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1. Details on the Prior p(z)

Here, we specify the exact parameters used for p(z). For
p(N), we assume a truncated geometric prior with a fixed
success probability of 0.7. For the = and y coordinates of
21 e Specifying the top left corner of the bounding box of
object 7, we assume a uniform distribution over the range
[0,0.9B], where B is the size of the quadratic canvas. This
ensures that objects cannot exceed the bounds of the canvas
to an excessive degree. The scaling factor for the object’s
x dimension s,, indicating the width of the bounding box
relative to the object SPN’s patch size A = 28, is similarly
drawn uniformly from the interval [0.3,0.9]. To ensure
that object dimensions are not overly skewed, s, is drawn
from [0.7555, 1.255,]. Excessive overlap between objects is
discouraged via an unnormalized penalty term on p(z¢,_..),
modelled as a Gamma distribution with o« = 1,5 = 120
over each object’s occlusion ratio, the ratio of its pixels
which is occluded and will thus be marginalized.

2. Details on the SPN Structures

RAT-SPNSs are based on the notion of a region graph (Den-
nis & Ventura, 2012; Peharz et al., 2018), a bipartite di-
rected acyclic graph the nodes of which are either regions
or partitions. A region node represents a certain sub-scope
of the modeled random variables x, and partition nodes
represent a decomposition of a parent region into two sub-
regions. To construct an SPN from a region graph, each
of the leaf regions is equipped with I distributions defined
over the region’s scope. In this paper, we simply assume
Gaussians with isotropic covariance, i.e. products of single-
dimensional Gaussians. Furthermore, each of the non-leaf
regions is equipped with K sum nodes. Finally, each parti-
tion is equipped with the outer product of the distributions
contained in the partition’s two child regions, and these
products are then passed on as inputs to the parent region.
It can be shown that this process produces a complete and
decomposable SPN (Peharz et al., 2018).

RAT-SPNs use a randomly generated region graph instead
of learning the structure from data. This way, SPNs can be
scaled to sizes similar to neural networks, and can fit high-
dimensional densities, despite using a random structure.
To construct a random region graph, the overall scope x
(the root region) is repeatedly divided into two random

Table 1. Hyperparameters for background and object networks.

Object SPN  BG SPN

Split Depth D 2 1
Split Repetitions R 6 3
Sums per Region K 20 6
Min. variance o™" 0.12 0.002
Max. variance o™ 0.35 0.12

sub-scopes of equal size, until a certain depth D, which
is a hyperparameter of the model. This generates a binary
region graph with 27 leaf regions. The random splitting
process is repeated R times, generating R parallel binary
region graphs, all with the same root region. The random
region graph generated in this way is then converted into an
SPN.

The structural parameters used for both the object and back-
ground network are given by Table 1. At their roots, both
networks end in a single sum node. Also given are the
bounds on the variance parameters of the SPNs’ Gaussian
leaf nodes. We deviate slightly from those values for the
experiments on the sprite dataset and the noisy MNIST
dataset: in the former case, we use 0{,‘?" = 0.16, in the

latter, we set a{,‘g"‘ = 0.06 and a(‘)‘gj“ = 0.25 to ensure that
the two networks’ domains of expertise are sufficiently sep-
arated. For the ablation experiments, we employ a fixed
background model instead of using the background SPN.
Specifically, similarly to AIR, we express the expectation of
the background being black by assuming a pixelwise normal

distribution A/ (0, 0.35) over the background pixels.

3. Details on Datasets

The Multi-MNIST dataset was generated using the obser-
vations library' using a canvas size of 50 x 50. The sprite
dataset was generated in a similar manner, using code avail-
able in our repository. In order to generate the noisy version
of the dataset, each pixel x in Multi-MNIST was trans-
formed in the following way:

' =082 4+0.1+¢,
e ~N(0.0,0.2).

'https://github.com/edwardlib/
observations
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Figure 1. Segmentations obtained by SuPAIR when applied to the
Omniglot dataset. The model learns to detect the outlines of the
characters.

The result is then clipped to the interval [0, 1].

The grids for the structured background were generated as
follows:

Zo, Yo ~ Uniform(0, 4)

bo. . — 0.4 ifimod 5 =z orjmodb5 =y
Jij = 0 else

The Multi-MNIST scenes « were then overlaid to obtain the
final dataset 2’ = max(x, bg).

4. Results on Omniglot

In addition to our other experiments, we also applied Su-
PAIR to the Omniglot handwritten character dataset intro-
duced by Lake et al. (2015). While there is no clear ground
truth as to how objects should be segmented in this dataset,
it is still interesting to observe the model’s behavior (Fig.

1).
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