key Research and Development Program of China (No.
2017YFA0700904), NSFC Projects (Nos. 61620106010,
61621136008, 61571261), Beijing NSF Project (No.
L172037), DITD Program JCKY2017204B064, Tiangong
Institute for Intelligent Computing, Beijing Academy of
Atrtificial Intelligence (BAAI), NVIDIA NVAIL Program,
and the projects from Siemens and Intel.

References

Balan, A. K., Rathod, V., Murphy, K. P, and Welling, M.
Bayesian dark knowledge. In Advances in Neural Infor-
mation Processing Systems, pp. 3438-3446, 2015.

Bauer, M., van der Wilk, M., and Rasmussen, C. E. Under-
standing probabilistic sparse Gaussian process approxi-
mations. In Advances in Neural Information Processing
Systems, pp. 1533-1541, 2016.

Bernardo, J., Berger, J., Dawid, A., Smith, A., et al. Re-
gression and classification using Gaussian process priors.
Bayesian statistics, 6:475, 1998.

Bui, T. D., Nguyen, C., and Turner, R. E. Streaming sparse
Gaussian process approximations. In Advances in Neural
Information Processing Systems, pp. 3299-3307, 2017.

Cheng, C.-A. and Boots, B. Incremental variational sparse
Gaussian process regression. In Advances in Neural In-
formation Processing Systems, pp. 4410-4418, 2016.

Cheng, C.-A. and Boots, B. Variational inference for Gaus-
sian process models with linear complexity. In Advances
in Neural Information Processing Systems, pp. 5184—
5194, 2017.

Cutajar, K., Bonilla, E. V., Michiardi, P., and Filippone, M.
Random feature expansions for deep Gaussian processes.
arXiv preprint arXiv:1610.04386, 2016.

Dai, B., He, N., Dai, H., and Song, L. Provable Bayesian
inference via particle mirror descent. In Artificial Intelli-
gence and Statistics, pp. 985-994, 2016.

Damianou, A. and Lawrence, N. Deep Gaussian processes.
In Artificial Intelligence and Statistics, pp. 207-215,
2013.

Damianou, A. C., Titsias, M. K., and Lawrence, N. D. Vari-
ational inference for latent variables and uncertain inputs
in Gaussian processes. Journal of Machine Learning
Research, 17(42):1-62, 2016.

de G. Matthews, A. G., van der Wilk, M., Nickson, T., Fujii,
K., Boukouvalas, A., Leén-Villagra, P., Ghahramani, Z.,
and Hensman, J. GPflow: A Gaussian process library us-

ing TensorFlow. Journal of Machine Learning Research,
18(40):1-6, 2017.

Doucet, A., De Freitas, N., and Gordon, N. An introduction
to sequential monte carlo methods. In Sequential Monte
Carlo methods in practice, pp. 3—14. Springer, 2001.

Eldredge, N. Analysis and probability on infinite-
dimensional spaces. arXiv preprint arXiv:1607.03591,
2016.

Flam-Shepherd, D., Requeima, J., and Duvenaud, D. Map-
ping Gaussian process priors to Bayesian neural networks.
NIPS Bayesian Deep Learning Workshop, 2017.

Gal, Y. and Turner, R. Improving the Gaussian process
sparse spectrum approximation by representing uncer-
tainty in frequency inputs. In International Conference
on Machine Learning, pp. 655-664, 2015.

Garnelo, M., Rosenbaum, D., Maddison, C., Ramalho, T.,
Saxton, D., Shanahan, M., Teh, Y. W., Rezende, D., and
Eslami, S. A. Conditional neural processes. In Interna-
tional Conference on Machine Learning, pp. 1690-1699,
2018a.

Garnelo, M., Schwarz, J., Rosenbaum, D., Viola, F.,
Rezende, D. J., Eslami, S., and Teh, Y. W. Neural pro-
cesses. arXiv preprint arXiv:1807.01622, 2018b.

Garriga-Alonso, A., Rasmussen, C. E., and Aitchison, L.
Deep convolutional networks as shallow Gaussian pro-
cesses. In International Conference on Learning Repre-
sentations, 2019.

Hafner, D., Tran, D., Irpan, A., Lillicrap, T., and David-
son, J. Reliable uncertainty estimates in deep neural

networks using noise contrastive priors. arXiv preprint
arXiv:1807.09289, 2018.

Hensman, J., Fusi, N., and Lawrence, N. D. Gaussian
processes for big data. arXiv preprint arXiv:1309.6835,
2013.

Hensman, J., Durr, N, e, and Solin, A. Variational fourier
features for Gaussian processes. Journal of Machine
Learning Research, 18(151):1-52, 2018.

Hernandez-Lobato, J. M. and Adams, R. Probabilistic back-
propagation for scalable learning of Bayesian neural net-

works. In International Conference on Machine Learning,
pp. 1861-1869, 2015.

Jaakkola, T. and Haussler, D. Exploiting generative mod-
els in discriminative classifiers. In Advances in Neural
Information Processing Systems, pp. 487-493, 1999.

Scalable Training of Inference Networks for Gaussian-Process Models

Jacot-Guillarmod, A., Gabriel, F., and Hongler, C. Neural
tangent kernel: Convergence and generalization in neural
networks. In Advances in Neural Information Processing
Systems, pp. 8580-8589. 2018.

Kanagawa, M., Hennig, P., Sejdinovic, D., and Sriperum-
budur, B. K. Gaussian processes and kernel methods: A
review on connections and equivalences. arXiv preprint
arXiv:1807.02582, 2018.

Khan, M. and Lin, W. Conjugate-computation varia-
tional inference: Converting variational inference in non-
conjugate models to inferences in conjugate models. In
Artificial Intelligence and Statistics, pp. 878-887, 2017.

Kingma, D. P. and Welling, M. Auto-encoding variational
bayes. arXiv preprint arXiv:1312.6114, 2013.

Krauth, K., Bonilla, E. V., Cutajar, K., and Filippone, M. Au-
toGP: Exploring the capabilities and limitations of Gaus-
sian process models. arXiv preprint arXiv:1610.05392,
2016.

Lawrence, N. Probabilistic non-linear principal component
analysis with Gaussian process latent variable models.
Journal of Machine Learning Research, 6(Nov):1783—
1816, 2005.

Lazaro-Gredilla, M., Quinonero-Candela, J., Rasmussen,
C. E., and Figueiras-Vidal, A. R. Sparse spectrum Gaus-
sian process regression. Journal of Machine Learning
Research, 11:1865-1881, 2010.

Lee, J., Sohl-dickstein, J., Pennington, J., Novak, R.,
Schoenholz, S., and Bahri, Y. Deep neural networks
as Gaussian processes. In International Conference on
Learning Representations, 2018.

Ma, C., Li, Y., and Hernandez-Lobato, J. M. Variational
implicit processes. arXiv preprint arXiv:1806.02390,
2018.

MacKay, D. J. Bayesian non-linear modeling for the pre-
diction competition. In Maximum Entropy and Bayesian
Methods, pp. 221-234. Springer, 1996.

Mallasto, A. and Feragen, A. Learning from uncertain
curves: The 2-wasserstein metric for Gaussian processes.

In Advances in Neural Information Processing Systems,
pp. 5660-5670, 2017.

Matthews, A. G. d. G., Rowland, M., Hron, J., Turner, R. E.,
and Ghahramani, Z. Gaussian process behaviour in wide
deep neural networks. arXiv preprint arXiv:1804.11271,
2018.

Neal, R. M. Bayesian Learning for Neural Networks. PhD
thesis, University of Toronto, 1995.

Novak, R., Xiao, L., Bahri, Y., Lee, J., Yang, G., Abolafia,
D. A., Pennington, J., and Sohl-dickstein, J. Bayesian
deep convolutional networks with many channels are
Gaussian processes. In International Conference on
Learning Representations, 2019.

Quifionero-Candela, J. and Rasmussen, C. E. A unifying
view of sparse approximate Gaussian process regression.
Journal of Machine Learning Research, 6(Dec):1939—
1959, 2005.

Rahimi, A. and Recht, B. Random features for large-scale
kernel machines. In Advances in Neural Information
Processing Systems, pp. 1177-1184, 2008.

Raskutti, G. and Mukherjee, S. The information geometry
of mirror descent. IEEE Transactions on Information
Theory, 61(3):1451-1457, 2015.

Rasmussen, C. E. and Williams, C. K. Gaussian processes
for machine learning. MIT Press, 2006.

Salimbeni, H. and Deisenroth, M. Doubly stochastic vari-
ational inference for deep Gaussian processes. In Ad-
vances in Neural Information Processing Systems, pp.
4588-4599, 2017.

Shi, J., Chen, J., Zhu, J., Sun, S., Luo, Y., Gu, Y., and Zhou,
Y. ZhuSuan: A library for Bayesian deep learning. arXiv
preprint arXiv:1709.05870, 2017.

Shi, J., Sun, S., and Zhu, J. A spectral approach to gradient
estimation for implicit distributions. In International
Conference on Machine Learning, pp. 4651-4660, 2018.

Snelson, E. and Ghahramani, Z. Sparse Gaussian processes
using pseudo-inputs. In Advances in Neural Information
Processing Systems, pp. 1257-1264, 2006.

Snoek, J., Rippel, O., Swersky, K., Kiros, R., Satish, N.,
Sundaram, N., Patwary, M., Prabhat, M., and Adams,
R. Scalable Bayesian optimization using deep neural net-
works. In International Conference on Machine Learning,
pp- 2171-2180, 2015.

Sun, S., Zhang, G., Wang, C., Zeng, W., Li, J., and Grosse,
R. Differentiable compositional kernel learning for Gaus-
sian processes. In International Conference on Machine
Learning, pp. 4835-4844, 2018.

Sun, S., Zhang, G., Shi, J., and Grosse, R. Functional
variational Bayesian neural networks. In International
Conference on Learning Representations, 2019.

Sutton, R. S. and Barto, A. G. Reinforcement learning - an
introduction. MIT Press, 1998.

Scalable Training of Inference Networks for Gaussian-Process Models

Titsias, M. Variational learning of inducing variables in
sparse Gaussian processes. In Artificial Intelligence and
Statistics, pp. 567-574, 2009.

van der Wilk, M., Rasmussen, C. E., and Hensman, J. Con-
volutional Gaussian processes. In Advances in Neural
Information Processing Systems, pp. 2849-2858, 2017.

Wainwright, M. J., Jordan, M. L., et al. Graphical models,
exponential families, and variational inference. Founda-
tions and Trends®) in Machine Learning, 1(1-2):1-305,
2008.

Wang, Z., Ren, T., Zhu, J., and Zhang, B. Function space
particle optimization for Bayesian neural networks. In

International Conference on Learning Representations,
2019.

Williams, C. K. and Barber, D. Bayesian classification
with Gaussian processes. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 20(12):1342—-1351,
1998.

Williams, C. K. and Rasmussen, C. E. Gaussian processes
for regression. In Advances in Neural Information Pro-
cessing Systems, pp. 514-520, 1996.

Wilson, A. G., Hu, Z., Salakhutdinov, R., and Xing, E. P.
Deep kernel learning. In Artificial Intelligence and Statis-
tics, pp. 370-378, 2016.

