
Appendix
Understanding Impacts of High-Order Loss Approximations and Features in

Deep Learning Interpretation

Sahil Singla 1 Eric Wallace 1 Shi Feng 1 Soheil Feizi 1

A. Proofs
A.1. Proof of Proposition 1

This section derives the closed-form formula for the Hessian
of the loss function for a deep ReLU network. Since a ReLU
network is piecewise linear, it is locally linear around an
input x. Thus the logits can be represented as:

fθ(x) = WTx + b,

where x is the input of dimension d, fθ(x) are the logits, W
are the weights, and b are the biases of the linear function.
In this proof, we use ŷ to denote the logits, p to denote
the class probabilities, y to denote the label vector and c
to denote the number of classes. Each column Wi of W
is the gradient of logit ŷi with respect to flattened input
x and can be easily handled in auto-grad software such as
PyTorch (Paszke et al., 2017).

Thus

∂ŷi
∂x

= Wi (1)

p = softmax(ŷ)

`(p,y) = −
c

∑
i=1

yilog(pi).

∇ŷ`(p,y) = p − y

Ô⇒ ∂`(p,y)
∂ŷi

= pi − yi (2)

∇x`(p,y) =
c

∑
i=1

∂ŷi
∂x

× ∂`(p,y)
∂ŷi

1Computer Science Department, University of Maryland. Corre-
spondence to: Sahil Singla <ssingla@cs.umd.edu>, Soheil Feizi
<sfeizi@cs.umd.edu>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

Using (1) and (2)

∇x`(p,y) =
c

∑
i=1

Wi(pi − yi)

Ô⇒ ∇x`(p,y) = W(p − y)

Therefore, we have:

Hx = ∇x(∇x`(p,y)) = ∇x(
c

∑
i=1

Wi(pi − yi))

Hx =
c

∑
i=1

Wi(∇x(pi − yi))T

Hx =
c

∑
i=1

Wi(∇xpi)T (3)

Deriving ∇xpi:

∇xpi =
c

∑
j=1

∂ŷj

∂x
× ∂pi
∂ŷj

Ô⇒ ∇xpi =
c

∑
j=1

(Wj ×
∂pi
∂ŷj

) (Using (1)) (4)

∂pi
∂ŷj

= {
pi − p2

i i = j
−pipj i ≠ j

Ô⇒ ∇ŷp = diag(p) − ppT (5)

Hx =
c

∑
i=1

Wi(
c

∑
j=1

Wj ×
∂pi
∂ŷj

)
T

(Substituting (4) in (3))

Hx =
c

∑
i=1

c

∑
j=1

Wi
∂pi
∂ŷj

WT
j

Ô⇒ Hx = W(diag(p) − ppT)WT (Using (5))

Thus we have,

∇x`(p,y) = gx = W(p − y) (6)

Hx = WAWT (7)

where

A ∶= diag(p) − ppT . (8)

This completes the proof.

Understanding High-Order Loss Approximations and Features in Deep Learning Interpretation

A.2. Proof of Theorem 2

To simplify notation, define A as in (8). For any arbitrary
row of the matrix Ai, we have

∑
j≠i

∣Aij ∣ = (∑
j≠i

∣ − pipj ∣)

Ô⇒ ∑
j≠i

∣Aij ∣ = pi∑
j≠i

pj

Ô⇒ ∑
j≠i

∣Aij ∣ = pi(1 − pi)

∣Aii∣ = pi(1 − pi)

Because ∣Aii∣ >= ∑j≠i ∣Aij ∣, by the Gershgorin Circle the-
orem, we have that all eigenvalues of A are positive and
A is a positive semidefinite matrix. Since A is positive
semidefinite, we can write A = LLT . Using (7):

Hx = WAWT = WLLTWT = WL(WL)T .

Hence Hx is a positive semidefinite matrix as well.

A.3. Proof of Theorem 3

The second-order interpretation objective function is:

˜̀(∆) = ∇x` (fθ∗(x), y)t∆ + 1

2
∆tHx∆ − λ2∥∆∥2

2

˜̀(∆) = ∇x` (fθ∗(x), y)t∆ + 1

2
∆t(Hx − 2λ2I)∆

where ∆ ∶= x̃ − x (y is fixed). Therefore if λ2 > L/2,
Hx−2λ2I is negative definite and ˜̀(∆) is strongly concave.

A.4. Proof of Theorem 4

Let the class probabilities be denoted by p, the number of
classes by c and the label vector by y. We again use gx

and Hx as defined in (6) and (7) respectively. Without loss
of generality, assume that the first class is the class with
maximum probability. Hence,

y = [1,0,0, ...,0]T . (9)

We assume all other classes have small probability (i.e., the
confidence is high),

pi = ε ≈ 0 ∀ i ∈ [2, c]

Since ∑ci=1 pi = 1,

Ô⇒ p1 = 1 − (c − 1)ε,
Ô⇒ p = [1 − (c − 1)ε, ε, . . . , ε]T (10)

We define:
A = diag(p) − ppT

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 . . . a1c

a21 a22 . . . a2c

⋮ ⋮ ⋱ ⋮
ac1 ac2 . . . acc

⎤⎥⎥⎥⎥⎥⎥⎥⎦
a11 = 1 − (c − 1)ε − (1 − (c − 1)ε)2

a1i = ai1 = −(1 − (c − 1)ε)ε ∀ i ∈ [2, c]
aii = ε − ε2 ∀ i ∈ [2, c]
aij = −ε2 ∀ i, j ∈ [2, c], i ≠ j

Ignoring ε2 terms:

a11 = (c − 1)ε
a1i = ai1 = −ε ∀i ∈ [2, c]
aii = ε ∀i ∈ [2, c]
aij = 0 ∀i, j ∈ [2, c], i ≠ j

Let λ be an eigenvalue of A and v be an eigenvector of A,
then Av = λv.
Let v1, v2, . . . , vn be the individual components of the eigen-
vector. The equation Av = λv can be rewritten in terms of
its individual components as follows:

(c − 1)εv1 − ε
c

∑
i=2

vi = λv1 (11)

− εv1 + εvi = λvi ∀i ∈ [2, c]

Ô⇒ vi =
ε

ε − λ
v1 ∀i ∈ [2, c], for λ ≠ ε (12)

Ô⇒ or v1 = 0, for λ = ε (13)

We first consider the case λ ≠ ε (12). Substituting vi in (11):

(c − 1)εv1 − ε
c

∑
i=2

vi = (c − 1)εv1 −
ε2

ε − λ

c

∑
i=2

v1

= (c − 1)εv1 −
ε2

ε − λ
(c − 1)v1

= (c − 1)εv1 − (c − 1)εv1
ε

ε − λ
= λv1

(c − 1)εv1[1 − ε

ε − λ
] = λv1

(c − 1)εv1[−
λ

ε − λ
] = λv1

(c − 1)εv1(−λ) = λv1(ε − λ)
Ô⇒ λv1(cε − λ) = 0

Ô⇒ λ = 0 or v1 = 0 or λ = cε

v1 = 0 Ô⇒ vi =
ε

ε − λ
v1 = 0 ∀ i ∈ [2, c]

Ô⇒ v = 0

Understanding High-Order Loss Approximations and Features in Deep Learning Interpretation

Since v is an eigenvector, it cannot be zero,

Ô⇒ λ = 0 or λ = cε.

Let u1 be the corresponding eigenvector for λ = cε.
By substituting λ = cε in (12):

uT1 ∝ [1 − c,1, ...,1]

Dividing by the normalization constant,

uT1 = 1√
c(c − 1)

[1 − c,1, ...,1] (14)

Now we consider the case λ = ε (13). Substituting v1 =
0, λ = ε in (11):
The space of eigenvectors for λ = ε is a c − 2 dimensional
subspace with v1 = 0, ∑ci=2 vi = 0.
Let ui be the eigenvectors with λ = ε ∀ i ∈ [2, c − 1]
Let uc be the eigenvector with λ = 0.
Writing A in terms of its eigenvalues and eigenvectors,

A = cεu1u
T
1 + ε

c−1

∑
i=2

uiu
T
i

Let

A1 = cεu1u
T
1 , A2 = ε

c−1

∑
i=2

uiu
T
i

∥A1∥F = cε, ∥A2∥F = ε
√
c − 2

Hence as c→∞,

A = A1 +A2 ≈ A1

Using (7),
Hx = WAWT ≈ WA1W

T

Substituting A1 = cεu1u
T
1 ,

Hx ≈ cεWu1u
T
1 WT (15)

Using (6),

gx = ∇x`(p,y) = W(p − y)

Let Wi denote the ith row of W,
Using (9) and (10),

gx = W1(1 − c)ε +
c

∑
i=2

Wiε

gx = ε(W1(1 − c) +
c

∑
i=2

Wi)

Using (14),

gx = ε
√
c(c − 1)Wu1

Ô⇒ Wu1 =
gx

ε
√
c(c − 1)

(16)

Using (15),

Hx ≈ cεWu1u
T
1 WT = cεWu1(Wu1)T

Using (16),

Hx ≈ cε gx

ε
√
c(c − 1)

gTx

ε
√
c(c − 1)

Hx ≈ cε gxgTx
ε2c(c − 1)

= gxgTx
ε(c − 1)

Ô⇒ Hx ≈ gxgTx
ε(c − 1)

(17)

Thus, the Hessian is approximately rank one and the gradi-
ent is parallel to the Hessian’s only eigenvector.

A.5. Proof of Theorem 5

We use gx = ∇x`(p,y) = W(p − y) (6).
Let λ1 = 0 in the CASO and CAFO objectives. The CASO
objective then becomes:

max
∆

(gtx∆ + 1

2
∆tHx∆ − λ2∥∆∥2

2)

Taking the derivative with respect to ∆ and solving:

∆∗
CASO = (2λ2I −Hx)−1gx

Similarly, for the CAFO objective we get:

∆∗
CAFO = 1

2λ2
gx

Using (17),

Hx ≈ gxgTx
ε(c − 1)

= ∥gx∥2

ε(c − 1)
gxgTx
∥gx∥2

Define:

µ = ∥gx∥2

ε(c − 1)
Thus µ is the eigenvalue of Hx for the eigenvector:

gx

∥gx∥

Consider the matrix B = (2λ2I −Hx):
Let z1, . . . ,zd be the eigenvectors of B where:

z1 =
gx

∥gx∥

Understanding High-Order Loss Approximations and Features in Deep Learning Interpretation

Eigenvalue for z1 = 2λ2 − µ
Eigenvalue for zi = 2λ2 ∀i ∈ [2, d]

B = (2λ2 − µ)z1z
T
1 + 2λ2

i=d
∑
i=2

ziz
T
i

B−1 = 1

(2λ2 − µ)
z1z

T
1 + 1

2λ2

i=d
∑
i=2

ziz
T
i

B−1 = 1

(2λ2 − µ)
gxgTx
∥gx∥2

+ 1

2λ2

i=d
∑
i=2

ziz
T
i

∆∗
CASO = B−1gx

∆∗
CASO = [1

(2λ2 − µ)
gxgTx
∥gx∥2

+ 1

2λ2

i=d
∑
i=2

ziz
T
i]gx

Since each zi is orthogonal to gx

Ô⇒ ∆∗
CASO = gx

(2λ2 − µ)
=

2λ2∆∗
CAFO

(2λ2 − µ)

Hence ∆∗
CASO ∥ ∆∗

CAFO and since scaling does not affect
the visualization, the two interpretations are equivalent.

B. Convergence of Gradient Descent to Solve
CASO

A consequence of Theorem 3 is that gradient descent con-
verges to the global optimizer of the second-order interpreta-
tion objective objective with a convergence rate of O(1/t2).
More precisely, we have:

Corollary 1 Let ˜̀(∆) be the objective function of the
second-order interpretation objective (Definition 3). Let
∆(t) be the value of ∆ in the tth step with a learning rate
α ≤ λ2 −L/2. We have

˜̀(∆(t)) − ˜̀(∆∗) ≤ 2∥∆(0) −∆∗∥2
2

α(t + 1)2
.

C. Efficient Computation of the Hessian
Matrix Using the Cholesky Decomposition

By Theorem 2, the Cholesky decomposition of A (defined
in (8)) exists. Let L be the Cholesky decomposition of A.
Thus, we have

A = LLT

Hx = WLLTWT

Let B ∶= WL. Thus, Hx can be re-written as Hx = BBT .

Let the SVD of B be as the following:

B = UΣVT

Thus, we can write:

Hx = UΣ2UT

Define C = BTB = VΣ2V. Note that Σ2, the eigenvalues
of C and Hx are the same. For a dataset such as ImageNet,
the input has dimension d = 224×224×3 and c = 1000. De-
composing C (size 1000×1000) into its eigenvalues Σ and
eigenvectors V is computationally efficient. Thus, from
B = UΣVT , we can compute the eigenvectors U of Hx.

D. Saliency Visualization Methods
Normalizing Feature Importance Values: After assign-
ing importance values to each input feature, the values must
be normalized for visualization in a saliency map. For fair
comparison across all methods, we use the non-diverging
normalization method from SmoothGrad (Smilkov et al.,
2017). This normalization method first takes the absolute
value of the importance scores and then sums across the
three color channels of the image. Next, the largest im-
portance values are capped to the value of 99th percentile.
Finally, the importance values are divided and clipped to
enforce the range [0,1]. Code for the method is available.1

Domain-Specific Post-Processing: Gradient ⊙ In-
put (Shrikumar et al., 2017) multiplies the importance val-
ues by the raw feature values. In image tasks where the
baseline is zero, Integrated Gradients (Sundararajan et al.,
2017) does the same. This heuristic can visually sharpen
the saliency map and has some theoretical justification: it is
equivalent to the original Layerwise Relevance Propagation
Technique (Bach et al., 2015) modulo a scaling factor (Kin-
dermans et al., 2016; Shrikumar et al., 2017). Additionally,
if the model is linear, y =Wx, multiplying the gradient by
the input is equivalent to a feature’s true contribution to the
final class score.

However, multiplying by the input can introduce visual ar-
tifacts not present in the importance values (Smilkov et al.,
2017). We argue against multiplying by the input: it artifi-
cially enhances the visualization and only yields benefits in
the image domain. Adebayo et al. (2018) argue similarly
and show cases when the input term can dominate the inter-
pretation. Moreover, multiplication by the input removes the
input invariance of the interpretation regardless of the invari-
ances of the underlying model (Kindermans et al., 2018).
We observed numerous failures in existing interpretation
methods when input multiplication is removed.

1https://github.com/PAIR-code/saliency/
blob/master/saliency/visualization.py

https://github.com/PAIR-code/saliency/blob/master/saliency/visualization.py
https://github.com/PAIR-code/saliency/blob/master/saliency/visualization.py

Understanding High-Order Loss Approximations and Features in Deep Learning Interpretation

E. Tightness of the L0 −L1 Relaxation
We assume the condition of Theorem 3 holds, thus, the
CASO optimization is a concave maximization (equivalently
a convex minimization) problem.

Note the CASO optimization with the cardinality constraint
can be re-written as follows:

min
∆

∥y −A∆∥2, (18)

∥∆∥0 ≤ k,

where

A ∶= (λ2I −
1

2
Hx)

1/2
(19)

y ∶= 1

2
A−1∇x` (fθ∗(x), y) . (20)

Where (.)1/2 indicates the square root of a positive definite
matrix. Equation (19) highlights the condition for tuning
the parameter λ2: it needs to be sufficiently large to allow
inversion of A but sufficiently small to not “overpower”
the Hessian term. Note, we are now minimizing ∆ for
consistency with the compressive sensing literature. To
explain the conditions under which the L0 −L1 relaxation
is tight, we define the following notation. For a given subset
S ⊂ {1,2, ..., d} and constant α ≥ 1, we define the following
cone:

C(S;α) ∶= {∆ ∈ Rd ∶ ∥∆Sc∥1 ≤ ∥∆S∥1}, (21)

where Sc is the complement of S. We say that the matrix A
satisfies the restricted eigenvalue (RE) (Bickel et al., 2009;
Raskutti et al., 2010) condition over S with parameters
(α, γ) ∈ [1,∞) × (0,∞) if

1

d
∥A∆∥2

2 ≥ γ2∥∆∥2
2 ∀∆ ∈ C(S;α). (22)

If this condition is satisfied for all subsets of S where ∣S∣ = k,
we say that A satisfies the RE condition of order k with
parameters (α, γ). If A satisfies the RE condition with
α ≥ 3 and γ > 0, then the L0−L1 relaxation of optimization
(18) is tight (Bickel et al., 2009). In other words, if ∆∗ is
the solution of optimization (18), it is also the solution of
optimization

min
∆

∥y −A∆∥2, (23)

∥∆∥1 ≤ ∥∆∗∥1.

The Lagrange relaxation of this optimization leads to the
CASO interpretation objective. We note that the RE condi-
tion is less severe than other optimality conditions such as
the restricted isometry property (Candes et al., 2007). Al-
though it is difficult to verify that the RE condition holds for

the Hessian matrix of a deep neural network, our empirical
experiments are consistent with our theory: the resulting ∆
of the CASO interpretation objective is sparse for proper
choices of the regularization parameters.

F. Empirical Analysis of the Hessian Impact
F.1. Empirically Verifying the Hessian Approximation

Theorems 4 and 5 are valid only in the asymptotic regime.
A similar analysis in the finite regime is more challenging as
it requires the use of perturbation analysis of matrix eigen-
values and eigenvectors. However, we can do a simulation
to assess the rate of convergence of the Hessian matrix to
such a rank one matrix as the number of classes increases
(in Figure 1) and the probability of the predicted class tends
to 1 (in Figure 2).

For the simulation, we create a linear model ŷ = WTx + b
where W and b are initialized to random values. Since
Theorem 4 does not assume a trained network, our analysis
is valid even with randomly initialized values of W and
b. Let the class probabilities be denoted by p, the number
of classes by c and the label vector by y. We again use
gx and Hx as defined in (6) and (7), respectively. Without
loss of generality, assume that the first class is the one
with maximum probability. Thus we create a probability
vector p = [1 − (c − 1)ε, ε, . . . , ε] and a prediction vector
y = [1., 0., . . . , 0.]. Using Proof A.4, we have that the
Hessian of this model can be approximated using:

Hx ≈ gxgTx
ε(c − 1)

gx = W(p − y)

For Figure 1, we fix the probability of predicted class to be
0.9999 (we call it p[0]) and vary c from 10 to 1000. Thus,
note that ε varies as c varies and is given by ε = 1−p[0]

c−1
. For

Figure 2, we fix number of classes to be 100 and vary ε from
5e − 3 to 1e − 6 (an interval length of 1e − 6). Similarly,
Figure 3 shows a comparison between the relative error
as the number of classes and probability are both varied.
We observe that the relative error converges quickly as a
function of both the number of classes and -log(1-p[0]).

F.2. Comparing CASO and CAFO for ReLU networks

We show additional examples (for relu networks) with low
confidence in the predicted class in Figure 4. The inter-
pretations produced by CASO and CAFO are qualitatively
different.

Understanding High-Order Loss Approximations and Features in Deep Learning Interpretation

Figure 1. The relative error between a rank one approximation of
the Hessian and the true Hessian as the number of classes increases.
Although our theoretical analysis only holds in the asymptotic
regime, the Hessian’s convergence to a rank one matrix happens
quicky empirically.

Figure 2. The relative error between a rank one approximation of
the Hessian and the true Hessian as the probability of the predicted
class grows. We use a log scale and denote the predicted probability
as p[0].

F.3. Experiments with General Non-linearities

We use a SE-Resnet-50 (Hu et al., 2018), a neural network
with sigmoid non-linearities. The sigmoid non-linearity
causes the model to no longer be piecewise linear. We gen-
erate saliency maps using the same 1000 random samples
as in Section 3.3.
We plot the Frobenius norm of the difference between
CASO and CAFO in Figure 6. We normalize the solutions
produced by CASO and CAFO to have the same L2 norm

Figure 3. The relative error between a rank one approximation of
the Hessian and the true Hessian when varying the number of
classes and the probability of predicted class (denoted by p[0]).

before taking the difference. Even though the model is no
longer piecewise linear, the empirical results are consistent
with Theorem 5 (which only holds for piecewise linear net-
works).
To observe the difference between CAFO and CASO in-
terpretations, we compare them for two images with low
classification confidence in Figure 5. The interpretations
produced by CASO and CAFO are qualitatively different.

G. Additional Details on Experiments
G.1. Details on Experiments Reported in Figure 1

Current autograd software does not support fast eigenvalue
decomposition of a matrix in a batched setting. This makes
computing the exact hessian inefficient when interpreting
numerous samples. For the purposes of this experiment, we
use proximal gradient descent to compute the interpretations
∆CASO and ∆CAFO, even though the parameter λ1 is set
to zero. Details for the other hyperparameters are given in
Table 1.

G.2. Details on Experiments Reported in Figure 3

Details of the hyperparameters used in Figure 3 are shown
in Table 2.

G.3. Details on Experiments Reported in Figure 4

Details of the hyperparameters used in Figure 4 are shown
in Table 3.

Understanding High-Order Loss Approximations and Features in Deep Learning Interpretation

Confidence = 0.061 Confidence = 0.373

C
A

F
O

C
A

S
O

D
iff

er
en

ce

Figure 4. CASO and CAFO interpretations for low confidence
examples for a network with ReLU activations.

H. Comparison with existing methods
Figures 7–12 provide further examples of our interpretation
method with existing techniques.

References
Adebayo, J., Gilmer, J., Muelly, M., Goodfellow, I., Hardt,

M., and Kim, B. Sanity checks for saliency maps. In Pro-

Confidence = 0.292 Confidence = 0.473

C
A

F
O

C
A

S
O

D
iff

er
en

ce

Figure 5. CASO and CAFO interpretations for low confidence
predictions using a model that is not piecewise linear (SE-Resnet-
50).

ceedings of Advances in Neural Information Processing
Systems, 2018.

Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller,
K.-R., Samek, W., and Suárez, Ó. D. On pixel-wise
explanations for non-linear classifier decisions by layer-
wise relevance propagation. In PloS one, 2015.

Bickel, P. J., Ritov, Y., Tsybakov, A. B., et al. Simultaneous

Understanding High-Order Loss Approximations and Features in Deep Learning Interpretation

Figure 6. Scatter plot showing the Frobenius norm difference be-
tween CASO and CAFO (after normalizing both vectors to have
the same L2 norm) for a network which is not piecewise linear
(SE-Resnet-50).

Table 1. Hyper-parameter details for Figure 1
Parameter Configuration

λ1 0
λ2 threshold 20
Optimizer Proximal Gradient Descent

Network architecture Resnet-50
Batch size 32

Power method iterations 10
Gradient descent iterations 10
Backtracking decay factor 0.5

Initialization Zero

Table 2. Hyper-parameter details for Figure 3
Parameter Configuration

λ1 values
0, 10−5, 10−4, 10−3,

6.25×10−3, 1.25×10−2,
2.5×10−2, 5×10−2

λ2 threshold 20
Optimizer Proximal Gradient Descent

Network architecture Resnet-50
Batch size 32

Power method iterations 10
Gradient descent iterations 10
Backtracking decay factor 0.5

Initialization Zero

analysis of lasso and dantzig selector. The Annals of
Statistics, 2009.

Candes, E., Tao, T., et al. The dantzig selector: Statistical

Table 3. Hyper-parameter details for Figure 4
Parameter Configuration

λ1 values
0, 10−5, 10−4, 10−3,

6.25×10−3, 1.25×10−2,
2.5×10−2, 5×10−2

λ2 threshold 20
Optimizer Proximal Gradient Descent

Network architecture Resnet-50
Batch size 32

Power method iterations 10
Gradient descent iterations 10
Backtracking decay factor 0.5

Number of samples 32
Stddev of Random samples 0.15

Initialization Zero

estimation when p is much larger than n. The Annals of
Statistics, 2007.

Hu, J., Shen, L., and Sun, G. Squeeze-and-excitation net-
works. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2018.

Kindermans, P.-J., Schtt, K., Mller, K.-R., and Dhne, S.
Investigating the influence of noise and distractors on
the interpretation of neural networks. In NIPS Workshop
on Interpretable Machine Learning in Complex Systems,
2016.

Kindermans, P.-J., Hooker, S., Adebayo, J., Alber, M.,
Schütt, K. T., Dähne, S., Erhan, D., and Kim, B. The
(un)reliability of saliency methods. Neural Information
Processing Systems, 2018.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E.,
DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., and Lerer,
A. Automatic differentiation in pytorch. In NIPS Au-
todiff Workshop: The Future of Gradient-based Machine
Learning Software and Techniques, 2017.

Raskutti, G., Wainwright, M. J., and Yu, B. Restricted eigen-
value properties for correlated gaussian designs. Jour-
nal of Machine Learning Research, 11(Aug):2241–2259,
2010.

Shrikumar, A., Greenside, P., and Kundaje, A. Learning
important features through propagating activation differ-
ences. In Proceedings of the International Conference of
Machine Learning, 2017.

Smilkov, D., Thorat, N., Kim, B., Viégas, F. B., and Watten-
berg, M. SmoothGrad: removing noise by adding noise.
arXiv preprint arXiv: 1706.03825, 2017.

Understanding High-Order Loss Approximations and Features in Deep Learning Interpretation

Image Grad CAFO CASO

IntegratedGrad SmoothGrad SmoothCAFO SmoothCASO

Figure 7.

Image Grad CAFO CASO

IntegratedGrad SmoothGrad SmoothCAFO SmoothCASO

Figure 8.

Sundararajan, M., Taly, A., and Yan, Q. Axiomatic attribu-
tion for deep networks. In Proceedings of the Interna-
tional Conference of Machine Learning, 2017.

Understanding High-Order Loss Approximations and Features in Deep Learning Interpretation

Image Grad CAFO CASO

IntegratedGrad SmoothGrad SmoothCAFO SmoothCASO

Figure 9.

Image Grad CAFO CASO

IntegratedGrad SmoothGrad SmoothCAFO SmoothCASO

Figure 10.

Understanding High-Order Loss Approximations and Features in Deep Learning Interpretation

Image Grad CAFO CASO

IntegratedGrad SmoothGrad SmoothCAFO SmoothCASO

Figure 11.

Image Grad CAFO CASO

IntegratedGrad SmoothGrad SmoothCAFO SmoothCASO

Figure 12.

