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Abstract
Active learning for multi-label classification poses
fundamental challenges given the complex label
correlations and a potentially large and sparse la-
bel space. We propose a novel CS-BPCA process
that integrates compressed sensing and Bayesian
principal component analysis to perform a two-
level label transformation, resulting in an opti-
mally compressed continuous target space. Be-
sides leveraging correlation and sparsity of a large
label space for effective compression, an optimal
compressing rate and the relative importance of
the resultant targets are automatically determined
through Bayesian inference. Furthermore, the or-
thogonality of the transformed space completely
decouples the correlations among targets, which
significantly simplifies multi-label sampling in
the target space. We define a novel sampling func-
tion that leverages a multi-output Gaussian Pro-
cess (MOGP). Gradient-free optimization strate-
gies are developed to achieve fast online hyper-
parameter learning and model retraining for active
learning. Experimental results over multiple real-
world datasets and comparison with competitive
multi-label active learning models demonstrate
the effectiveness of the proposed framework.

1. Introduction
Multi-label classification (ML-C) aims to learn a model that
automatically assigns a set of relevant labels to a data in-
stance (Zhu et al., 2018; Liu et al., 2018; 2017). Multi-label
problems naturally arise in many domains. For example,
social media websites, including Twitter, Facebook, and
Linked-in, assign tags to social media items, such as tweets,
images, and user profiles, which can facilitate information
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retrieval and organization. Users from Q&A websites, such
as stack overflow and Quora, are encouraged to choose
tags from thousands of candidates to increase the exposure
rate of their proposed questions. In bioinformatics, genes
can be associated with multiple functional labels, such as
metabolism and protein synthesis. Similarly, many image
classification and video/audio recognition tasks are also
multi-label problems.

A straightforward way to tackle the ML-C problems is to
extend the single-label classification models by building
binary relevance machines (BRMs) that construct an indi-
vidual model for each label in a one-versus-the-rest man-
ner (Tsoumakas et al., 2009). Significant effort has also
been devoted by leveraging label correlations using tech-
niques such as label propagation (Bi & Kwok, 2013) and
transformation (Zhou et al., 2012). While ML-C remains
as an active research area, a central component required
by most ML-C models is a high-quality labeled dataset for
model training. This falls under the broader task of active
learning, where the idea is that by carefully choosing the
most informative data instances for labelling, rather than in
a purely random manner, better models can be trained with
less labelling effort (Settles, 2012). There has been a wealth
of work on active learning for single-label problems with
state-of-the-art performance (Guo & Greiner, 2007; Ghani,
2002; Siddiquie & Gupta, 2010).

However, work on active learning for ML-C problems re-
mains rather limited as it faces additional challenges when
compared with single-label problems. In the latter, classes
are assumed to be non-overlapping (i.e., only one label is
assigned to each instance), so a data sample’s overall contri-
bution to all classes is essentially the sum of its contribution
to each individual class, if being labeled. In multi-label
problems, a good informativeness measure that quantifies a
data sample’s overall contribution to a correlated label space
is much harder to design. Furthermore, the label space is
usually highly sparse with many rare labels. Identifying
data samples that help detect rare labels is much more chal-
lenging (due to lack of positive instances) but can provide
special values (e.g., diagnosis of rare diseases). It is im-
portant to systematically leverage label correlations as they
can provide information complementary to the scarce posi-
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tive instances that contribute to the detection of rare labels.
Finally, the computation cost of evaluating the informative-
ness measure may quickly become infeasible for real-time
active learning tasks with the increase of the number of
labels and/or the number of unlabeled data candidates.

In this paper, we develop a novel framework that simultane-
ously addresses all the key challenges as outlined above for
multi-label active learning. First, a two-level label transfor-
mation is performed to generate a weighted, orthogonal, and
continuous target space that significantly facilitates multi-
label data sampling. This transformation is achieved by
a coupled CS-BPCA process that integrates compressed
sensing (CS) and Bayesian principal component analysis
(BPCA). In this process, CS is responsible for converting a
large, sparse, and correlated label space into a compact and
continuous target space, where correlations among original
labels are systematically leveraged for compressing purpose.
BPCA further ensures the orthogonality of the resulting
targets. Furthermore, the optimal size of the transformed
target space and the relative importance of different targets
can be obtained through Bayesian inference. By coupling
CS with BPCA, the proposed process automatically infers
a compressing rate optimal for active learning model train-
ing. In addition, the orthogonality of the transformed space
completely de-correlates the resultant targets, which can sig-
nificantly simplify multi-label sampling. We further define a
novel sampling function that leverages a multi-output Gaus-
sian Process (MOGP). By adopting a flexible covariance
function, MOGP can capture the covariance structure of the
input data precisely through continuous optimization of the
hyper-parameters along with active learning. However, clas-
sical gradient ascent based approaches incur a prohibitive
computational cost, which makes online sampling infeasi-
ble. We develop gradient-free hyper-parameter optimization
by making novel extensions to two direct search methods
including Bayesian optimization and simplex method.

In sum, our main contribution is threefold: (1) a CS-BPCA
process that produces a compressed and orthogonal target
space with optimal dimensionality to support multi-label
data sampling, (2) a MOGP based sampling function that
precisely captures the covariance structure of input data, and
(3) gradient-free hyper-parameter optimization to enable fast
online sampling for real-time active learning. The first two
technical components are designed specifically to address
the difficulty in designing good informative measures in
multi-label active learning while the last component is to
reduce the high-computational cost for a large label space.
Extensive experiments are conducted over real-world multi-
label datasets with distinct characteristics. Comparison with
competitive multi-label active learning models helps demon-
strate the effectiveness of the proposed framework, includ-
ing overall active learning performance, sampling efficiency,
and the ability to detect rare labels.

2. Related Work
This work is closely related to compressed sensing (CS),
active learning, and Gaussian processes. Most relevant work
fall into these categories is reviewed in this section.

In (Hsu et al., 2009), CS is adopted to solve ML-C prob-
lems. The proposed approach first projects the label vectors
through CS. It then trains multiple regression models for a
much smaller set of compressed labels. Among different la-
bel transformation approaches that reduce a large label space
to a more compact one, CS appears to be the most efficient
solution. The ability to perform fast label transformation
makes CS an attractive component for active learning where
label transformation needs to be conducted frequently.

Uncertainty sampling is commonly used to measure the
informativeness of an unlabeled data instance for active
learning (Cohn et al., 1996). For example, the predictive
variance of Gaussian processes has been used for sampling
in single-target regression (Krause & Guestrin, 2007) and
multi-class classification (Kapoor et al., 2007). In multiple-
target regression, the predictive entropy of a multi-output
GP can be used as a sampling criterion for active learning.
However, this conventional entropy criterion scales poorly
with the number of labels. Some optimization and/or ap-
proximation strategies have been developed to improve the
sampling performance (Zhang et al., 2016) but with a focus
on regression tasks instead of ML-C.

Yang et.al. propose to use Maximum loss reduction with
Maximal Confidence (MMC) as the sampling criterion for
multi-label active learning (Yang et al., 2009). The loss
reduction is evaluated as the sum of the expected classifi-
cation error of individual SVMs and the true label of each
candidate is estimated using logistic regression. However,
MMC assumes independence among labels, which usually
does not hold for most MC-L problems. Some recent works
combine cross-class classification margin or aggregated un-
certainty from BRMs with label inconsistency during multi-
label sampling (Li & Guo, 2013; Reyes et al., 2018). Their
improved performance implies that labels need to be con-
sidered jointly in multi-label settings. However, limited by
the BRMs structure, their approach can not exploit the label
correlation adequately. Multi-label active learning has also
been considered in other tasks, including crowdsourcing (Li
et al., 2015) and novel queries (Huang et al., 2015).

Some other approaches put ML-C problems in a fully
Bayesian treatment, where the features and the labels are
connected by finite latent variables. Then, the entropy can be
inferred efficiently via variational inference (Kapoor et al.,
2012; Vasisht et al., 2014). To ensure tractable inference,
the potential functions assume an exponential form as being
conjugate to the prior distributions of the latent variables.
This essentially corresponds to a single RBF kernel in a



Fast Direct Search in an Optimally Compressed Continuous Target Space for Efficient Multi-Label Active Learning

GP. The lack of choice for more flexible kernels prevents
the model from more precisely capturing the covariance
structure in the data.

3. Multi-label Active Learning
Let X ∈ IRm×n be a training dataset with m data instances
and n features and Y ∈ {0, 1}m×l be the labels where l is
the total possible labels and Yi,j = 1 indicates the i-th data
instance is assigned label j. In a typical ML-C task (e.g.,
assign tags to images), the label matrix Y is usually very
sparse: ∀xi ∈ X : 1 ≤

∑
j Yi,j � l. Label sparsity and a

potential large label space pose key challenges for training
ML-C models, as explained above.

3.1. Weighted Orthogonal Label Space Transformation

To achieve fast and accurate sampling from a large and
sparse label space, a key innovation of the proposed active
learning framework is to generate a compact and contin-
uous target space, where correlations among different tar-
gets are completely decoupled. While compressed sensing
(CS) and related techniques have been leveraged for multi-
label classification (Kapoor et al., 2007) and active learning
tasks (Kapoor et al., 2012) with promising results, there are
two key remaining challenges. First, there lacks a system-
atic way to determine an optimal compressing rate, which
is typically obtained through cross-validation. However,
active learning makes this more challenging as the optimal
rate may be changing as the model is continuously updated.
Second, the correlation may remain in the compressed tar-
get space, making sampling functions hard to design and/or
expensive to implement. For example, a data sample con-
tributes well to two highly correlated labels should be less
preferred than the one that contributes well to two inde-
pendent labels. Furthermore, not all the labels are equally
important for the overall multi-label classification. The pro-
posed CS-BPCA process addresses all these challenges by
generating a weighted orthogonal target space for multi-
label sampling, where an optimal compressing rate and
relative importance of different targets are simultaneously
achieved through Bayesian inference.

CS-BPCA performs a two-level transformation to arrive at
the weighted orthogonal target space U : Y → R→ U . In
particular, CS converts the sparse and discrete label matrix
Y to a dense and continuous matrix R ∈ IRm×d where
d < l. Since the transformation is linear, it can be rep-
resented by a matrix A ∈ IRl×d and we have R = Y A.
This transformation not only removes the sparsity from the
original label space Y , but also automatically encodes the
correlations between labels into the compressed matrix R.
We set the compressing rate d

l to be relatively large (0.5 for
our experiments), which will ensure high-quality recovery
of original labels. The optimal compressing rate will be
achieved by further compressing R using BPCA, resulting

in U ∈ IRm×p, where p < d. Data sampling is directly
conducted in this compressed target space with p indepen-
dent targets that correspond to the p mutually orthogonal
columns in U . Targets that aggregate information from im-
portant labels are assigned higher weights through BPCA,
which will be encoded in the sampling function.

To make the proposed active learning framework practically
useful, it should be able to assign labels in the original label
space to new data instance x. Since the prediction is in the
target space U , two-level backward transformation will be
performed: ux → rx → yx. First, ux → rx can be easily
computed since BPCA essentially performs a linear and
almost lossless projection. We then recover yx from rx. It
has been proved that a signal of length d in the compressed
space can be efficiently recovered back to a k-sparse sig-
nal of length l by l2 convex optimization (Candes & Tao,
2005) (additional details are provided in the supplemental
materials). Figure 1 shows the overall CS-BPCA process. It
highlights the roles of different components and how labels
are transformed back and forth from the original label space
to the target space for sampling and prediction.

To ensure a high-quality recovery (and accurate prediction)
of the original labels, we set the compressing rate d

l to a
relatively high value and achieve an optimal compressing
rate p

l by compressing r output by CS using BPCA. In
particular, assume that the distribution of the CS compressed
output r is Gaussian of the form

p(r|u) = N (r|Wu+ µ, σ2I) (1)

where W ∈ IRd×p(p ≤ d), µ ∈ IRd×1, and σ is a scalar.
u ∼ N (0, I) is the latent representation of r in the space
spanned by the columns of W . According to the linear
Gaussian system, the marginal distribution of r is also a
Gaussian, given by

p(r) =

∫
p(r|u)p(u)du = N (r|µ,WWT + σ2I) (2)

The maximum likelihood (ML) solution of W is given by

WML = Ep(Lp − σ2I)
1
2O (3)

where Ep consists of p eigenvectors of the covariance ma-
trix of the compressed output R and the eigenvectors are
those with the largeset eigenvalues, λ1 ≥ ...λp. Lp =
diag(λ1, ...λp) andO is an arbitrary orthogonal matrix. The
final compressed targets are obtained as the posterior mean:

〈u〉 = M−1WT
ML(r − r̄) (4)

where M = WTW and the expectation 〈·〉 is computed
over p(u|r), which is also a Gaussian. (4) reduces to the
result of a conventional PCA as σ2 → 0, which implies
an orthogonal projection of R into the final target space
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Figure 1. The two-level label transformation by the CS-BPCA process

U . The significance of the i-th target is weighted by the
corresponding eigenvalue λi, which is guaranteed to be non-
negative since the covariance matrix is positive semidefinite
(PSD). For σ2 > 0, orthogonality still holds except that the
projection is shifted towards the origin (Bishop, 2006).

Instead of manually setting the dimensionality p of targets
u, BPCA places a prior over W , given by

p(W |α) =

p∏
i=1

(
αi
2π

)
d
2 e−

1
2αi||wi||2 (5)

where p is initialized to its maximum possible value p =
d − 1. The redundant dimension wi will be pruned au-
tomatically as its corresponding precision distribution αi
converges to a large value after the optimization. By
adding priors over µ, σ−2, and α, we achieve a com-
plete Bayesian model: p(µ) = N (0, β−1I), p(α) =∏p
i=1 Γ(αi|aα, bα), p(σ−2) = Γ(σ−2|cσ, dσ). Inference

can be performed through variational inference by using a
factorized variational distribution: Q(U,W,µ, σ−2,α) =
Q(U)Q(W )Q(µ)Q(σ−2)Q(α).

3.2. Data Sampling in the Transformed Target Space

As the transformed space consists of p targets, we choose a
multi-output GP (MOGP) for data sampling for two major
reasons. First, the overall informativeness (or uncertainty)
of a data sample can be quantified through the covariance of
the multi-output predictive distribution. Second, by adopt-
ing a flexible covariance function, MOGP can capture the
covariance structure of the input data precisely by contin-
uously optimizing the hyper-parameters along with active
learning. We further develop gradient-free methods (see
next section for details) for hyper-parameter optimization
that enables fast online sampling in active learning.

A general MOGP places a GP prior over a set of latent
functions {f (1), ..., f (p)} (Bonilla et al., 2007). It is typical
to assume zero mean and we have

〈f (g)(x)f (h)(x′)〉 = Kf
g,hk

x(x,x′) (6)

u
(g)
i ∼ N (f (g)(xi), β

−1
g ) (7)

where Kf is a PSD matrix with Kf
g,h capturing the corre-

lation between targets u(g) and u(h), kx is a covariance
function over inputs, and βg is the precision of the g-th tar-
get. The predictive distribution over a new data point z is

also a Gaussian with mean and covariance given by

m(z) = (Kf ⊗ kxz )TC−1 vec(U) (8)

C(z)g,h = Kf
g,hk

x(z, z) +Dg,h

− (kfg ⊗ k
x
z )TC−1(kfh ⊗ k

x
z ) (9)

where ⊗ is the Kronecker product, kxz =
(kx(x1, z), ..., kx(xm, z))T , kfg is the g-th column of Kf ,
D = diag(β1, ..., βp)

T , and C = Kf ⊗Kx +D ⊗ I with
Kx being the covariance matrix of the m training instances.

Intuitively, the most informative data sample should be the
one with the maximum uncertainty for the active learner.
As a result of labelling such a sample, the active leaner can
be improved the most. Since the predictive distribution of
the MOGP jointly considers all the targets, data sampling
in the transformed target space can be achieved using the
predictive entropy of the MOGP:

z∗ = arg max
z∈Xu

H(z) = arg max
z∈Xu

ln(|C(z)|) (10)

where Xu denotes a pool of unlabeled data samples. A
fundamental challenge of data sampling using a general
MOGP is the prohibitive computational cost for evaluat-
ing (10). A central part of the computation involves the
inverse of a pm × pm covariance matrix C given by (9).
Furthermore, both the target correlation matrix Kf and the
hyper-parameters of the covariance function kx need to be
learned by optimizing the marginal likelihood of the tar-
gets. Such optimization is typically performed through an
iterative gradient based approach, which also requires to
compute C−1 in each iteration. The high computational
cost prevents using the above sampling criteria for active
learning, where parameter learning and model training are
conducted on the fly as new data samples are continuously
being labelled.

Fortunately, using a MOGP built from the transformed target
space can significantly reduce the computational cost given
that different targets are mutually orthogonal through BPCA
projection. As a result, the covariance matrix C has a block
structure, which allows us to treat each target independently.
More specifically, Kf reduces to an identity matrix and the
predictive distribution of the g-th task is defined by its mean
and covariance, given by

m(g)(z) = (kxz )T (C(g))−1u(g) (11)

C(z)g,g = kx(z, z) + β−1g − (kxz )T (C(g))−1kxz (12)
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where C(g) is the m × m covariance matrix of the g-th
target and (C(g))−1 is much cheaper to evaluate than C−1.
We will develop efficient algorithms for learning hyper-
parameters of the kernel functions in next section. By further
integrating the weights of different targets, we arrive at the
following sampling function in the transformed target space:

z∗ = arg max
z∈Xu

(
−

p∑
g=1

λg lnC(z)g,g

)
(13)

3.3. Gradient-free Hyper-parameter Optimization

We choose the following kernel with four hyper-parameters
θ = (θ0, θ1, θ2, θ3):

k(xi,xj) = θ0 exp{−θ1
2
‖xi − xj‖2}+ θ2x

T
i xj + θ3

(14)

It should be noted that a different θ will be learned for a
different target. Since the learning algorithm is the same,
we remove the superscript to make the notation uncluttered.
The non-kernel based regression models require at least np
parameters to determine p different regressors and the effect
of over-fitting will be amplified by p times when new basis
functions are introduced to increase the flexibility of those
models. On the other hand, with the customized kernel,
there are only 4p parameters that need to be learned.

Gradient based approaches are commonly used to learn the
hyper-parameters. In particular, the log likelihood of a GP
with kernel (14) is given by

L(θ) = ln p(u|θ) = −1

2
ln |C| − 1

2
uTC−1u + const.

(15)
Taking the partial derivative of the log likelihood, we have

∂

∂θi
ln p(u|θ) = −1

2
Tr

(
C−1

∂C

∂θi

)
+

1

2
uTC−1

∂C

∂θi
C−1u

(16)
The time complexity of a gradient ascent method is
O(|θ|m3) as it involves evaluation of C−1. Since L(θ)
is non-convex, gradient ascent usually needs to run multiple
times with different random initialization to avoid a local op-
timal with poor quality. Furthermore, for high-dimensional
data (e.g., n > m), since Σ needs to be reconstructed for
a new θ, the construction cost should also be considered,
leading to an overall complexity of O(|θ|(m3 +m2n)).

While gradient based approaches can be used to train a
regular GP for classification/regression, they are no longer
suitable for active learning where the hyper-parameters need
to be learned on the fly as the model is being continuously
updated as more data samples are being labelled. In fact,
re-learning the hyper-parameters is essential for a GP active

learner so that it can precisely capture the covariance struc-
ture of currently labeled data for accurate data sampling. We
develop novel gradient-free optimization strategies to signif-
icantly reduce the computational cost for hyper-parameter
learning. In particular, we leverage two direct search opti-
mization approaches, Bayesian optimization and simplex
methods, and make key extensions to achieve fast sampling.

Bayesian Optimization (B-OPT) B-OPT aims to se-
lect a θ∗ from a grid search space that maximizes L(θ).
Since L(θ) is expensive to compute, B-OPT trains a prob-
abilistic model M and uses its predictive distribution
p(L(θ)|θ) ∼ N (mθ, σ

2
θ) to estimate L(θ). An acqui-

sition function is used to measure whether the predicted
log-likelihood value of θ exceeds some threshold L∗(θ):
f(L(θ)) = max((L(θ) − L∗(θ)), 0) Then, the expected
improvement (Jones, 2001) is used as a cheap surrogate of
L(θ) to choose a candidate θ from the grid search space.

EI(θ) =

∫ ∞
−∞

f(L(θ))p(L(θ)|θ)dL(θ) (17)

Locatelli has proved that the iterates from above sampling
method is guaranteed to converge to a global optimal (Lo-
catelli, 1997), which makes the direct search of θ∗ an active
learning-like process. At each searching iteration, θ∗ is
first selected by (17). Then, its true log-likelihood will be
evaluated to update M in (17) for next iteration. In our
approach, we choose the threshold L∗(θ) to be the maxi-
mum log-likelihood value of the current observations and
use 95% confidence interval to compute (17):

EI95%(θ) = max(L(mθ ± 1.96σθ)− L∗(θ), 0) (18)

Simplex Optimization (S-OPT) One drawback of B-
OPT is that the volume of the grid search space grows
exponentially as we attempt to expand the searching range
or refine the searching granularity. Such a large space is
expensive to be stored and searched. The simplex method
(Bertsekas, 1999) overcomes such a drawback as it does
not require to build the search space explicitly. The method
starts with a simplex, which is the convex combination of
|θ|+ 1 initial points in the search space. The worst and best
vertices of the simplex satisfy the following conditions:

θmin = arg min
i=0,..,|θ|

L(θi) θmax = arg max
i=0,..,|θ|

L(θi) (19)

Let θ̂ denote the centroid of the simplex formed by all
vertices but θmin: θ̂ = 1

n (
∑n
i=0 θi − θmin). The simplex

method works by iteratively replacing θmin using a new
θnew, so that L(θnew) > L(θmin). The search of θnew is
performed through expansion, reflection, or contraction of
the simplex so that it will be moved in the direction where
the objective function L can be improved. The detailed
process for searching θnew is given in the supplemental
materials.
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The major cost in B-OPT and S-OPT lies in computingL(θ),
which involves evaluating the determinant and inverse of
the covariance matrix Σ with a time complexity of O(m3).
Their systematic search strategies ensure a fast convergence,
which is evidenced by our experiments. Standard linear
algebra techniques such as Cholesky decomposition and
Nyström approximation can be applied to further speed up
the computation. However, for high-dimensional active
learning tasks (i.e., n� m), reconstructing the covariance
matrix will dominate the computational cost. For each new
candidate θ, Σ needs to be reconstructed by computing each
entry according to (14) with a cost of O(m2n). We develop
a fast covariance matrix reconstruction approach to further
reduce the computational cost.

Specifically, we separate two blocks of computation that are
invariant to θ from (14) and denote them as A and B, where
Ai,j = ||xi − xj ||2 and Bi,j = xTi xj . Plugging A and B
in (14), we have Σ = θ0 exp{− θ12 A}+ θ2B + θ3. Since A
and B are fixed and only θ is updated, the reconstruction
cost is reduced to m2, which can be efficiently computed as
m is typically small for active learning. Furthermore, when
a newly labeled data sample xm+1 is included by active
learning, both A and B can be efficiently updated instead
of being recomputed from scratch:

Am+1 =

(
Am am+1

aTm+1 0

)
, Bm+1 =

(
Bm bm+1

bTm+1 xTm+1xm+1

)
where am+1 is a vector of squared distance between xm+1

and xi’s and bm+1 is vector of dot products.

4. Experiments
We conduct extensive experiments over five real-world
multi-label datasets, aiming to: (i) explore the behaviours
of our model under different sets of model parameters, (ii)
demonstrate that our proposed model is superior to other
state-of-the-art competitive multi-label active learning meth-
ods, and (iii) show the efficiency of the proposed gradient-
free optimization strategies for active learning.

4.1. Datasets and Experimental Settings
We choose five representative real-world datasets from dif-
ferent domains. All datasets have a large and very sparse
label space with a relatively high label cardinality, allowing
us to properly evaluate multi-label active learning. Each
dataset is partitioned into three parts: training, candidate
pool, and testing. To ensure at least one positive data in-
stance in each partition for proper model training/testing, we
pre-process the datasets by first removing labels with less
than 0.5% instances in the whole dataset. We then remove
data instances with no positive labels after the previous step.
Table 1 summarizes the key properties of the pre-processed
datasets. We use 1% of the data to start active learning, 40%
as unlabeled candidate pool, and the remaining for testing.
The data is shuffled before splitting. We use Macro F-score

(averaged F1 score over all the labels) to evaluate the model
performance and an average over three runs is reported.

4.2. Impact of Model Parameters
We plot the active learning performance of the proposed
model under different compressing rate, kernel update pe-
riod (KUP), which is the number of active learning iterations
between two kernel optimization, and the sparsity level of
the recovered labels, to investigate their impacts. Macro F-
score is measured over the test data after the current model
was updated with a newly labelled data instance.

Figure 2 shows the performance of the proposed model
with different KUPs. In general, the model performance
decreases with a larger KUP. This clearly demonstrates that
the MOGP based sampling can capture the covariance struc-
ture of the input data precisely by continuously optimizing
the hyper-parameters along with active learning. The best
performance is obtained by the two proposed kernel opti-
mization methods, B-OPT and S-OPT, which allow optimiz-
ing the GP kernels in each iteration (see the reported CPU
times in a later section for details). In contrast, the gradient
ascent method only affords to optimize the kernel much
less frequently to make it a practical sampling approach for
active learning.

Figure 3 shows the effectiveness of sampling in the com-
pressed target space. We set the first level compressing
rate as 0.5 and the final compressing rate is determined
by BPCA. As this rate is dynamically adjusted with ac-
tive learning, we report the average rate over all iterations.
The other two curves are generated by only applying CS
with a fixed compressing rate. In most cases, sampling in
the compressed target space achieves a much better perfor-
mance with a lower (and auto-determined) compressing rate.
Finally, Figure 4 shows that the model performs the best
when using the average label cardinality of the dataset as
recovered label sparsity.

4.3. Performance Comparison
We compare with some competitive multi-label active learn-
ing models to demonstrate the effectiveness of the proposed
framework (noted as CS-BPCA-GP in the figures). We in-
clude two types of active learning models that perform data
sampling in either a compressed label space (Type I) or the
original label space (Type II).

• Type I models generate a compressed label space (e.g.,
through CS) and then perform data sampling in the com-
pressed space. We consider three models: Mutual in-
formation based sampling (CS-MIML) (Vasisht et al.,
2014), Bayesian Ridge regression (CS-BR) over a com-
pressed label space, and Ridge regression based random
sampling (CS-RR) over a compressed label space.
• Type II models directly perform data sampling in the

original label space. State of the art sampling perfor-
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Table 1. Summary of Datasets
Dataset Domain Instances Features Labels Min Label Support Label Card. Label Sparsity

Delicious web 8172 500 (nominal) 157 208 5.56 0.03
BookMark publication 38548 2150 (nominal) 136 442 3.45 0.02
WebAPI software 9166 5659 (numeric) 90 71 2.50 0.02
Corel5K images 5000 499 (nominal) 132 25 3.25 0.02
Bibtex text 7013 1836 (nominal) 127 45 2.4 0.02
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Figure 2. Impact of Kernel Optimization Frequency
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Figure 3. Impact of Compressing Rate
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Figure 4. Impact of Recovered Label Sparsity
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Figure 5. Comparison Result I
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Figure 6. Comparison Result II

mance is achieved by BRMs based models, including
MMC (Yang et al., 2009) and Adaptive (Li & Guo,
2013). However, the high computational cost may limit
the applicability of these models to a large label space.

Figure 5 shows the comparison with Type I models, where
all the labels in the data are used. The clear advantage of
our approach is due to the combined contribution of optimal

label space compression and the effective sampling criterion
defined over the MOGP with optimized kernels. Informative
data samples that provide maximum contribution to the
learning of the entire label space can be effectively identified
and labelled. As a result, it outperforms other compressing
methods (CS only), none-GP (BR and RR), and GP with
restrictive kernels (CS-MIML)



Fast Direct Search in an Optimally Compressed Continuous Target Space for Efficient Multi-Label Active Learning

0.0030.003 0.004 0.004 0.004 0.004 0.005 0.006 0.008 0.010 0.012 0.0290.029
Label Frequency

0.2

0.4

0.6

0.8

1.0

R
e
c
a
ll

Bookmark data

Adaptive
CS-BPCA-GP

0.0200.020 0.023 0.025 0.028 0.030 0.033 0.041 0.047 0.060 0.067 0.086 0.112 0.177
Label Frequency

0.2

0.4

0.6

0.8

1.0

R
e
c
a
ll

Delicious data

Adaptive
CS-BPCA-GP

Figure 7. Rare Label Prediction Comparison

The BRMs based Type II models build a separate classifier
for each label. Hence, the computational resource is quickly
depleted when a large number of labels are involved. To
allow data sampling to be done in a reasonable amount of
time for practical active learning, we limit the number of
labels for each dataset to be 50 by further removing some
rare labels. This actually benefits the BRMs models as
they tend to perform poorly over the rare labels without
leveraging the label correlations. Figure 6 shows that CS-
BPCA-GP outperforms the other two methods especially at
the early stage of active learning.

It is also worth to note that both MMC and Adaptive perform
well on relatively frequent labels, which consist of sufficient
data instances to train an accurate model. However, they
perform rather poorly on some rare labels that are much
more difficult to predict. Figure 7 compares the recall per-
formance between the proposed approach with the Adaptive
model (the best one in Type II models) using Bookmark and
Delicious data as examples (see the supplemental materials
for more results). The Adaptive model completely fails to
predict 7 and 9 labels (versus 1 and 2 for CS-BPCA-GP),
respectively. This clearly demonstrates the advantage of
CS-BPCA-GP for training ML-C models that better recover
rare labels. Such models are more desirable as frequent
labels are usually much easier to predict due to the ample
positive training samples. Besides higher model accuracy,
CS-BPCA-GP also shows a clear computational advantage
through its optimal label transformation/compression. For
all three datasets, the two Type II models take more than 10
hours while CS-BPCA-GP uses less than 2 hours to finish
500 active learning iterations.

4.4. Efficiency of Gradient-free Optimization
To demonstrate the effectiveness of the proposed gradient-
free hyper-parameter optimization strategies, we make a
comparison with the classical gradient ascent (GA) based
method. Since the size of the kernel matrix changes as
newly labeled data instances are added, we compute the
average CPU time for hyper-parameter optimization and
the results are given in Table 2. As can be seen, for the

Table 2. CPU Time (s) of Hyper-parameter Optimization
Dataset GA B-OPT S-OPT

Delicious 1.83 0.17 0.20
BookMark 15.0 0.80 0.79
WebAPI 10.10 0.54 0.55
Corel5K 0.58 0.08 0.08
Bibtex 8.71 0.48 0.51

two larger datasets with more features and instances, GA
spends more than 10s for optimizing the hyper-parameters.
This, when coupled with other overhead (e.g., evaluating the
sampling function (13)) may make it too slow for practical
active learning. In contrast, the two gradient-free methods
use less than 1s, which justifies their potential to support
real-world large-scale active learning problems.

5. Conclusion and Future Work
In this paper, we conduct novel label transformation that
enables multi-label active learning to be performed in an
optimally compressed target space. The mutually orthogo-
nal targets significantly simplify evaluating the predictive
entropy of a MOGP, which is used as the sampling criterion
for choosing the most informative data instances over all
the labels. Gradient-free optimization is developed for fast
learning of hyper-parameters, which ensures the MOGP
covariance to closely follow the frequently updated data for
accurate data sampling. Extensive experiments conducted
on real-world multi-label data demonstrate the effectiveness
of the proposed framework. We identify two interesting
future directions. First, we plan to achieve active diagnosis
that will allow the annotation task to focus on the most infor-
mative label candidates of the selected data instance. This
is extremely helpful when the number of candidate labels
is huge. The model should also be able to utilize partially
labelled data from active diagnosis for training purpose.
Second, we suggest to infer the label recovery sparsity for
individual data instances rather than using a fixed sparsity
level. This will improve the model performance especially
when the dataset has a large variance of label sparsity.
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