Supplementary Material: Additional Proofs

To prove Theorem 2 we will use the following lemma.

Lemma 1. Suppose that for some functions q and ϕ , the loss function is of the form:

$$\ell(z,\theta) = q(\theta) \cdot \phi(z)$$
.

Furthermore, suppose there exist constants n_0 and ϕ_0 such that, for any training set $Z = \{z_i \mid 1 \le i \le n\}$, where $Z \sim \mathcal{D}^n$ and $\mathcal{D} \sim \mathcal{D}_1$,

$$\mathbb{E}_{\mathcal{D} \sim \mathcal{D}_1} [\mathbb{E}_{z \sim \mathcal{D}} [\phi(z)] \mid Z] = \frac{\phi_0 + \sum_{i=1}^n \phi(z_i)}{n + n_0}.$$

Then, there exists a perfect, Bayes-optimal regularizer of the form:

$$R^*(\theta) = \frac{1}{n} q(\theta) \cdot \phi_0.$$

Proof. Let $\bar{L}(\theta, Z) \equiv \mathbb{E}_{D \sim \mathcal{D}_1}[E_{z \sim D}[\ell(z, \theta)] \mid Z]$ be the conditional expected test loss. By linearity of expectation,

$$\bar{L}(\theta, Z) = q(\theta) \cdot E_{D \sim \mathcal{D}_1}[E_{z \sim D}[\phi(z)] \mid Z]$$
$$= q(\theta) \cdot \frac{\phi_0 + \sum_{i=1}^n \phi(z_i)}{n + n_0}.$$

Meanwhile, average training loss is $\hat{L}(\theta) = \frac{1}{n}q(\theta) \cdot \sum_{i=1}^n \phi(z_i)$. Thus,

$$(n+n_0)\bar{L}(\theta,Z) - n\hat{L}(\theta) = nR^*(\theta).$$

Rearranging, $\hat{L}(\theta) + R^*(\theta) = \frac{n+n_0}{n}\bar{L}(\theta,Z)$, so R^* is perfect and Bayes-optimal. \square

Proof of Theorem 2. By assumption, $P(z|\theta)$ is an exponential family distribution, meaning that for some functions h, g, η , and T, we have

$$P(z|\theta) = h(z)g(\theta) \exp(\eta(\theta) \cdot T(z)) \; .$$

Setting $q(\theta)=\langle -\log g(\theta)\rangle\oplus -\eta(\theta)$ and $\phi(z)=\langle 1\rangle\oplus T(z)$, we have

$$-\log(P(z|\theta)) = q(\theta) \cdot \phi(z) - \log h(z).$$

Because the $-\log h(z)$ term does not depend on θ , minimizing $-\log(P(z|\theta))$ is equivalent to using the loss function $\ell(z,\theta)=q(\theta)\cdot\phi(z)$.

The conjugate prior for an exponential family has the form

$$P(\eta(\theta)) = \frac{1}{Z_0} g(\theta)^{n_0} \exp(\eta(\theta) \cdot \tau_0)$$

where τ_0 and n_0 are hyperparameters. One of the distinguishing properties of exponential families is that when θ^*

is drawn from a conjugate prior, the posterior expectation of T(z) has a linear form (Diaconis & Ylvisaker, 1979):

$$\mathbb{E}_{\theta^* \sim P(\theta)} [\mathbb{E}_{z \sim P(z|\theta^*)} [T(z)] \mid Z] = \frac{\tau_0 + \sum_{i=1}^n T(z_i)}{n_0 + n} .$$

Thus if we set $\phi_0 = \langle n_0 \rangle \oplus \tau_0$,

$$\mathbb{E}_{\mathcal{D} \sim \mathcal{D}_1} [\mathbb{E}_{z \sim \mathcal{D}} [\phi(z)] \mid Z] = \frac{\phi_0 + \sum_{i=1}^n \phi(z_i)}{n + n_0}.$$

Lemma 1 then shows that a perfect regularizer is:

$$R_1^*(\theta) = \frac{1}{n} q(\theta) \cdot \phi_0$$

$$= \frac{1}{n} \left(-n_0 \log(g(\theta)) - \tau_0 \cdot \eta(\theta) \right)$$

$$= \frac{1}{n} \left(-\log P(\eta(\theta)) - \log(Z_0) \right) .$$

Because R_1^* and R^* differ by a constant, R^* is also perfect.

References

Diaconis, P. and Ylvisaker, D. Conjugate priors for exponential families. *The Annals of Statistics*, pp. 269–281, 1979.