
GEOMetrics: Supplemental Material

A. Point to Surface Loss

In this section, we describe the the Distance Between Point

and Triangle in 3D algorithm (Eberly, 1999). For a given

point P and triangle T , the algorithm computes the mini-

mum distance between the point and any point contained

within the triangle. Assuming the triangle is defined by

corner point B and directions E0 and E1, then any point

T (s, t) contained in the triangle can be defined by a pair of

scalars (s, t) such that T (s, t) = B + sE0 + tE1, where

(s, t) ∈ D = {(s, t) : s ≥ 0, t ≥ 0, s+ t ≤ 1}. We can

now define the squared distance Q between the point P and

any point in the triangle T (s, t) by the following quadratic

function:

Q(s, t) = as2 + 2bst+ ct2 + 2ds+ 2et+ f, (1)

where for clarity we denote a = E0 · E0 , b = E0 · E1,

c = E1 · E1, d = E0 · (B − P ), e = E1 · (B − P ), and

f = (B − P ) · (B − P ). Selecting (s, t) which minimizes

Q(s, t) provides the minimum distance between the point

P and triangle T . As Q is continuously differentiable, (s, t)
can be found at an interior point where ∇Q = 0 or at the

boundary of the set D.

In the first case, note ∇Q(s′, t′) = 0 if and only if s′ and t′

satisfy the following:

s′ =
be− cd

ac− b2
, t′ =

bd− ae

ac− b2
(2)

Then if (s′, t′) ∈ D, we have the minimum distance

Q(s′, t′) = min(s,t)∈D Q(s, t). Otherwise, the dis-

tance minimizing (s, t) must lie on the boundary of

D, where either {s = 0, t ∈ [0, 1]}, {s ∈ [0, 1], t = 0}, or

{s ∈ [0, 1], t = 1− s}. In each case Q(s, t), can be re-

duced to quadratic of one unknown variable, which can

be minimized by setting the gradient to 0.

B. Mesh-to-Voxel Mapping Ablation

In this section, we perform an ablation study over the use of

0N-GCN as building block for our Mesh-to-Voxel Mapping

network to highlight its impact with respect to the standard

GCN layers. To that end, we compare our model on 3 dif-

ferent object classes to an analogous network composed of

standard GCN layers with the same number of parameters.

Additionally, we assess the influence of pooling across a set

of vertices by comparing it to other forms of aggregation

such as the one introduced by the Neural Graph Finger-

print (NGF) model (Duvenaud et al., 2015). The results

of this ablation study can be found in Table 1 in terms of

mean squared error (MSE). As shown in the table, results

demonstrate the benefits of the 0N-GCN layers, as well

as the max-pooling vertex set aggregation, for this mesh

understanding task.

Table 1. Mesh-to-Voxel Mapping Reconstruction MSE scores.

Category Ours GCN NGF

Plane 0.0089 0.0104 0.0108

table 0.0310 0.0393 0.0360

Chair 0.0412 0.0526 0.0486

Mean 0.0270 0.0341 0.0318

C. Differentiable Surface Loss Algorithms

This section provides the algorithmic details of both the

point-to-point loss (Algorithm 1) as well as the point-to-

surface loss (Algorithm 2).

Algorithm 1 Point-to-Point Loss

1: Input: Two mesh surfaces M and M̂ , and number of

points n

2: for face f in mesh M do

3: Af = Area(f)
4: AT += Area(f)
5: end for

6: Define F s.t. P (F = f) =
Af∗100

AT

7: Define U = Uniform(0, 1)
8: Define S = []

9: for i = 0 to n do

10: f ∼ F

11: v1, v2, v3 = vertices(f)
12: u ∼ U, w ∼ U

13: r = (1−√
u)v1 +

√
u(1− w)v2 +

√
uwv3

14: S.append(r)
15: end for

16: Apply lines 1 to 15 to mesh M̂ to produce Ŝ

17: LPtP =
∑

p∈S

min
q∈Ŝ

‖p− q‖22 +
∑

q∈Ŝ

min
p∈S

‖p− q‖22

D. Loss Analysis

In this section, we present further analysis of GEOMetrics

losses to emphasize the benefits of the introduced point-to-



GEOMetrics: Supplemental Material

Algorithm 2 Point-to-Surface Loss

1: Input: Two mesh surfaces M and M̂ , and number of

points n

2: for face f in mesh M do

3: Af = Area(f)
4: AT += Area(f)
5: end for

6: Define F s.t. P (F = f) =
Af∗100

AT

7: Define U = Uniform(0, 1)
8: Define S = []

9: for i = 0 to n do

10: f ∼ F

11: v1, v2, v3 = vertices(f)
12: u ∼ U, w ∼ U

13: r = (1−√
u)v1 +

√
u(1− w)v2 +

√
uwv3

14: S.append(r)
15: end for

16: Apply lines 1 to 15 to mesh M̂ to produce Ŝ

17: LPtS =
∑

p∈S

min
f̂∈M̂

dist(p, f̂) +
∑

q∈Ŝ

min
f∈M

dist(q, f)

point and surface-to-point losses over the vertex-to-point

loss. To that end, we design a toy problem, which consists in

optimizing the placement of the vertices of an initial square

surface to match the surface area of a target triangle in 2D.

Figure 2 (top) depicts the above-mentioned initial and tar-

get surfaces. We optimize the placement of the vertices of

the initial square by performing gradient descent on each

of the losses independently, and calculate the intersection

over union (IoU) of the predicted object and the target trian-

gle. Moreover, in order to assess the impact of the number

of points sampled, we repeat this experiment 100 times, in-

creasing the number of sampled points from 1 to 100. Figure

1 shows the results of this experiment. Firstly, we observe

that the vertex-to-point loss fails to match the target surface

entirely, no matter the number of sampled points. Secondly,

we observe that the point-to-point loss performance is no-

tably affected by the number of sampled points. While it

exhibits poor performance for lower number of sampled

points (e.g. below 20), it rapidly improves as the number of

sampled points increases, and ultimately, converges to an

average performance, which is only slightly lower than that

of the point-to-surface loss. Finally, the point-to-surface

loss begins with a far higher IoU and remains the stronger

option for nearly all numbers of sampled points.

Figure 2 illustrates qualitative results for the three compared

losses when optimizing with 50 points sampled. As can be

seen, the point-to-surface deformation of the square better

matches the target triangle shape, followed by point-to-point,

which somewhat emulates the triangle, and vertex-to-point,

which exhibits the poorest results.

Figure 1. Comparison of vertex-to-point, point-to-point and

surface-to-point losses, in terms of IoU, on a toy problem: op-

timizing the placement of vertices of a square to match that of a

target triangle. Results are compared by increasing the number

of sampled points on the surfaces they optimize. Vertex-to-point

is the loss employed by Wang et al. (2018). Point-to-point and

point-to-surface are the losses introduced in our paper.

Figure 2. Qualitative comparison of vertex-to-point (Wang et al.,

2018), point-to-point and surface-to-point losses on the square-to-

triangle problem when using 50 sampled points. We highlight the

correspondence between the points in the initial surface and the

target surface, which are chosen to be compared, and show the

result of optimizing the placement of the vertices when using each

of the losses.



GEOMetrics: Supplemental Material

E. Network Architectures

In this section, we provide details on the architectures of

the networks used in the paper. Table 2 describes the fea-

ture extractor network of the mesh reconstruction module.

Similarly, Table 3 specifies the mesh deformation network

of the reconstruction module. Finally, Table 4 and 5 de-

tail the mesh-to-voxel encoder and decoder architectures,

respectively.

F. Single Image Reconstruction Visualizations

Figures 3 and 4 depict additional reconstruction results from

each ShapeNet object class, with three objects shown per

class.



GEOMetrics: Supplemental Material

Layers 1-2 3-8 9 10-11 12 13-14 15 16-18

Output Resolution 224× 224 224× 224 112× 112 112× 112 56× 56 56× 56 28× 28 28× 28
# Channels 16 32 128 128 256 256 512 512

Kernel Size 3× 3 3× 3 3× 3 3× 3 3× 3 3× 3 3× 3 3× 3
Stride 1 1 2 1 2 1 2 1

Extracted Layer - 8 - 11 - 14 - 18

Table 2. Feature extraction network: Details of the convolutional neural network architecture used to extract image features. Each layer

performs a 2D convolutional, followed by batch normalization (Ioffe & Szegedy, 2015) and a ReLU activation function (Nair & Hinton,

2010). The last row indicates which layer’s features are extracted for use in the mesh reconstruction module.

Layers 1 2-14 15

Input Feature Vector Length 3 192 192

Output Feature Vector Length 192 192 3

Table 3. Mesh deformation network: Details of the graph convolutional network architecture used to compute the mesh deformation in

each reconstruction module. Each layer is composed of a 0N-GCN, followed by an ELU activation function (Clevert et al., 2015).

Layers 1 2-4 5 6-7 8 9 10 11 12 13-16 17

Input Feature Dimension 3 60 60 120 120 150 200 210 250 300 300

Output Feature Dimension 60 60 120 120 150 200 210 250 300 300 50

Table 4. Mesh-to-voxel encoder: Details of the graph convolutional network architecture used to encode mesh graphs into latent vectors.

Each layer is composed of a 0N-GCN followed by an ELU activation function (Clevert et al., 2015), except for the final layer which is a

max pooling aggregation over the set of vertices.

Layers 1 2 3 4 5

Output Resolution 4× 4× 4 8× 8× 8 16× 16× 16 32× 32× 32 32× 32× 32
# Channels 64 64 32 8 1

Stride 2 2 2 2 1

Type DeConv DeConv DeConv DeConv Conv

Table 5. Mesh-to-voxel decoder: Details of the 3D convolutional neural network archictecture used to decode latent vectors into voxel

grids. Each layer performs a 3D deconvolution (Shelhamer et al., 2017) with batch normalization (Ioffe & Szegedy, 2015) and an ELU

activation function (Clevert et al., 2015), except for the final layer which is a standard 3D convolutional layer.



GEOMetrics: Supplemental Material

(a) bench (b) cabinet (c) car

(d) cellphone (e) chair (f) lamp

(g) monitor (h) plane (i) rifle

Figure 3. Single image reconstruction results on bench, cabinet, car, cellphone, chair, lamp, monitor, plane and rifle classes.

l



GEOMetrics: Supplemental Material

(a) sofa (b) speaker

(c) table (d) watercraft

Figure 4. Single image reconstruction results on sofa, speaker, table and watercraft classes.



GEOMetrics: Supplemental Material

References

Clevert, D.-A., Unterthiner, T., and Hochreiter, S. Fast

and accurate deep network learning by exponential linear

units (elus). arXiv preprint arXiv:1511.07289, 2015.

Duvenaud, D., Maclaurin, D., Aguilera-Iparraguirre, J.,

Gómez-Bombarelli, R., Hirzel, T., Aspuru-Guzik, A.,

and Adams, R. P. Convolutional networks on graphs

for learning molecular fingerprints. In Proceedings of

the 28th International Conference on Neural Information

Processing Systems - Volume 2, NIPS’15, pp. 2224–2232,

Cambridge, MA, USA, 2015. MIT Press.

Eberly, D. Distance between point and triangle in 3d. Geo-

metric Tools, 1999.

Ioffe, S. and Szegedy, C. Batch normalization: Accelerating

deep network training by reducing internal covariate shift.

In International Conference on Machine Learning, pp.

448–456, 2015.

Nair, V. and Hinton, G. E. Rectified linear units improve

restricted boltzmann machines. In Proceedings of the 27th

international conference on machine learning (ICML-10),

pp. 807–814, 2010.

Shelhamer, E., Long, J., and Darrell, T. Fully convolutional

networks for semantic segmentation. IEEE transactions

on pattern analysis and machine intelligence, 39(4):640–

651, 2017.

Wang, N., Zhang, Y., Li, Z., Fu, Y., Liu, W., and Jiang, Y.-G.

Pixel2mesh: Generating 3d mesh models from single rgb

images. arXiv preprint arXiv:1804.01654, 2018.


