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Supplemental materials
Definition 1. (k, δ)-RIP. A matrix A ∈ IRl×d has (k, δ)-
restricted isometry property if

(1− δ) ‖y‖22 ≤
∥∥ATy∥∥2

2
≤ (1 + δ) ‖y‖22 (20)

where y can be recovered with sparsity level k.

With a fixed sparsity level, A can be efficiently gener-
ated from appropriate distributions as a uni-variant Gaus-
sian (Rudelson & Vershynin, 2006):

Theorem 1. A Matrix A ∈ IRl×d is (k, δ)-RIP if Ai,j ∼
N (0, l−1), where i ∈ [1, l], j ∈ [1, d], and d =
O(k log( lk )).

The big-O notation indicates the upper bound of the com-
pressing rate. Intuitively, if d is set to be smaller than the
bound, then it is impossible to fully recover the compressed
signal y ∈ IRl from k-sparse signal r ∈ IRd.

Pseudo Code of Multi-label Active Learning

Algorithm 1 Data sampling from unlabeled pool Xu

Input: X,Y,Xu {training data and unlabeled pool}
Output: z∗ {optimal data sample}

Conduct compressed sensing on the training label matrix Y
R← CS(Y )
Conduct BPCA to generate target space U
for all x ∈ X do
〈ux〉 = M−1WT

ML(r − r̄) {using eq. (3)}
end for
Optimize MOGP hyper-parameters using B-OPT/S-OPT
for all g ∈ 1..p do

Compute the covariance matrix C(z)g,g for the g-th target
using eq. (4)

end for
Select data sample z∗ using eq. (13)

Searching θnew in Simplex Optimization

The θnew is assumed to be located on the straight line
passing through θ̂ and θmin and the update rules of
θnew can be obtained by examining the reflection point,
θref = θ̂ + β(θ̂ − θmin) and the expansion point, θexp =

θref + γ(θref − θ̂) according to three cases:

1. (Expansion search) If L(θmax) < L(θref ), then

θnew =

{
θexp if L(θexp) > L(θref )

θref otherwise

2. (Reflection search) If min{L(θi)|θi 6= θmin} <
L(θref ) < L(θmax), then

θnew = θref

3. (Contraction search) If L(θref ) < min{L(θi)|θi 6=
θmin}, then

θnew =

{
λθmin + (1− λ)θ̂ if L(θref ) < L(θmin)

λθref + (1− λ)θ̂ otherwise

Parameters β > 0, γ > 0, and 0 < λ < 1 are used to
control the rate of reflection, expansion, and contraction,
respectively. The simplex method requires no parameter
candidates for the search, which makes the searching range
almost unbounded as the iteration goes. Each iteration in the
parameter searching process is analogous to a binary search
over one dimension of the searching space when β = 1,
γ = 1, and λ = 0.5.

Additional Results
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Figure 8. Rare Label Prediction Comparison

Figure 8 shows the recall performance on the three remain-
ing datasets. In Table 3, we count the number of labels that
are totally missed by each model. A label is missed by the
model if the model predicts no true positives for that label.
In general, rare labels can be missed by the model easily
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Table 3. Missed Labels
Dataset Adaptive CS-BPCA-GP

Delicious 9 2
BookMark 7 1
WebAPI 13 5
Corel5K 28 17
Bibtex 18 10

as the information learned from the feature space is insuffi-
cient for model training. However, our proposed model can
reduce the missing label by utilizing the label correlation
as additional information for training. The result in Table 3
show that the proposed model has less number of missing
labels thus is more robust in terms of multi-label prediction
compared with the adaptive method.


