
The Evolved Transformer

A. Search Algorithms
In the following, we describe the algorithm that we use to
calculate child model fitness with hurdles (Algorithm 1)
and evolution architecture search with Progressive Dynamic
Hurdles (Algorithm 2).

Algorithm 1 Calculate Model Fitness with Hurdles
inputs:
model: the child model
s: vector of train step increments
h: queue of hurdles

append∞ to h
TRAIN N STEPS(model, s0)
fitness← EVALUATE(model)
i← 0
hurdle← hi

while fitness > hurdle do
i← i+ 1
TRAIN N STEPS(model, si)
fitness← EVALUATE(model)
hurdle← hi

end while
return fitness

Algorithm 1 Calculating fitness with hurdles takes as ar-
guments a child model, a vector of train step increments (s)
and a queue of hurdles(h). The child model is the candidate
model in our neural architecture search. The vector of step
increments describes the number of steps between each hur-
dle; its length must be greater than 0. The queue of hurdles
describes what hurdles have already been established; its
length must be in [0, length(s)).

The algorithm starts by first training the child model a fixed
number of s0 steps and evaluating on the validation set to
produce a fitness, as is done in Real et al. (2019). After this
baseline fitness is established, the hurdles (h) are compared
against to determine if training should continue. Each hi
denotes the fitness a child model must have after

∑i
j=0 sj

train steps to continue training. Each time a hurdle hi is
passed, the model is trained an additional si+1 steps. If the
model’s fitness ever falls below the hurdle corresponding
to the number of steps it was trained for, training ends
immediately and the current fitness is returned. If the model
never falls below a hurdle and all hurdles have been passed,
the child model receives one final training of slength(h) steps
before fitness is returned; this is expressed in Algorithm 1
with∞ being appended to the end of h.

Algorithm 2 Evolution Architecture Search with PDH
inputs:
s: vector of train step increments
m: number of child models per hurdle

h← empty queue
i← 0
population← INITIAL POPULATION()

while i < LENGTH(s) - 1 do
population← EVOL N MODELS(population,

m, s, h)
hurdle←MEAN FITNESS OF MAX(population)
append hurdle to h

end while

population← EVOL N MODELS(population,
m, s, h)

return population

Algorithm 2 Evolution architecture search with PDH
takes as arguments a vector of train step increments (s)
and a number of child models per hurdle (m). It begins
as Real et al.’s (2019) evolution architecture search with a
fixed number of child model train steps, s0. However, after
m child models have been produced, a hurdle is created
by taking the mean fitness of the current population and
it is added to the hurdle queue, h. Algorithm 1 is used to
compute each child model’s fitness and so if they overcome
the new hurdle they will receive more train steps. This pro-
cess is continued, with new hurdles being created using the
mean fitness of all models that have trained the maximum
number of steps and h growing accordingly. The process
terminates when length(s)− 1 hurdles have been created
and evolution is run for one last round of m models, using
all created hurdles.

B. Search Space Information
In our search space, a child model’s genetic encoding is
expressed as: [left input, left normalization, left layer, left
relative output dimension, left activation, right input, right
normalization, right layer, right relative output dimension,
right activation, combiner function]× 14 + [number of cells]
× 2, with the first 6 blocks allocated to the encoder and the
latter 8 allocated to the decoder. In the following, we will
describe each of the components.

Input. The first branch-level search field is input. This
specifies what hidden state in the cell will be fed as input
to the branch. For each ith block, the input vocabulary of
its branches is [0, i), where the jth hidden state corresponds
to the jth block output and the 0th hidden state is the cell



The Evolved Transformer

input.

Normalization. The second branch-level search field is
normalization, which is applied to each input before the
layer transformation is applied. The normalization vocabu-
lary is [LAYER NORMALIZATION (Ba et al., 2016), NONE].

Layers. The third branch-level search field is layer, which
is the neural network layer applied after the normalization.
It’s vocabulary is:

• STANDARD CONV wx1: for w ∈ {1, 3}
• DEPTHWISE SEPARABLE CONV wx1: for w ∈
{3, 5, 7, 9, 11}

• LIGHTWEIGHT CONV wx1 r: for w ∈ {3, 5, 7, 15},
r ∈ {1, 4, 16} (Wu et al., 2019). r is the reduction
factor, equivalent to d/H described in Wu et al. (2019).

• h HEAD ATTENTION: for h ∈ {4, 8, 16}
• GATED LINEAR UNIT(Dauphin et al., 2017)
• ATTEND TO ENCODER: (Only available to decoder)
• IDENTITY: No transformation applied to input
• DEAD BRANCH: No output

For decoder convolution layers the inputs are shifted by
(w − 1)/2 so that positions cannot “see” later predictions.

Relative Output Dimension. The fourth branch-level
search field is relative output dimension, which describes
the output dimension of the corresponding layer. The Trans-
former is composed mostly of layers that project to the
original input embedding depth (512 in the “base” configu-
ration), but also contains 1x1 convolutions that project up
to a dimension of 4 times that depth (2048 in the “base”
configuration). The relative output dimension search field
accounts for this variable output depth. It’s vocabulary con-
sists of 10 relative output size options: [1, 10].

Here “relative” refers to the fact that for every layer i and j,
each of their absolute output dimensions, a, and relative out-
put dimensions, d, will obey the ratio: ai/aj = di/dj . We
determine the absolute output dimensions for each model
by finding a scaling factor, s, such that for every layer i,
ai = di ∗ s and the resulting model has an appropriate num-
ber of parameters; at the end of this section, we describe
our constraints on number of model parameters. There may
be multiple values of s for any one model that satisfy this
constraint, and so for our experiments we simply perform
a binary search and use the first valid value found. If no
valid value is found, we reject the child model encoding as
invalid and produce a new one in its stead.

We chose a vocabulary of relative sizes instead of absolute
sizes because we only allow models within a fixed param-
eter range, as described later in this section (Constraints).
Using relative sizes allows us to increase the number of con-
figurations that represent valid models in our search space,

because we can dynamically shrink or grow a model to make
it fit within the parameter bounds. We found that using ab-
solute values, such as [256, 512, 1024, 2048], increases the
number of rejected models and thereby decreases the possi-
ble models that can be expressed.

This relative output dimensions field is ignored for both the
IDENTITY and DEAD BRANCH layers.

Activations. The final branch-level search field is acti-
vation, which is the non-linearity applied on each branch
after the neural network layer. The activation vocabulary is
{SWISH (Ramachandran et al., 2017; Elfwing et al., 2018),
RELU, LEAKY RELU (MAAS ET AL., 2013), NONE}.

Combiner Functions. The block-level search field, com-
biner function, describes how the left and right layer
branches are combined together. Its vocabulary is
{ADDITION, CONCATENATION, MULTIPLICATION}. For
MULTIPLICATION and ADDITION, if the right and left
branch outputs have differing embedding depths, then the
smaller of the two is padded so that the dimensionality
matches. For ADDITION the padding is 0’s; for MULTIPLI-
CATION the padding is 1’s.

Number of Cells. The cell-level search field is number of
cells and it describes the number of times the cell is repeated.
Its vocabulary is [1,6].

Composition. Each child model is defined by two cells,
one for the encoder and one for the decoder. The encoder
cell contains 6 blocks and the decoder cell contains 8 blocks.
Each block contains two branches, each of which takes a
previous hidden layer as input, and then applies its normal-
ization, layer (with specified relative output dimensions)
and activation to it. The two branches are then joined with
the combiner function. Any unused hidden states are auto-
matically added to the final block output via addition. Both
the encoder and decoder cells defined this way are repeated
their corresponding number of cells times and connected
to the input and output embedding portions of the network
to produce the final model; we use the same embedding
scheme described by Vaswani et al. (2017) for all models.
See Figure 1 for a depiction of this composition.

Constraints. In the interest of having a fair comparison
across child models, we limit our search to only architec-
tures configurations that can contain between 59.1 million
and 64.1 million parameters when their relative output di-
mensions are scaled; in the Tensor2Tensor (Vaswani et al.,
2018) implementation we use, the base Transformer has
roughly 61.1 million parameters on WMT En-De, so our
models are allowed 3 million less or more parameters than
that. Models that cannot be represented within this parame-



The Evolved Transformer

ter range are not included in our search space.

Additionally, in preliminary experiment runs testing the
effectiveness of our search space, we discovered three trends
that hurt performance in almost every case. Firstly and most
obviously is when a proposed decoder contains no ATTEND
TO ENCODER layers. This results in the decoder receiving
no signal from the encoder and thus the model output will
not be conditioned on the input. Therefore, any model
that does not contain ATTEND TO ENCODER is not in our
search space. The second trend that we noticed was that
models that had layer normalization removed were largely
worse than their parent models. For this reason, we remove
NONE from the normalization mutation vocabulary for each
experiment, unless otherwise specified. Lastly, we observed
that an important feature of good models was containing
an unbroken residual path from inputs to outputs; in our
search space, this means a path of IDENTITY layers from cell
input to output that are combined with ADDITION at every
combination function along the way. Our final constraint
is therefore that models that do not have unbroken residual
paths from cell inputs to outputs are not in our search space.

C. Ablation Study of the Evolved
Transformer

To understand what mutations contributed to ET’s improved
performance we conducted two rounds of ablation testing.
In the first round, we began with the Transformer and ap-
plied each mutation to it individually to measure the per-
formance change each mutation introduces in isolation. In
the second round, we began with ET and removed each
mutation individually to again measure the impact of each
single mutation. In both cases, each model was trained 3
times on WMT En-De for 300k steps with identical hyper-
parameters, using the inverse-square-root decay to 0 that
the Transformer prefers. Each training was conducted on
a single TPU V.2 chip. The results of these experiments
are presented in Table 5; we use validation perplexity for
comparison because it was our fitness metric.

In all cases, the augmented ET models outperformed the
the augmented Transformer models, indicating that the gap
in performance between ET and the Transformer cannot be
attributed to any single mutation. The mutation with the
seemingly strongest individual impact is the increase from
3 to 4 decoder cells. However, even when this mutation is
introduced to the Transformer and removed from ET, the
resulting augmented ET model still has a higher fitness than
the augmented Transformer model.

To highlight the impact of each augmented model’s mu-
tation, we present not only their perplexities but also the
difference between their mean perplexity and their unaug-
mented base model mean perplexity in the ”Mean Diff”

columns:

base model mean perplexity - augmented mean perplexity

This delta estimates the change in performance each mu-
tation creates in isolation. Red highlighted cells contain
evidence that their corresponding mutation hurt overall per-
formance. Green highlighted cells contain evidence that
their corresponding mutation helped overall performance.

In half of the cases, both the augmented Transformer’s and
the augmented Evolved Transformer’s performances indi-
cate that the mutation was helpful. Changing the number
of attention heads from 8 to 16 was doubly indicated to be
neutral and changing from 8 head self attention to a GLU
layer in the decoder was doubly indicated to have hurt per-
formance. However, this and other mutations that seemingly
hurt performance may have been necessary given how we
formulate the problem: finding an improved model with a
comparable number of parameters to the Transformer. For
example, when the Transformer decoder cell is repeated 4
times, the resulting model has 69.6M parameters, which
is outside of our allowed parameter range. Thus, muta-
tions that shrank ET’s total number of parameters, even at a
slight degradation of performance, were necessary so that
other more impactful parameter-expensive mutations, such
as adding an additional decoder cell, could be used.

Other mutations have inconsistent evidence about how use-
ful they are. This ablation study serves only to approximate
what is useful, but how effective a mutation is also depends
on the model it is being introduced to and how it interacts
with other encoding field values.



The Evolved Transformer

MUTATION FIELD
MUTATION

BLOCK INDEX
MUTATION
BRANCH

TRANSFORMER VALUE ET VALUE
TRANSFORMER

PERPLEXITY
ET PERPLEXITY

TRANSFORMER
MEAN DIFF

ET
MEAN DIFF

DECODER ACTIVATION 6 LEFT RELU SWISH 4.73 ± 0.01 4.51 ± 0.02 -0.02 0.04
DECODER ACTIVATION 2 RIGHT RELU NONE 4.73 ± 0.01 4.48 ± 0.00 -0.02 0.02

DECODER INPUT 1 LEFT 1 0 4.74 ± 0.04 4.46 ± 0.00 -0.01 -0.01
DECODER LAYER 0 LEFT 8 HEAD ATTENTION 16 HEAD ATTENTION 4.75 ± 0.01 4.47 ± 0.01 0.0 0.0
DECODER LAYER 2 LEFT STANDARD CONV 1X1 SEPARABLE CONV 11X1 4.67 ± 0.01 4.55 ± 0.00 -0.08 0.09
DECODER LAYER 3 LEFT STANDARD CONV 1X1 SEPARABLE CONV 7X1 4.72 ± 0.01 4.46 ± 0.01 -0.03 0.0
DECODER LAYER 2 RIGHT DEAD BRANCH SEPARABLE CONV 7X1 4.71 ± 0.02 4.47 ± 0.00 -0.04 0.01
DECODER NORM 3 LEFT NONE LAYER NORM 4.73 ± 0.00 4.45 ± 0.01 -0.02 -0.01
DECODER NORM 7 LEFT NONE LAYER NORM 4.73 ± 0.02 4.47 ± 0.02 -0.02 0.01

DECODER OUTPUT DIM 2 LEFT 8 4 4.74 ± 0.01 4.45 ± 0.01 -0.01 -0.02
DECODER NUM CELLS - - 3 4 4.62 ± 0.00 4.59 ± 0.01 -0.13 0.12

ENCODER LAYERS 0 LEFT 8 HEAD ATTENTION GATED LINEAR UNIT 4.80 ± 0.03 4.45 ± 0.02 0.05 -0.01
ENCODER LAYERS 2 LEFT STANDARD CONV 1X1 SEPARABLE CONV 9X1 4.69 ± 0.01 4.50 ± 0.00 -0.06 0.04
ENCODER LAYERS 1 RIGHT DEAD BRANCH STANDARD CONV 3X1 4.73 ± 0.01 4.47 ± 0.03 -0.02 0.01
ENCODER NORMS 2 LEFT NONE LAYER NORM 4.79 ± 0.03 4.46 ± 0.02 0.04 0.0

ENCODER OUTPUT DIM 2 LEFT 2 1 4.74 ± 0.01 4.45 ± 0.0 -0.01 -0.01

Table 5. Mutation Ablations: Each mutation is described by the first 5 columns. The augmented Transformer and augmented ET
perplexities on the WMT’14 En-De validation set are given in columns 6 and 7. Columns 7 and 8 show the difference between the
unaugmented base model perplexity mean and the augmented model perplexity mean. Red highlighted cells indicate evidence that the
corresponding mutation hurts overall performance. Green highlighted cells indicate evidence that the corresponding mutation helps
overall performance.


