
First-order Adversarial Vulnerability of Neural Networks and Input Dimension

Carl-Johann Simon-Gabriel 1 2 Yann Ollivier 2 Bernhard Schölkopf 1 Léon Bottou 2 David Lopez-Paz 2

Abstract
Over the past few years, neural networks were
proven vulnerable to adversarial images: targeted
but imperceptible image perturbations lead to
drastically different predictions. We show that
adversarial vulnerability increases with the gra-
dients of the training objective when viewed as
a function of the inputs. Surprisingly, vulnera-
bility does not depend on network topology: for
many standard network architectures, we prove
that at initialization, the `1-norm of these gradi-
ents grows as the square root of the input dimen-
sion, leaving the networks increasingly vulnerable
with growing image size. We empirically show
that this dimension dependence persists after ei-
ther usual or robust training, but gets attenuated
with higher regularization.

1. Introduction
Following the work of Goodfellow et al. (2015), Convolu-
tional Neural Networks (CNNs) have been found vulnerable
to adversarial examples: an adversary can drive the perfor-
mance of state-of-the art CNNs down to chance level with
imperceptible changes to the inputs.

Based on a simple linear model, Goodfellow et al. already
noted that adversarial vulnerability should depend on input
dimension. Gilmer et al. (2018); Shafahi et al. (2019) later
confirmed this, by showing that adversarial robustness is
harder to obtain with larger input dimension. However,
these results are different in nature from Goodfellow et al.’s
original observation: they rely on assumptions on the dataset
that amount to a form of uniformity in distribution over
the input dimensions (e.g. concentric spheres, or bounded
densities with full support). In the end, this analysis tends
to incriminate the data: if the data can be anything, and in

1Empirical Inference Department, Max Planck Institute for
Intelligent Systems, Tübingen, Germany 2Facebook AI Research,
Paris/New York. Correspondence to: Carl-Johann Simon-Gabriel
<cjsimon@tue.mpg.de>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

particular if it can spread homogeneously across many input
dimensions, then robust classification gets harder.

Image datasets do not satisfy these assumptions: they do
not have full support, and their probability distributions get
more and more peaked with larger input dimension (pixel
correlation increases). Intuitively, for image classification,
higher resolution should help, not hurt. Hence data might be
the wrong culprit: if we want to understand the vulnerability
of our classifiers, then we should understand what is wrong
with our classifiers, not with our images.

We therefore follow Goodfellow et al.’s original approach,
which explains adversarial vulnerability by properties of the
classifiers. Our main theoretical results start by formally
extending their result for a single linear layer to almost all
current deep feedforward network architectures. There is a
further correction: based on the gradients of a linear layer,
Goodfellow et al. predicted a linear increase of adversarial
vulnerability with input dimension d. However, they did
not take into account that a layer’s typical weights decrease
like
√
d. Accounting for this, the dependence becomes

√
d

rather than d, which is confirmed by both our theory and
experiments.

Our approach relies on evaluating the norm of gradients
of the network output with respect to its inputs. At first
order, adversarial vulnerability is related to gradient norms.
We show that this norm is a function of input dimension
only, whatever the network architecture is. The analysis is
fully formal at initialization, and experiments show that the
predictions remain valid throughout training with very good
precision.

Obviously, this approach assumes that the classifier and
loss are differentiable. So arguably it is unclear whether it
can explain the vulnerability of networks with obfuscated
or masked gradients. Still, Athalye et al. (2018) recently
showed that masked gradients only give a false sense of
security: by reconstructing gradient approximations (using
differentiable nets!), the authors circumvented all state-of-
the-art masked-gradient defenses. This suggests that ex-
plaining the vulnerability of differentiable nets is crucial,
even for non-differentiable nets.

Although adversarial vulnerability was known to increase
with gradient norms, the exact relation between the two,
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and the approximations made, are seldom explained, let
alone tested empirically. Section 2 therefore starts with a
detailed discussion of the relationship between adversarial
vulnerability and gradients of the loss. Precise definitions
help with sorting out all approximations used. We also
revisit and formally link several old and recent defenses,
such as double-backpropagation (Drucker & LeCun, 1991)
and FGSM (Goodfellow et al., 2015). Section 3 proceeds
with our main theoretical results on the dimension depen-
dence of adversarial damage. Section 4 tests our predictions
empirically, as well as the validity of all approximations.

Our contribution can be summarized as follows.

• We show an empirical one-to-one relationship between
average gradient norms and adversarial vulnerability.
This confirms that an essential part of adversarial vul-
nerability arises from first-order phenomena.

• We formally prove that, at initialization, the first-order
vulnerability of common neural networks increases
as
√
d with input dimension d. Surprisingly, this is

almost independent of the architecture. Almost all
current architectures are hence, by design, vulnerable
at initialization.

• We empirically show that this dimension dependence
persists after both usual and robust (PGD) training, but
gets dampened and eventually vanishes with higher
regularization. Our experiments suggest that PGD-
regularization effectively recovers dimension indepen-
dent accuracy-vulnerability trade-offs.

• We observe that further training after the training loss
has reached its minimum can provide improved test ac-
curacy, but severely damages the network’s robustness.
The last few accuracy points require a considerable
increase of network gradients.

• We notice a striking discrepancy between the gradient
norms (and therefore the vulnerability) on the training
and test sets respectively. It suggests that gradient prop-
erties do not generalize well and that, outside the train-
ing set, networks may tend to revert to initialization-
like gradient properties.

Overall, our results show that, without strong regularization,
the gradients and vulnerability of current networks naturally
tend to grow with input dimension. This suggests that cur-
rent networks have too many degrees of ‘gradient-freedom’.
Gradient regularization can counter-balance this to some
extent, but on the long run, our networks may benefit from
incorporating more data-specific knowledge. The indepen-
dence of our results on the network architecture (within
the range of currently common architectures) suggests that
doing so would require new network modules.

Related Literature Goodfellow et al. (2015) already no-
ticed the dimension dependence of adversarial vulnerability.
As opposed to Amsaleg et al. (2017); Gilmer et al. (2018);
Shafahi et al. (2019), their (and our) explanation of the di-
mension dependence is data-independent. Incidentally, they
also link adversarial vulnerability to loss gradients and use
it to derive the FGSM adversarial augmentation defense
(see Section 2). Ross & Doshi-Velez (2018) propose to
robustify networks using the old double-backpropagation,
but make no connection to FGSM and adversarial augmen-
tation (see our Prop.3). Lyu et al. (2015) discuss and use
the connection between gradient-penalties and adversarial
augmentation, but surprisingly never empirically compare
both, which we do in Section 4.1. This experiment is crucial
to confirm the validity of the first-order approximation made
in (2) to link adversarial damage and loss-gradients. Hein &
Andriushchenko (2017) derived yet another gradient-based
penalty –the cross-Lipschitz-penalty– by considering and
proving formal guarantees on adversarial vulnerability (see
App.D). Penalizing network-gradients is also at the heart of
contractive auto-encoders as proposed by Rifai et al. (2011),
where it is used to regularize the encoder-features. A gra-
dient regularization of the loss of generative models also
appears in Proposition 6 of Ollivier (2014), where it stems
from a code-length bound on the data (minimum description
length). For further references on adversarial attacks and
defenses, see e.g. Yuan et al. (2017).

2. From Adversarial Examples to Large
Gradients

Suppose that a given classifier ϕ classifies an image x as
being in category ϕ(x). An adversarial image is a small
modification of x, barely noticeable to the human eye, that
suffices to fool the classifier into predicting a class different
from ϕ(x). It is a small perturbation of the inputs, that cre-
ates a large variation of outputs. Adversarial examples thus
seem inherently related to large gradients of the network.
A connection that we will now clarify. Note that visible
adversarial examples sometimes appear in the literature, but
we deliberately focus on imperceptible ones.

Adversarial vulnerability and adversarial damage. In
practice, an adversarial image is constructed by adding a
perturbation δ to the original image x such that ‖δ‖ ≤
ε for some (small) number ε and a given norm ‖·‖ over
the input space. We call the perturbed input x + δ an ε-
sized ‖·‖-attack and say that the attack was successful when
ϕ(x+ δ) 6= ϕ(x). This motivates

Definition 1. Given a distribution P over the input-space,
we call adversarial vulnerability of a classifier ϕ to an ε-
sized ‖·‖-attack the probability that there exists a perturba-
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tion δ of x such that

‖δ‖ ≤ ε and ϕ(x) 6= ϕ(x+ δ) . (1)

We call the average increase-after-attack Ex∼P [∆L] of a
loss L the adversarial (L-) damage (of the classifier ϕ to an
ε-sized ‖·‖-attack).

When L is the 0-1-loss L0/1, adversarial damage is the
accuracy-drop after attack. The 0-1-loss damage is always
smaller than adversarial vulnerability, because vulnerability
counts all class-changes of ϕ(x), whereas some of them
may be neutral to adversarial damage (e.g. a change be-
tween two wrong classes). The L0/1-adversarial damage
thus lower bounds adversarial vulnerability. Both are even
equal when the classifier is perfect (before attack), because
then every change of label introduces an error. It is hence
tempting to evaluate adversarial vulnerability with L0/1-
adversarial damage.

From ∆L0/1 to ∆L and to ∂xL. In practice however,
we do not train our classifiers with the non-differentiable
0-1-loss but use a smoother surrogate loss L, such as the
cross-entropy loss. For similar reasons, we will now in-
vestigate the adversarial damage Ex [∆L(x, c)] with loss L
rather than L0/1. Like for Goodfellow et al. (2015); Lyu
et al. (2015); Sinha et al. (2018) and many others, a clas-
sifier ϕ will hence be robust if, on average over x, a small
adversarial perturbation δ of x creates only a small variation
δL of the loss. Now, if ‖δ‖ ≤ ε, then a first order Taylor
expansion in ε shows that

δL = max
δ : ‖δ‖≤ε

|L(x+ δ, c)− L(x, c)|

≈ max
δ : ‖δ‖≤ε

|∂xL · δ| = ε |||∂xL|||,
(2)

where ∂xL denotes the gradient of L with respect to x, and
where the last equality stems from the definition of the dual
norm |||·||| of ‖·‖. Now two remarks. First: the dual norm
only kicks in because we let the input noise δ optimally ad-
just to the coordinates of ∂xL within its ε-constraint. This
is the brand mark of adversarial noise: the different coor-
dinates add up, instead of statistically canceling each other
out as they would with random noise. For example, if we
impose that ‖δ‖2 ≤ ε, then δ will strictly align with ∂xL.
If instead ‖δ‖∞ ≤ ε, then δ will align with the sign of the
coordinates of ∂xL. Second remark: while the Taylor ex-
pansion in (2) becomes exact for infinitesimal perturbations,
for finite ones it may actually be dominated by higher-order
terms. Our experiments (Figures 4 & 1) however strongly
suggest that in practice the first order term dominates the
others. Now, remembering that the dual norm of an `p-norm
is the corresponding `q-norm, and summarizing, we have
proven

Lemma 2. At first order approximation in ε, an ε-sized
adversarial attack generated with norm ‖·‖ increases the
loss L at point x by ε |||∂xL|||, where |||·||| is the dual norm
of ‖·‖. In particular, an ε-sized `p-attack increases the loss
by ε ‖∂xL‖q where 1 ≤ p ≤ ∞ and 1

p + 1
q = 1.

Although the lemma is valid at first order only, it proves
that at least this kind of first-order vulnerability is present.
Moreover, we will see that the first-order predictions closely
match the experiments, and that simple gradient regulariza-
tion helps protecting even against iterative (non-first-order)
attack methods (Figure 4).

Calibrating the threshold ε to the attack-norm ‖·‖.
Lemma 2 shows that adversarial vulnerability depends on
three main factors: (i) ‖·‖ , the norm chosen for the at-
tack (ii) ε , the size of the attack, and (iii) Ex|||∂xL||| , the
expected dual norm of ∂xL. We could see Point (i) as a
measure of our sensibility to image perturbations, (ii) as our
sensibility threshold, and (iii) as the classifier’s expected
marginal sensibility to a unit perturbation. Ex|||∂xL||| hence
intuitively captures the discrepancy between our perception
(as modeled by ‖·‖) and the classifier’s perception for an
input-perturbation of small size ε. Of course, this view-
point supposes that we actually found a norm ‖·‖ (or more
generally a metric) that faithfully reflects human percep-
tion – a project in its own right, far beyond the scope of
this paper. However, it is clear that the threshold ε that we
choose should depend on the norm ‖·‖ and hence on the
input-dimension d. In particular, for a given pixel-wise or-
der of magnitude of the perturbations δ, the `p-norm of the
perturbation will scale like d1/p. This suggests to write the
threshold εp used with `p-attacks as:

εp = ε∞ d1/p , (3)

where ε∞ denotes a dimension independent constant. In
Appendix C we show that this scaling also preserves the av-
erage signal-to-noise ratio ‖x‖2 / ‖δ‖2, both across norms
and dimensions, so that εp could correspond to a constant
human perception-threshold. With this in mind, the impa-
tient reader may already jump to Section 3, which contains
our main contributions: the estimation of Ex‖∂xL‖q for
standard feedforward nets. Meanwhile, the rest of this sec-
tion shortly discusses two straightforward defenses that we
will use later and that further illustrate the role of gradients.

A new old regularizer. Lemma 2 shows that the loss of
the network after an ε

2 -sized ‖·‖-attack is

Lε,|||·|||(x, c) := L(x, c) +
ε

2
|||∂xL||| . (4)

It is thus natural to take this loss-after-attack as a new
training objective. Here we introduced a factor 2 for rea-
sons that will become clear in a moment. Incidentally, for
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‖·‖ = ‖·‖2, this new loss reduces to an old regularization-
scheme proposed by Drucker & LeCun (1991) called double-
backpropagation. At the time, the authors argued that
slightly decreasing a function’s or a classifier’s sensitivity
to input perturbations should improve generalization. In a
sense, this is exactly our motivation when defending against
adversarial examples. It is thus not surprising to end up with
the same regularization term. Note that our reasoning only
shows that training with one specific norm |||·||| in (4) helps
to protect against adversarial examples generated from ‖·‖.
A priori, we do not know what will happen for attacks gen-
erated with other norms; but our experiments suggest that
training with one norm also protects against other attacks
(see Figure 1 and Section 4.1).

Link to adversarially augmented training. In (1), ε
designates an attack-size threshold, while in (4), it is a
regularization-strength. Rather than a notation conflict, this
reflects an intrinsic duality between two complementary
interpretations of ε, which we now investigate further. Sup-
pose that, instead of using the loss-after-attack, we augment
our training set with ε-sized ‖·‖-attacks x + δ, where for
each training point x, the perturbation δ is generated on
the fly to locally maximize the loss-increase. Then we are
effectively training with

L̃ε,‖·‖(x, c) :=
1

2
(L(x, c) + L(x+ ε δ, c)) , (5)

where by construction δ satisfies (2). We will refer to this
technique as adversarially augmented training. It was first
introduced by Goodfellow et al. (2015) with ‖·‖ = ‖·‖∞
under the name of FGSM1-augmented training. Using the
first order Taylor expansion in ε of (2), this ‘old-plus-post-
attack’ loss of (5) simply reduces to our loss-after-attack,
which proves

Proposition 3. Up to first-order approximations in ε,
L̃ε,‖·‖ = Lε,|||·||| . Said differently, for small enough ε, ad-
versarially augmented training with ε-sized ‖·‖-attacks
amounts to penalizing the dual norm |||·||| of ∂xL with weight
ε/2. In particular, double-backpropagation corresponds to
training with `2-attacks, while FGSM-augmented training
corresponds to an `1-penalty on ∂xL.

This correspondence between training with perturbations
and using a regularizer can be compared to Tikhonov reg-
ularization: Tikhonov regularization amounts to training
with random noise Bishop (1995), while training with ad-
versarial noise amounts to penalizing ∂xL. Section 4.1
verifies the correspondence between adversarial augmen-
tation and gradient regularization empirically, which also
strongly suggests the empirical validity of the first-order
Taylor expansion in (2).

1Fast Gradient Sign Method

3. Estimating ‖∂xL‖q to Evaluate Adversarial
Vulnerability

In this section, we evaluate the size of ‖∂xL‖q for a very
wide class of standard network architectures. We show that,
inside this class, the gradient-norms are independent of the
network topology and increase with input dimension. We
start with an intuitive explanation of these insights (Sec 3.1)
before moving to our formal statements (Sec 3.2).

3.1. Core Idea: One Neuron with Many Inputs

This section is for intuition only: no assumption made here
is used later. We start by showing how changing q affects the
size of ‖∂xL‖q . Suppose for a moment that the coordinates
of ∂xL have typical magnitude |∂xL|. Then ‖∂xL‖q scales
like d1/q|∂xL|. Consequently

εp ‖∂xL‖q ∝ εp d
1/q |∂xL| ∝ d |∂xL| . (6)

This equation carries two important messages. First, we see
how ‖∂xL‖q depends on d and q. The dependence seems
highest for q = 1. But once we account for the varying
perceptibility threshold εp ∝ d1/p, we see that adversarial
vulnerability scales like d · |∂xL|, whatever `p-norm we
use. Second, (6) shows that to be robust against any type
of `p-attack at any input-dimension d, the average absolute
value of the coefficients of ∂xL must grow slower than 1/d.
Now, here is the catch, which brings us to our core insight.

In order to preserve the activation variance of the neurons
from layer to layer, the neural weights are usually initialized
with a variance that is inversely proportional to the number
of inputs per neuron. Imagine for a moment that the network
consisted only of one output neuron o linearly connected
to all input pixels. For the purpose of this example, we
assimilate o and L. Because we initialize the weights with a
variance of 1/d, their average absolute value |∂xo| ≡ |∂xL|
grows like 1/

√
d, rather than the required 1/d. By (6), the

adversarial vulnerability ε ‖∂xo‖q ≡ ε ‖∂xL‖q therefore
increases like d/

√
d =
√
d.

This toy example shows that the standard initialization
scheme, which preserves the variance from layer to layer,
causes the average coordinate-size |∂xL| to grow like 1/

√
d

instead of 1/d. When an `∞-attack tweaks its ε-sized input-
perturbations to align with the coordinate-signs of ∂xL, all
coordinates of ∂xL add up in absolute value, resulting in an
output-perturbation that scales like ε

√
d and leaves the net-

work increasingly vulnerable with growing input-dimension.

3.2. Formal Statements for Deep Networks

Our next theorems formalize and generalize the previous
toy example to a very wide class of feedforward nets with
ReLU activation functions. For illustration purposes, we
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start with fully connected nets before proceeding with the
broader class, which includes any succession of (possibly
strided) convolutional layers. In essence, the proofs iterate
our insight on one layer over a sequence of layers. They all
rely on the following set (H) of hypotheses:

H1 Non-input neurons are followed by a ReLU killing half
of its inputs, independently of the weights.

H2 Neurons are partitioned into layers, meaning groups
that each path traverses at most once.

H3 All weights have 0 expectation and variance
2/(in-degree) (‘He-initialization’).

H4 The weights from different layers are independent.
H5 Two distinct weights w,w′ from a same node satisfy

E [ww′] = 0.

If we follow common practice and initialize our nets as
proposed by He et al. (2015), then H3-H5 are satisfied at
initialization by design, while H1 is usually a very good
approximation (Balduzzi et al., 2017). Note that such i.i.d.
weight assumptions have been widely used to analyze neural
nets and are at the heart of very influential and successful
prior work (e.g., equivalence between neural nets and Gaus-
sian processes as pioneered by Neal 1996). Nevertheless,
they do not hold after training. That is why all our statements
in this section are to be understood as orders of magnitudes
that are very well satisfied at initialization both in theory
and practice, and that we will confirm experimentally for
trained networks in Section 4. Said differently, while our
theorems rely on the statistics of neural nets at initialization,
our experiments confirm their conclusions after training.
Theorem 4 (Vulnerability of Fully Connected Nets).
Consider a succession of fully connected layers with ReLU
activations which takes inputs x of dimension d, satisfies
assumptions (H), and outputs logits fk(x) that get fed to
a final cross-entropy-loss layer L. Then the coordinates of
∂xfk grow like 1/

√
d, and

‖∂xL‖q ∝ d
1
q−

1
2 and εp ‖∂xL‖q ∝

√
d . (7)

These networks are thus increasingly vulnerable to `p-
attacks with growing input-dimension.

Theorem 4 is a special case of the next theorem, which will
show that the previous conclusions are essentially indepen-
dent of the network-topology. We will use the following
symmetry assumption on the neural connections. For a
given path p, let the path-degree dp be the multiset of en-
countered in-degrees along path p. For a fully connected
network, this is the unordered sequence of layer-sizes pre-
ceding the last path-node, including the input-layer. Now
consider the multiset {dp}p∈P(x,o) of all path-degrees when
p varies among all paths from input x to output o. The sym-
metry assumption (relatively to o) is

(S) All input nodes x have the same multiset {dp}p∈P(x,o)
of path-degrees from x to o.

Intuitively, this means that the statistics of degrees encoun-
tered along paths to the output are the same for all input
nodes. This symmetry assumption is exactly satisfied by
fully connected nets, almost satisfied by CNNs (up to bound-
ary effects, which can be alleviated via periodic or mirror
padding) and exactly satisfied by strided layers, if the layer-
size is a multiple of the stride.

Theorem 5 (Vulnerability of Feedforward Nets). Con-
sider any feedforward network with linear connections and
ReLU activation functions. Assume the net satisfies assump-
tions (H) and outputs logits fk(x) that get fed to the cross-
entropy-loss L. Then ‖∂xfk‖2 is independent of the input
dimension d and ε2 ‖∂xL‖2 ∝

√
d. Moreover, if the net

satisfies the symmetry assumption (S), then |∂xfk| ∝ 1/
√
d

and (7) still holds: ‖∂xL‖q ∝ d
1
q−

1
2 and εp ‖∂xL‖q ∝

√
d.

Theorems 4 and 5 are proven in Appendix A. The main
proof idea is that in the gradient norm computation, the He-
initialization exactly compensates the combinatorics of the
number of paths in the network, so that this norm becomes
independent of the network topology. In particular, we get

Corollary 6 (Vulnerability of CNNs). In any succession
of convolution and dense layers, strided or not, with ReLU
activations, that satisfies assumptions (H) and outputs logits
that get fed to the cross-entropy-loss L, the gradient of the
logit-coordinates scale like 1/

√
d and (7) is satisfied. It is

hence increasingly vulnerable with growing input-resolution
to attacks generated with any `p-norm.

Remarks.

• Appendix B shows that the network gradients are damp-
ened when replacing strided layers by average poolings,
essentially because average-pooling weights do not follow
the He-init assumption H3.
• Although the principles of our analysis naturally extend
to residual nets, they are not yet covered by our theorems
(residual connections do not satisfy H3).
• Current weight initializations (He-, Glorot-, Xavier-) are
chosen to preserve the variance from layer to layer, which
constrains their scaling to 1/

√
in-degree. This scaling, we show,

is incompatible with small gradients. But decreasing gradi-
ents simply by reducing the initial weights would kill the
output signal and make training impossible for deep nets (He
et al., 2015, Sec 2.2). Also note that rescaling all weights by
a constant does not change the classification decisions, but
it affects cross-entropy and therefore adversarial damage.

4. Empirical Results
Section 4.1 empirically verifies the validity of the first-
order Taylor approximation made in (2) and the corre-
spondence between gradient regularization and adversar-
ial augmentation (Fig.1). Section 4.2 analyzes the di-
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Figure 1. Average norm Ex‖∂xL‖ of the loss-gradients, adversarial vulnerability and accuracy (before attack) of various networks trained
with different adversarial regularization methods and regularization strengths ε. Each point represents a trained network, and each curve a
training-method. Upper row: A priori, the regularization-strengths ε have different meanings for each method. The near superposition of
all upper-row curves illustrates (i) the duality between adversarial augmentation and gradient regularization (Prop.3) and (ii) confirms the
rescaling of ε proposed in (3) and (iii) supports the validity of the first-order Taylor expansion (2). (d): near functional relation between
adversarial vulnerability and average loss-gradient norms. (e): the near-perfect linear relation between the E‖∂xL‖1 and E‖∂xL‖2
suggests that protecting against a given attack-norm also protects against others. (f): Merging 1b and 1c shows that all adversarial
augmentation and gradient regularization methods achieve similar accuracy-vulnerability trade-offs.

mension dependence of the average gradient-norms and
adversarial vulnerability after usual and robust training.
Section 4.1 uses an attack-threshold ε∞ = 0.5% of
the pixel-range (invisible to humans), with PGD-attacks
from the Foolbox-package (Rauber et al., 2017). Sec-
tion 4.2 uses self-coded PGD-attacks with random start
with ε∞ = 0.08%. As a safety-check, other attacks
were tested as well (see App.4.1 & Fig.4), but results re-
mained essentially unchanged. Note that the ε∞-thresholds
should not be confused with the regularization-strengths
ε appearing in (4) and (5), which will be varied. The
datasets were normalized (σ ≈ .2). All regularization-
values ε are reported in these normalized units (i.e. multi-
ply by .2 to compare with 0-1 pixel values). Code avail-
able at https://github.com/facebookresearch/

AdversarialAndDimensionality.

4.1. First-Order Approximation, Gradient Penalty,
Adversarial Augmentation

We train several CNNs with same architecture to classify
CIFAR-10 images (Krizhevsky, 2009). For each net, we
use a specific training method with a specific regulariza-
tion value ε. The training methods used were `1- and
`2-penalization of ∂xL (Eq. 4), adversarial augmentation

with `∞- and `2- attacks (Eq. 5), projected gradient descent
(PGD) with randomized starts (7 steps per attack with step-
size = .2 ε∞; see Madry et al. 2018) and the cross-Lipschitz
regularizer (Eq. 18 in Appendix D). For this experiment,
all networks have 6 ‘strided convolution→ batchnorm→
ReLU’ layers with strides [1, 2, 2, 2, 2, 2] respectively and
64 output-channels each, followed by a final fully-connected
linear layer. Results are summarized in Figure 1. Each curve
represents one training method. Note that our goal here is
not to advocate one defense over another, but rather to check
the validity of the Taylor expansion, and empirically verify
that first order terms (i.e., gradients) suffice to explain much
of the observed adversarial vulnerability.

Confirming first order expansion and large first-order
vulnerability. The following observations support the va-
lidity of the first order Taylor expansion in (2) and suggest
that it is a crucial component of adversarial vulnerability:
(i) the efficiency of the first-order defense against iterative
(non-first-order) attacks (Fig.1&4a); (ii) the striking similar-
ity between the PGD curves (adversarial augmentation with
iterative attacks) and the other adversarial training training
curves (one-step attacks/defenses); (iii) the functional-like
dependence between any approximation of adversarial vul-
nerability and Ex‖∂xL‖1 (Fig.4b), and its independence on

https://github.com/facebookresearch/AdversarialAndDimensionality
https://github.com/facebookresearch/AdversarialAndDimensionality
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the training method (Fig.1d). (iv) the excellent correspon-
dence between the gradient regularization and adversarial
augmentation curves (see next paragraph). Said differently,
adversarial examples seem indeed to be primarily caused by
large gradients of the classifier as captured via the induced
loss.

Gradient regularization matches adversarial augmenta-
tion (Prop.3). The upper row of Figure 1 plots Ex‖∂xL1‖,
adversarial vulnerability and accuracy as a function of ε d1/p.
The excellent match between the adversarial augmentation
curve with p = ∞ (p = 2) and its gradient regularization
dual counterpart with q = 1 (resp. q = 2) illustrates the
duality between ε as a threshold for adversarially augmented
training and as a regularization constant in the regularized
loss (Proposition 3). It also supports the validity of the
first-order Taylor expansion in (2).

Confirming correspondence of norm-dependent thresh-
olds (Eq.3). Still on the upper row, the curves for p =
∞, q = 1 have no reason to match those for p = q = 2
when plotted against ε, because the ε-threshold is relative
to a specific attack-norm. However, (3) suggested that the
rescaled thresholds εd1/p may approximately correspond
to a same ‘threshold-unit’ across `p-norms and across di-
mension. This is well confirmed by the upper row plots:
by rescaling the x-axis, the p = q = 2 and q = 1, p = ∞
curves get almost super-imposed.

Accuracy-vulnerability trade-off: confirming large
first-order component of vulnerability. Merging Fig-
ures 1b and 1c by taking out ε, Figure 1f shows that all gra-
dient regularization and adversarial augmentation methods,
including iterative ones (PGD), yield equivalent accuracy-
vulnerability trade-offs. This suggest that adversarial vulner-
ability is largely first-order. For higher penalization values,
these trade-offs appear to be much better than those given
by cross Lipschitz regularization.

The regularization-norm does not matter. We were sur-
prised to see that on Figures 1d and 1f, the Lε,q curves are
almost identical for q = 1 and 2. This indicates that both
norms can be used interchangeably in (4) (modulo proper
rescaling of ε via (3)), and suggests that protecting against
a specific attack-norm also protects against others. (6) may
provide an explanation: if the coordinates of ∂xL behave
like centered, uncorrelated variables with equal variance
–which would follow from assumptions (H) –, then the `1-
and `2-norms of ∂xL are simply proportional. Plotting
Ex‖∂xL(x)‖2 against Ex‖∂xL(x)‖1 in Figure 1e confirms
this explanation. The slope is independent of the training
method. (But Fig 7e shows that it is not independent of the
input-dimension.) Therefore, penalizing ‖∂xL(x)‖1 dur-
ing training will not only decrease Ex‖∂xL‖1 (as shown in
Figure 1a), but also drive down Ex‖∂xL‖2 and vice-versa.

4.2. Vulnerability’s Dependence on Input Dimension

Theorems 4-5 and Corollary 6 predict a linear growth of the
average `1-norm of ∂xL with the square root of the input
dimension d, and therefore an increased adversarial vulnera-
bility (Lemma 2). To test these predictions, we compare the
vulnerability of different PGD-regularized networks when
varying the input-dimension. To do so, we resize the original
3x32x32 CIFAR-10 images to 32, 64, 128 and 256 pixels
per edge by copying adjacent pixels, and train one CNN for
each input-size and regularization strength ε. All nets had
the same amount of parameters and very similar structure
across input-resolutions (see Appendix G.1). All reported
values were computed over the last 20 training epochs on
the same held-out test-set.

Gradients and vulnerability increase with
√
d. Fig-

ures 2a &2b summarize the resulting dimension dependence
of gradient-norms and adversarial vulnerability. The dashed-
lines follow the medians of the 20 last epochs and the error-
bars show their 10th and 90th quantiles. Similar to the pre-
dictions of our theorems at initialization, we see that, even
after training, Ex [‖∂xL‖1] grows linearly with

√
d which

yields higher adversarial vulnerability. However, increas-
ing the regularization decreases the slope of this dimension
dependence until, eventually, the dependence breaks.

Accuracies are dimension independent. Figure 2c plots
accuracy versus regularization strength, with errorbars sum-
marizing the 20 last training epochs.2 The four curves corre-
spond to the four different input dimensions. They overlap,
which confirms that contrary to vulnerability, the accuracies
are dimension independent; and that the `∞-attack thresh-
olds are essentially dimension independent.

PGD effectively recovers original input dimension. Fig-
ure 2d plots the accuracy-vulnerability trade-offs achieved
by the previous nets over their 20 last training epochs, with
a smoothing spline fitted for each input dimension (scipy’s
UnivariateSpline with s=200). Higher dimensions have a
longer plateau to the right, because without regularization,
vulnerability increases with input dimension. The curves
overlap when moving to the left, meaning that the accuracy-
vulnerability trade-offs achieved by PGD are essentially
independent of the actual input dimension.

PGD training outperforms down-sampling. On artifi-
cially upsampled CIFAR-10 images, PGD regularization
acts as if it first reduced the images back to their original
size before classifying them. Can PGD outperform this strat-
egy when the original image is really high resolution? To
test this, we create a 12-class ‘Mini-ImageNet’ dataset with
approximately 80,000 images of size 3x256x256 by merg-

2Fig.2c &2c are similar to Figures 1c &1f, but with one curve
per input-dimension instead of one per regularization method. See
Appendix G for full equivalent of Figure 1.
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Figure 2. Input-dimension dependence of adversarial vulnerability, gradient norms and accuracy measured on up-sampled CIFAR-10
images. (b) Similar to our theorems’ prediction at initialization, average gradient norms increase like

√
d yielding (a) higher vulnerability.

Larger PGD-regularization during training can significantly dampen this dimension dependence with (c) almost no harm to accuracy at
first (long plateau on 2c). Accuracy starts getting damaged when the dimension dependence is nearly broken (ε∞ ≈ .0005). (d) Whatever
the input-dimension, PGD-training achieves similar accuracy-vulnerability trade-offs. (c) & (d) suggest that PGD-training effectively
recovers the original image size, 3x32x32.

ing similar ImageNet classes and center-cropping/resizing
as needed. We then do the same experiment as with up-
sampled CIFAR-10, but using down-sampling instead of
up-sampling (Appendix H, Fig. 13). While the depen-
dence of vulnerability to the dimension stays essentially un-
changed, PGD training now achieves much better accuracy-
vulnerability trade-offs with the original high-dimensional
images than with their down-sampled versions.

Insights from figures in Appendix G. Appendix G repro-
duces many additional figures on this section’s experiments.
They yield additional insights which we summarize here.

Non-equivalence of loss- and accuracy-damage. Fig-
ure 8a&c show that the test-error continues to decrease
all over training, while the cross-entropy increases on the
test set from epoch ≈ 40 and on. This aligns with the ob-
servations and explanations of Soudry et al. (2018). But it
also shows that one must be careful when substituting their
differentials, loss- and accuracy-damage. (See also Fig.9b.)

Early stopping dampens vulnerability. Fig.8 shows that
adversarial damage and vulnerability closely follow the
evolution of cross-entropy. Since cross-entropy overfits,
early stopping effectively acts as a defense. See Fig.10.

Gradient norms do not generalize well. Figure 12 reveals
a strong discrepancy between the average gradient norms
on the test and the training data. This discrepancy increases
over training (gradient norms decrease on the training data
but increase on the test set), and with the input dimension, as√
d. This dimension dependence might suggest that, outside

the training points, the networks tend to recover initial gra-
dient properties. Our observations confirm Schmidt et al.’s
(2018) recent finding that PGD-regularization has a hard
time generalizing to the test-set. They claim that better gen-
eralization requires more data. Alternatively, we could try to
rethink our network modules to adapt it to the data, e.g. by

decreasing their degrees of ‘gradient-freedom’. Evaluating
the gradient-sizes at initialization may help doing so.

5. Conclusion
For differentiable classifiers and losses, we showed that ad-
versarial vulnerability increases with the gradients ∂xL of
the loss. All approximations made are fully specified, and
validated by the near-perfect functional relationship between
gradient norms and vulnerability (Fig.1d). We evaluated
the size of ‖∂xL‖q and showed that, at initialization, many
current feedforward nets (convolutional or fully connected)
are increasingly vulnerable to `p-attacks with growing input
dimension (image size), independently of their architecture.
Our experiments confirm this dimension dependence after
usual training, but PGD-regularization dampens it and can
effectively counter-balance the effect of artificial input di-
mension augmentation. Nevertheless, regularizing beyond
a certain point yields a rapid decrease in accuracy, even
though at that point many adversarial examples are still
visually undetectable for humans. Moreover, the gradient
norms remain much higher on test than on training examples.
This suggests that even with PGD robustification, there are
still significant statistical differences between the network’s
behavior on the training and test sets. Given the generality
of our results in terms of architectures, this can perhaps be
alleviated only via tailored architectural constraints on the
gradients of the network. Based on these theoretical insights,
we hypothesize that tweaks on the architecture may not be
sufficient, and coping with the phenomenon of adversarial
examples will require genuinely new ideas.
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A. Proofs
A.1. Proof of Proposition 3

Proof. Let ε δ be an adversarial perturbation with ‖δ‖ = 1
that locally maximizes the loss increase at point x, meaning
that δ = arg max‖δ′‖≤1∂xL · δ′. Then, by definition of the
dual norm of ∂xL we have: ∂xL · (εδ) = ε |||∂xL|||. Thus

L̃ε,‖·‖(x, c) =
1

2
(L(x, c) + L(x+ ε δ, c))

=
1

2
(2L(x, c) + ε |∂xL · δ|+ o(‖δ‖))

= L(x, c) +
ε

2
|||∂xL|||+ o(ε)

= Lε,|||·|||(x, c) + o(ε) .

A.2. Proof of Theorem 4

Proof. Let x designate a generic coordinate of x. To eval-
uate the size of ‖∂xL‖q, we will evaluate the size of the
coordinates ∂xL of ∂xL by decomposing them into

∂xL =

K∑
k=1

∂L
∂fk

∂fk
∂x

=:

K∑
k=1

∂kL ∂xfk,

where fk(x) denotes the logit-probability of x belonging to
class k. We now investigate the statistical properties of the
logit gradients ∂xfk, and then see how they shape ∂xL.

Step 1: Statistical properties of ∂xfk. Let P(x, k) be
the set of paths p from input neuron x to output-logit k. Let
p − 1 and p be two successive neurons on path p, and p̃
be the same path p but without its input neuron. Let wp
designate the weight from p − 1 to p and ωp be the path-
product ωp :=

∏
p∈p̃ wp. Finally, let σp (resp. σp) be equal

to 1 if the ReLU of node p (resp. if path p) is active for input
x, and 0 otherwise.

As previously noticed by Balduzzi et al. (2017) using the
chain rule, we see that ∂xfk is the sum of all ωp whose path
is active, i.e. ∂xfk(x) =

∑
p∈P(x,k) ωpσp. Consequently:

EW,σ
[
∂xfk(x)2

]
=

∑
p∈P(x,k)

∏
p∈p̃

EW
[
w2
p

]
Eσ
[
σ2
p

]
= |P(x, k)|

∏
p∈p̃

2

dp−1

1

2
=
∏
p∈p̃

dp ·
∏
p∈p̃

1

dp−1
=

1

d
. (8)

The first equality uses H1 to decouple the expectations
over weights and ReLUs, and then applies Lemma 9 of
Appendix A.3, which uses H3-H5 to kill all cross-terms
and take the expectation over weights inside the product.
The second equality uses H3 and the fact that the resulting
product is the same for all active paths. The third equality
counts the number of paths from x to k and we conclude by
noting that all terms cancel out, except dp−1 from the input
layer which is d. Equation 8 shows that |∂xfk| ∝ 1/

√
d.

Step 2: Statistical properties of ∂kL and ∂xL. Defining
qk(x) := efk(x)∑K

h=1 e
fh(x) (the probability of image x belonging

to class k according to the network), we have, by definition
of the cross-entropy loss, L(x, c) := − log qc(x), where c
is the label of the target class. Thus:

∂kL(x) =

{
−qk(x) if k 6= c
1− qc(x) otherwise, and

∂xL(x) = (1− qc) ∂xfc(x) +
∑
k 6=c

qk (−∂xfk(x)). (9)

Using again Lemma 9, we see that the ∂xfk(x) are K cen-
tered and uncorrelated variables. So ∂xL(x) is approxi-
mately the sum of K uncorrelated variables with zero-mean,
and its total variance is given by

(
(1− qc)2 +

∑
k 6=c q

2
k

)
/d.

Hence the magnitude of ∂xL(x) is 1/
√
d for all x, so the

`q-norm of the full input gradient is d1/q−1/2. (6) con-
cludes.

Remark 1. Equation 9 can be rewritten as

∂xL(x) =

K∑
k=1

qk(x)
(
∂xfc(x)− ∂xfk(x)

)
. (10)

As the term k = c disappears, the norm of the gradients
∂xL(x) appears to be controlled by the total error probabil-
ity. This suggests that, even without regularization, trying
to decrease the ordinary classification error is still a valid
strategy against adversarial examples. It reflects the fact that
when increasing the classification margin, larger gradients
of the classifier’s logits are needed to push images from
one side of the classification boundary to the other. This
is confirmed by Theorem 2.1 of Hein & Andriushchenko
(2017). See also (17) in Appendix D.

A.3. Proof of Theorem 5

The proof of Theorem 5 is very similar to the one of The-
orem 4, but we will need to first generalize the equalities
appearing in (8). To do so, we identify the computational
graph of a neural network to an abstract Directed Acyclic
Graph (DAG) which we use to prove the needed algebraic
equalities. We then concentrate on the statistical weight-
interactions implied by assumption (H), and finally throw
these results together to prove the theorem. In all the proof,
o will designate one of the output-logits fk(x).

Lemma 7. Let x be the vector of inputs to a given DAG, o
be any leaf-node of the DAG, x a generic coordinate of x.
Let p be a path from the set of paths P(x, o) from x to o, p̃
the same path without node x, p a generic node in p̃, and
dp be its input-degree. Then:∑

x∈x

∑
p̃∈P(x,o)

∏
p∈p̃

1

dp
= 1 (11)
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Proof. We will reason on a random walk starting at o and
going up the DAG by choosing any incoming node with
equal probability. The DAG being finite, this walk will end
up at an input-node x with probability 1. Each path p is
taken with probability

∏
p∈p̃

1
dp

. And the probability to end
up at an input-node is the sum of all these probabilities, i.e.∑
x∈x

∑
p∈P(x,o)

∏
p∈p d

−1
p , which concludes.

The sum over all inputs x in (11) being 1, on average it is
1/d for each x, where d is the total number of inputs (i.e. the
length of x). It becomes an equality under assumption (S):
Lemma 8. Under the symmetry assumption (S), and with
the previous notations, for any input x ∈ x:∑

p∈P(x,o)

∏
p∈p̃

1

dp
=

1

d
. (12)

Proof. Let us denote D(x, o) := {dp}x∈P(x,o). Each path
p in P(x, o) corresponds to exactly one element dp in
D(x, o) and vice-versa. And the elements dp of dp com-
pletely determine the product

∏
p∈p̃ d

−1
p . By using (11) and

the fact that, by (S), the multiset D(x, o) is independent of
x, we hence conclude∑
x∈x

∑
p∈P(x,o)

∏
p∈p̃

1

dp
=
∑
x∈x

∑
dp∈D(x,o)

∏
dp∈dp

1

dp

= d
∑

dp∈D(x,o)

∏
dp∈dp

1

dp
= 1 .

Now, let us relate these considerations on graphs to gradients
and use assumptions (H). We remind that path-product ωp
is the product

∏
p∈p̃ wp.

Lemma 9. Under assumptions (H), the path-products
ωp, ωp′ of two distinct paths p and p′ starting from a same
input node x, satisfy:

EW [ωp ωp′ ] = 0 and EW
[
ω2
p

]
=
∏
p∈p̃

EW
[
w2
p

]
.

Furthermore, if there is at least one non-average-pooling
weight on path p, then EW [ωp] = 0.

Proof. Hypothesis H4 yields

EW
[
ω2
p

]
= EW

∏
p∈p̃

w2
p

 =
∏
p∈p̃

EW
[
w2
p

]
.

Now, take two different paths p and p′ that start at a same
node x. Starting from x, consider the first node after which
p and p′ part and call p and p′ the next nodes on p and p′

respectively. Then the weights wp and wp′ are two weights
of a same node. Applying H4 and H5 hence gives

EW [ωp ωp′ ] = EW
[
ωp\p ωp′\p′

]
EW [wp wp′ ] = 0 .

Finally, if p has at least one non-average-pooling node p,
then successively applying H4 and H3 yields: EW [ωp] =
EW

[
ωp\p

]
EW [wp] = 0.

We now have all elements to prove Theorem 5.

Proof. (of Theorem 5) For a given neuron p in p̃, let p− 1
designate the previous node in p of p. Let σp (resp. σp) be a
variable equal to 0 if neuron p gets killed by its ReLU (resp.
path p is inactive), and 1 otherwise. Then:

∂xo =
∑

p∈P(x,o)

∏
p∈p̃

∂p−1 p =
∑

p∈P(x,o)

ωp σp

Consequently:

EW,σ
[
(∂xo)

2
]

=
∑

p,p′∈P(x,o)

EW [ωp ωp′ ]Eσ [σpσp′ ]

=
∑

p∈P(x,o)

∏
p∈p̃

EW
[
ω2
p

]
Eσ
[
σ2
p

]
(13)

=
∑

p∈P(x,o)

∏
p∈p̃

2

dp

1

2
=

1

d
,

where the first line uses the independence between the ReLU
killings and the weights (H1), the second uses Lemma 9
and the last uses Lemma 8. The gradient ∂xo thus has co-
ordinates whose squared expectations scale like 1/d. Thus
each coordinate scales like 1/

√
d and ‖∂xo‖q like d1/2−1/q .

Conclude on ‖∂xL‖q and εp ‖∂xL‖q by using Step 2 of the
proof of Theorem 4.

Finally, note that, even without the symmetry assumption
(S), using Lemma 7 shows that

EW
[
‖∂xo‖22

]
=
∑
x∈x

EW
[
(∂xo)

2
]

=
∑
x∈x

∑
p∈P(x,o)

∏
p∈p̃

2

dp

1

2
= 1 .

Thus, with or without (S), ‖∂xo‖2 is independent of the
input-dimension d.

A.4. Proof of Theorem 11

To prove Theorem 11, we will actually prove the follow-
ing more general theorem, which generalizes Theorem 5.
Theorem 11 is a straightforward corollary of it.
Theorem 10. Consider any feedforward network with lin-
ear connections and ReLU activation functions that outputs
logits fk(x) and satisfies assumptions (H). Suppose that
there is a fixed multiset of integers {a1, . . . , an} such that
each path from input to output traverses exactly n average
pooling nodes with degrees {a1, . . . , an}. Then:

‖∂xfk‖2 ∝
1∏n

i=1

√
ai
. (14)
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Furthermore, if the net satisfies the symmetry assumption
(S), then: |∂xfk| ∝ 1√

d
∏n

i=1 ai
.

Two remarks. First, in all this proof, “weight” encompasses
both the standard random weights, and the constant (de-
terministic) weights equal to 1/(in-degree) of the average-
poolings. Second, assumption H5 implies that the average-
pooling nodes have disjoint input nodes: otherwise, there
would be two non-zero deterministic weights w,w′ from a
same neuron that would hence satisfy: EW [ww′] 6= 0.

Proof. As previously, let o designate any fixed output-logit
fk(x). For any path p, let a be the set of average-pooling
nodes of p and let q be the set of remaining nodes. Each
path-product ωp satisfies: ωp = ωqωa, where ωa is a same
fixed constant. For two distinct paths p,p′, Lemma 9 there-
fore yields: EW

[
ω2
p

]
= ω2

a EW
[
ω2
q

]
and EW [ωpωp′ ] = 0.

Combining this with Lemma 8 and under assumption (S),
we get similarly to (13):

EW,σ
[
(∂xo)

2
]

=
∑

p,p′∈P(x,o)

ωaωa′ EW [ωq ωq′ ]Eσ [σqσq′ ]

=
∑

p∈P(x,o)

n∏
i=1

1

a2i

∏
q∈q̃

EW
[
ω2
q

]
Eσ
[
σ2
q

]
=

n∏
i=1

1

ai︸ ︷︷ ︸
same value

for all p

∑
p∈P(x,o)

n∏
i=1

1

ai

∏
q∈q̃

2

dq

1

2︸ ︷︷ ︸∏
p∈p̃

1
dp︸ ︷︷ ︸

= 1
d (Lemma 8)

(15)

=
1

d

n∏
i=1

1

ai
.

Therefore, |∂xo| = |∂xfk| ∝ 1/
√
d
∏n
i=1 ai. Again, note

that, even without assumption (S), using (15) and Lemma 7
shows that

EW
[
‖∂xo‖22

]
=
∑
x∈x

EW,σ
[
(∂xo)

2
]

(15)
=
∑
x∈x

n∏
i=1

1

ai

∑
p∈P(x,o)

n∏
i=1

1

ai

∏
p∈p̃

2

dp

1

2

=

n∏
i=1

1

ai

∑
x∈x

∑
p∈P(x,o)

∏
p∈p̃

1

dp︸ ︷︷ ︸
=1 (Lemma 7)

=

n∏
i=1

1

ai
,

which proves (14).

B. Effects of Strided and Average-Pooling
Layers on Adversarial Vulnerability

It is common practice in CNNs to use average-pooling lay-
ers or strided convolutions to progressively decrease the

number of pixels per channel. Corollary 6 shows that using
strided convolutions does not protect against adversarial
examples. However, what if we replace strided convolutions
by convolutions with stride 1 plus an average-pooling layer?
Theorem 5 considers only randomly initialized weights with
typical size 1/

√
in-degree. Average-poolings however in-

troduce deterministic weights of size 1/(in-degree). These
are smaller and may therefore dampen the input-to-output
gradients and protect against adversarial examples. We con-
firm this in our next theorem, which uses a slightly modified
version (H′) of (H) to allow average pooling layers. (H′) is
(H), but where the He-init H3 applies to all weights except
the (deterministic) average pooling weights, and where H1
places a ReLU on every non-input and non-average-pooling
neuron.

Theorem 11 (Effect of Average-Poolings). Consider a
succession of convolution layers, dense layers and n
average-pooling layers, in any order, that satisfies (H′) and
outputs logits fk(x). Assume the n average pooling layers
have a stride equal to their mask size and perform averages
over a1, ..., an nodes respectively. Then ‖∂xfk‖2 and |∂xfk|
scale like 1/

√
a1 · · · an and 1/

√
d a1 · · · an respectively.

Proof in Appendix A.4. Theorem 11 suggest to try and re-
place any strided convolution by its non-strided counterpart,
followed by an average-pooling layer. It also shows that
if we systematically reduce the number of pixels per chan-
nel down to 1 by using only non-strided convolutions and
average-pooling layers (i.e. d =

∏n
i=1 ai), then all input-to-

output gradients should become independent of d, thereby
making the network completely robust to adversarial exam-
ples. Our following experiments (Figure 3) show that after
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Figure 3. As predicted by Theorem 11, average-pooling layers
make networks more robust to adversarial examples, contrary to
strided (and max-pooling) ones. But the vulnerability with average-
poolings remains higher than anticipated.

training, the networks get indeed robustified to adversarial
examples, but remain more vulnerable than suggested by
Theorem 11.

Experimental setup. Theorem 11 shows that, contrary to
strided layers, average-poolings should decrease adversarial
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vulnerability. We tested this hypothesis on CNNs trained
on CIFAR-10, with 6 blocks of ‘convolution→ BatchNorm
→ReLU’ with 64 output-channels, followed by a final av-
erage pooling feeding one neuron per channel to the last
fully-connected linear layer. Additionally, after every sec-
ond convolution, we placed a pooling layer with stride and
mask-size (2, 2) (thus acting on 2 × 2 neurons at a time,
without overlap). We tested average-pooling, strided and
max-pooling layers and trained 20 networks per architec-
ture. Results are shown in Figure 3. All accuracies are very
close, but, as predicted, the networks with average pooling
layers are more robust to adversarial images than the others.
However, they remain more vulnerable than what would
follow from Theorem 11. We also noticed that, contrary to
the strided architectures, their gradients after training are
an order of magnitude higher than at initialization and than
predicted. This suggests that assumptions (H) get more vio-
lated when using average-poolings instead of strided layers.
Understanding why will need further investigations.

C. Perception Threshold
To keep the average pixel-wise variation constant across
dimensions d, we saw in (3) that the threshold εp of an
`p-attack should scale like d1/p. We will now see another
justification for this scaling. Contrary to the rest of this
work, where we use a fixed εp for all images x, here we will
let εp depend on the `2-norm of x. If, as usual, the dataset
is normalized such that the pixels have on average variance
1, both approaches are almost equivalent.

Suppose that given an `p-attack norm, we want to choose
εp such that the signal-to-noise ratio (SNR) ‖x‖2 / ‖δ‖2
of a perturbation δ with `p-norm ≤ εp is never greater
than a given SNR threshold 1/ε. For p = 2 this imposes
ε2 = ε ‖x‖2. More generally, studying the inclusion of
`p-balls in `2-balls yields

εp = ε ‖x‖2 d1/p−1/2 . (16)

Note that this gives again εp = ε∞d
1/p. This explains how

to adjust the threshold ε with varying `p-attack norm.

Now, let us see how to adjust the threshold of a given `p-
norm when the dimension d varies. Suppose that x is a
natural image and that decreasing its dimension means ei-
ther decreasing its resolution or cropping it. Because the
statistics of natural images are approximately resolution
and scale invariant (Huang, 2000), in either case the aver-
age squared value of the image pixels remains unchanged,
which implies that ‖x‖2 scales like

√
d. Pasting this back

into (16), we again get:

εp = ε∞ d1/p .

In particular, ε∞ ∝ ε is a dimension free number, exactly
like in (3) of the main part.

Now, why did we choose the SNR as our invariant reference
quantity and not anything else? One reason is that it corre-
sponds to a physical power ratio between the image and the
perturbation, which we think the human eye is sensible to.
Of course, the eye’s sensitivity also depends on the spectral
frequency of the signals involved, but we are only interested
in orders of magnitude here.

Another point: any image x yields an adversarial pertur-
bation δx, where by constraint ‖x‖2 / ‖δx‖ ≤ 1/ε. For
`2-attacks, this inequality is actually an equality. But what
about other `p-attacks: (on average over x,) how far is the
signal-to-noise ratio from its imposed upper bound 1/ε? For
p 6∈ {1, 2,∞}, the answer unfortunately depends on the
pixel-statistics of the images. But when p is 1 or∞, then
the situation is locally the same as for p = 2. Specifically:

Lemma 12. Let x be a given input and ε > 0. Let εp be the
greatest threshold such that for any δ with ‖δ‖p ≤ εp, the
SNR ‖x‖2 / ‖δ‖2 is ≤ 1/ε. Then εp = ε ‖x‖2 d1/p−1/2.

Moreover, for p ∈ {1, 2,∞}, if δx is the εp-sized `p-
attack that locally maximizes the loss-increase i.e. δx =
arg max‖δ‖p≤εp |∂xL · δ|, then:

SNR(x) :=
‖x‖2
‖δx‖2

=
1

ε
and Ex [SNR(x)] =

1

ε
.

Proof. The first paragraph follows from the fact that the
greatest `p-ball included in an `2-ball of radius ε ‖x‖2 has
radius ε ‖x‖2 d1/p−1/2.

The second paragraph is clear for p = 2. For p = ∞, it
follows from the fact that δx = ε∞ sign∂xLwhich satisfies:
‖δx‖2 = ε∞

√
d = ε ‖x‖2. For p = 1, it is because δx =

ε1 maxi=1..d |(∂xL)i|, which satisfies: ‖δx‖2 = ε2/
√
d =

ε ‖x‖2.

Intuitively, this means that for p ∈ {1, 2,∞}, the SNR of
εp-sized `p-attacks on any input x will be exactly equal to
its fixed upper limit 1/ε. And in particular, the mean SNR
over samples x is the same (1/ε) in all three cases.

D. Comparison to the Cross-Lipschitz
Regularizer

In their Theorem 2.1, Hein & Andriushchenko (2017) show
that the minimal ε = ‖δ‖p perturbation to fool the classifier
must be bigger than:

min
k 6=c

fc(x)− fk(x)

maxy∈B(x,ε) ‖∂xfc(y)− ∂xfk(y)‖q
. (17)

They argue that the training procedure typically already tries
to maximize fc(x) − fk(x), thus one only needs to addi-
tionally ensure that ‖∂xfc(x)− ∂xfk(x)‖q is small. They
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then introduce what they call a Cross-Lipschitz Regulariza-
tion, which corresponds to the case p = 2 and involves the
gradient differences between all classes:

RxLip :=
1

K2

K∑
k,h=1

‖∂xfh(x)− ∂xfk(x)‖22 (18)

In contrast, using (10), (the square of) our proposed regu-
larizer ‖∂xL‖q from (4) can be rewritten, for p = q = 2
as:

R‖·‖2(f) =

K∑
k,h=1

qk(x)qh(x)
(
∂xfc(x)− ∂xfk(x)

)
·

·
(
∂xfc(x)− ∂xfh(x)

)
(19)

Although both (18) and (19) consist in K2 terms, corre-
sponding to the K2 cross-interaction between the K classes,
the big difference is that while in (18) all classes play ex-
actly the same role, in (19) the summands all refer to the
target class c in at least two different ways. First, all gradient
differences are always taken with respect to ∂xfc. Second,
each summand is weighted by the probabilities qk(x) and
qh(x) of the two involved classes, meaning that only the
classes with a non-negligible probability get their gradient
regularized. This reflects the idea that only points near the
margin need a gradient regularization, which incidentally
will make the margin sharper.

E. A Variant of Adversarially-Augmented
Training

In usual adversarially augmented training, the adversarial
image x + δ is generated on the fly, but is nevertheless
treated as a fixed input of the neural net, which means that
the gradient does not get backpropagated through δ. This
need not be. As δ is itself a function of x, the gradients
could actually also be backpropagated through δ. As it was
only a one-line change of our code, we used this opportunity
to test this variant of adversarial training (FGSM-variant in
Figure 1). But except for an increased computation time,
we found no significant difference compared to usual aug-
mented training.

F. Additional Figures on the Experiments of
Section 4.1

Effect of Changing the Attack-Method on Adversarial
Vulnerability To verify that our empirical results on ad-
versarial vulnerability were essentially unaffected by the
attack method, we measured the adversarial vulnerability of
each network trained in Section 4.1 using, not only PGD-
attacks (as shown in the figures of the main text), but various
other attack-methods. We tested single-step `∞- (FGSM)

and `2-attacks, iterative `∞- (PGD without random start)
and `2-attacks, and DeepFool attacks (Moosavi-Dezfooli
et al., 2016).

Figure 4 illustrates the results. While Figure 1 from the main
part fixed the attack type – iterative `∞-attacks – and plotted
the curves obtained for various training methods, Figure 4
now fixes the training method – gradient `1-regularization –
and plots the obtained adversarial vulnerabilities for the
different attack types. Figure 4 shows that, while the adver-
sarial vulnerability values vary considerably from method
to method, the overall relation between gradient-norms or
regularization-strengths on the one side and vulnerability on
the other is extremely similar for all methods: it increases
almost linearly with increasing gradient-norms and decreas-
ing regularization-strength. Changing the attack-method
in Figure 1 (main part) hence essentially changes only the
vulnerability scale, not the shape of the curves. Moreover,
the functional-like link between average gradient-norms
and every single approximation of adversarial vulnerabil-
ity confirms that the first-order vulnerability is an essential
component of adversarial vulnerability.
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Figure 4. Adversarial vulnerability approximated by different
attack-types for 10 trained networks as a function of (a) the `1
gradient regularization-strength ε used to train the nets and (b)
the average gradient-norm. These curves confirm that the first-
order expansion term in (2) is a crucial component of adversarial
vulnerability.

Note that on Figure 4, the two `∞-attacks seem more ef-
ficient than the others. This is because we bounded the
attack threshold ε∞ in `∞-norm, whereas the `2- (single-
step and iterative) and DeepFool attacks try to minimize the
`2-perturbation. With an `2-threshold, we get the opposite:
which brings us to Figure 6.

Figures with an `2 Perturbation-Threshold and Deep-
Fool Attacks Here we plot the same curves than on Fig-
ures 1 (main part) and 4, but using an `2-attack threshold
of size ε2 = ε∞

√
d instead of the `∞-threshold, and, for

Fig. 5, using deep-fool attacks (Moosavi-Dezfooli et al.,
2016) instead of iterative `∞-ones. Note that contrary to
`∞-thresholds, `2-thresholds must be rescaled by

√
d to stay

consistent across dimensions (see Eq.3 and Appendix C).
All curves look essentially the same as their counterparts
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Figure 5. Same as Figure 1, but with an `2- perturbation-threshold (instead of `∞) and deep-fool attacks (Moosavi-Dezfooli et al., 2016)
instead of iterative `∞ ones. All curves look essentially the same than in Fig. 1.

with an `∞-threshold.
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Figure 6. Same as Figure 4 but using an `2 threshold instead of a
`∞ one. Now the `2-based methods (deep-fool, and single-step
and iterative `2-attacks) seem more effective than the `∞ ones.
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G. Additional Material on the Up-Sampled CIFAR-10 Experiments of Section 4.2
G.1. Network architectures

The architecture of the CNNs used in Section 4.2 was a succession of 8 ‘convolution→ batchnorm→ ReLU’ layers with 64
output channels, followed by a final full-connection to the logit-outputs. We used 2× 2-max-poolings after the convolutions
of layers 2,4, 6 and 8, and a final max-pooling after layer 8 that fed only 1 neuron per channel to the fully-connected
layer. To ensure that the convolution-kernels cover similar ranges of the images across each of the 32, 64, 128 and 256
input-resolutions, we respectively dilated all convolutions (‘à trous’) by a factor 1, 2, 4 and 8.

G.2. Additional Plots

Here we provide various additional plots computed with the networks trained in Section 4.2 on upsampled CIFAR-10 images
of various sizes.

We first reproduce on Figure 7 the equivalent of Figure 1 (that compared the different regularization methods) but with
each curve now representing a specific input-size instead of a regularization method. Figure 8 then analyses the evolution
over training epochs of the test set performances on the up-sampled 3x256x256 CIFAR-10 images and unveils a striking
discrepancy between error-rate (-damage) and cross-entropy loss (-damage): the cross-entropy clearly overfits, but the
error-rate does not. This motivates a small comparison between performance at end-of-training and at early stopping (i.e. at
the epochs with minimal cross-entropy loss). Figure 9 therefore merges several plots from the training curves of Figure 8 by
using the epochs an implicit parameter, and compares their relation at end-of-training and after early-stopping. Figure 10
continues the comparison between end-of-training and early-stopping. Figure 11 then essentially plots the equivalent of
Fig.8 but for the training-set values, showing that, contrary to the test set values, the training-error and -loss and -loss-damage
decrease over training. This adversarial loss-damage appears to be much smaller on the training than on the test set, which
motivates our last figure, Figure 12, that compares the training and test gradient `1-norms for all input resolutions. It
confirms the huge discrepancy between the gradient norms on the training and test set. This suggests that, outside the
training sample, and without strong regularization, the networks tend to recover their prior gradient-properties, i.e. naturally
large gradients.

For detailed comments, see figures’ captions. Note that, for improved readability, Figures 8, 11 & 12 were smoothed using
an exponential moving average with weight 0.9, 0.6 and 0.6 respectively (higher weights→ smoother).
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Figure 7. Equivalent of Figure 1, but with each curve representing one specific input-size (using up-sampled CIFAR-10 images) rather than
one training method. Recall that all values (gradient-norms, vulnerability and accuracy) were measured over the last 20 training epochs on
the test set. They appear all as an individual points on the bottom-row plots, and are summarized with errorbars on the upper-row. (d):
confirms the functional- (linear-) like relation between average loss-gradient norms and adversarial vulnerability. While the slope of this
relation stays unchanged for images of height and width ≤ 128, it gets slightly dampened for size 256. Overall, this plot confirms that
first-order vulnerability (i.e. gradient-norms) is an essential part of adversarial vulnerability. (e): confirms the linear relationship between
`1- and `2-gradient-norms (which explains why protecting against `∞-attacks also protects against `2-attacks and vice-versa), but reveals
that the slope does not just change like

√
d with growing dimension. Figs.7a & 7b are the same than Figs.2b & 2a (main part), but with a

different presentation. Figs.7c & 7f are the same than Figs.2c & 2d (see main part for comments).
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Figure 8. Evolution over the training epochs of the networks’ test-set performances on the 3x256x256 up-sampled CIFAR-10 dataset. We
call “adversarial error-rate” the error-rate after attack (i.e. usual error-rate plus accuracy-damage). We also divided the adversarial loss
damage by the attack-threshold ε∞ to get the same units than Ex [∂xL] (see Fig.9 for explanations). While the usual error-rate constantly
decreases on the test-set (hence showing no sign of overfitting), surprisingly, with low or no PGD-regularization, the cross-entropy loss
(i.e. the training objective) severely increases after approximately 50 epochs. Moreover, the adversarial error-rate (and vulnerability/loss-
damage/gradient-norms) curve has a strikingly similar shape. Hence, even though the accuracy improves, the cross-entropy overfitting
still signals some form of overfitting (that could be called ‘gradient-overfitting’), which makes the network more vulnerable.
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Figure 9. Relations between adversarial vulnerability, loss- and accuracy-damage, and loss-gradient norms computed on the up-sampled
3x256x256 CIFAR-10 test set images over the 20 last training epochs (blue) and at the 20 optimal early-stopping epochs (green), i.e.
the 20 epochs with smallest cross-entropy test-loss. Note that these plots essentially merge different plots from Fig.8 by using the 20
end-of-training and 20 early-stopping epochs as a common implicit parameter. As in Fig.8, we divided the adversarial loss damage by the
attack-threshold ε∞. This ‘normalized’ loss damage can thus be understood as the average loss-gradient norm between an image x and
its adversarial perturbation x+ δ, and can directly be compared with Ex [∂xL]. (a) Gradient norms appear to be a stable indicator for
loss-damage through-out training. Note however that the gradient norms at the original input points are on average only half the size of
the gradients of their surroundings. That might explain why in practice, iterative gradient regularization (e.g. PGD) is more effective than
single-step regularization (e.g. FGSM). (b) Adversarial accuracy- and loss-damage are in a functional-like relationship, but which evolves
over training (thus the difference between end-of-training and early-stopping). (c) Adversarial vulnerability and accuracy-damage are
in a constant, almost perfectly proportional relationship. Comparing (b) and (c) suggests that the main difference between adversarial
loss-damage and adversarial vulnerability comes from the difference between the L0/1- and the cross-entropy loss L.
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Figure 10. Network performance at early stopping versus end-of-training, for different regularization strength, on up-sampled 3x256x256
CIFAR-10 images. Training past the epochs with minimal cross-entropy test-loss might improve the final test-accuracy, but significantly
increases the networks’ vulnerability. (The left-most point of each curve actually corresponds to ε∞ = 0.).
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Figure 11. Evolution over the training epochs of the networks’ training-set performances on the 3x256x256 up-sampled CIFAR-10
dataset. Compare with Fig.8 for the corresponding test-set performances. Contrary to the test-set performances, error-rate, cross-entropy
and adversarial loss-damage all steadily decrease (after some initialization epochs).
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Figure 12. Evolution over training epochs of the average `1-gradient-norms on the test (top row) and training set (bottom row). There is a
clear discrepancy between training and test set values: after around 50-epochs of initialization, the gradient norms constantly decrease on
the training set and become dimension independent (even without regularization); on the test set however, they increase and scale like√
d. This suggests that, outside the training points, and without very strong gradient regularization, the nets tend to recover their prior

gradient-properties (i.e. naturally large gradients).
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H. Figures for the Experiments of Section 4.2 on the Custom Mini-ImageNet Dataset
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Figure 13. Same as Figure 2, but using down-sampled images from our custom 12-class ‘Mini-ImageNet’ dataset (see Sec.4.2) rather than
up-sampled CIFAR-10 images. Interestingly, (d) shows that PGD training finds better accuracy-vulnerability trade-offs with higher input
dimensions. It is thus more effective at tackling adversarial vulnerability than a simple initial down-sampling layer that would be used to
reduce the data’s dimension.
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Figure 14. Same as Figure 7, but using down-sampled images from our custom 12-class ‘Mini-ImageNet’ dataset rather than up-sampled
CIFAR-10 images.


