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1. Connections between the unified
formulation and some other distances

Besides DTW and OPW, some other distance measures for
sequences can also fit into our unified formulation.

Variants of DTW. Most variants of DTW actually im-
pose additional or relaxed constraints on the feasible set
and therefore fit into our formulation. For example,
in (Ratanamahatana & Keogh, 2004), additional locality
constraints T1LY ≤ a1LX ,T T1LX ≤ a1LY are imposed
to restrict the amount of alignment; in (Su et al., 2017), the
continuity constraint is stricter by setting T1LY

= 1LX

or T T1LX
= 1LY

. Edit distances are originally defined
for string sequences with discrete values, their extension-
s to multi-dimensional numeral sequences such as the edit
distance with real penalty (Chen & Ng, 2004) and the time
warp edit distance (Marteau, 2009) are achieved by mod-
ifying the dynamic programming process of DTW, where
different costs are assigned to the movements in differen-
t directions in T . These distances are defined recurrently
without an explicit objective function.

Optimal Transport Distance (OT) (Villani, 2008). O-
riginally, OT was developed for measuring two distribu-
tions. A sequence can be viewed as an empirical prob-
ability by taking its elements as independent supporting
points. In this way, although the temporal information is
lost, OT can be applied to measure the distance between
sequences. It calculates a transport matrix T among ele-
ments in sequences which achieves the minimum energy to
transport one sequence to another. tij takes value in the
range of [0, 1], which denotes the amount of probability to
be transported from xi to yj . Since the total probabilities
to transport and to be transported are fixed, the constraints
T1LY

= 1
LX

1LX
and T T1LX

= 1
LY

1LY
are imposed to
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T . OT naturally has the form of Eq. (1) and Eq. (3) in the
main text, where

R(T ) = 0;

Φ = {T ∈ RLX×LY
+ |T1LY

= 1
LX

1LX
,

T T1LX
= 1

LY
1LY

}
, (1)

Sinkhorn distance (Cuturi, 2013). Solving the original
OT is expensive. The Sinkhorn distance smooths the OT
problem by adding an entropy regularization term to T ,
and the resulting optimum can be efficiently determined by
Sinkhorn’s fixed point iterations. It instantiates the formu-
lation Eq. (3) in the main text by setting:

R(T ) = λ(
N∑
i=1

M∑
j=1

tij log tij);

Φ = {T ∈ RLX×LY
+ |T1LY

= 1
LX

1LX
,

T T1LX = 1
LY

1LY }

, (2)

where λ is a preset balancing coefficient.

Variants of Sinkhorn. Several variants of the regularized
OT distance modify the construction of the cost matrix D
to incorporate additional information. In the Transportation
Lp distance (Thorpe et al., 2017), D is constructed as

D := [dp(xi,yj) + λ|i− j|p]ij , (3)

dp(xi,yj) is the distance between xi and yj raised to pow-
er p. As shown in (Su & Hua, 2018), the OPW distance is
also equivalent to the entropy-regularized OT with a ground
metric D̃:

D̃ = D − λ1E + λ2
F

2σ2
, (4)

where E =

[
1

( i
N − j

M )
2
+1

]
ij

, and F =
[
ℓ2(i, j)

]
ij

.

In (Flamary et al., 2018), a dimensionality reduction
method is built on the regularized OT for vector representa-
tions. The training vector samples of a class are used to rep-
resent the empirical probability of the class. The Sinkhorn
distance between the empirical probabilities of two classes
is used as the separability measure between the two class.
This method cannot be directly extended to sequence da-
ta, because each supporting sample of the empirical prob-
ability of a sequence class is a vector sequence. To cal-
culate the Sinkhorn distance between such two empirical
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probabilities, each element of the cost matrix D should
be a combinational meta-distance such as DTW or OPW
between two sequence samples. The latent alignment or
transport structures will block the back-propagation of the
derivatives of the transformation. Therefore, automatic dif-
ferentiation cannot be performed anymore.

2. Kernelized version of RVSML
A linear transformation may not be able to project se-
quences to their corresponding virtual target sequences ad-
equately. We present a kernelized version of RVSML to
learn implicit non-linear metric for sequence data.

We first reformulate the closed form solution for updating
W .

W ∗ = A−1(
N∑

n=1

Ln∑
i=1

ln∑
j=1

tnijx
n
i v

n
j
T ), (5)

where

A =

N∑
n=1

Ln∑
i=1

ln∑
j=1

tnijx
n
i x

n
i
T + βNI. (6)

Recall that

Xn = [x1, · · · ,xLn ] ∈ Rb×Ln

,

V n = [v1, · · · ,vln ] ∈ Rb′×ln ,

T n ∈ RLn×ln .

For each training sequence, we construct a data sample ma-
trix X̂n as a 1 by ln tiling of copies of Xn:

X̂n = [Xn, · · · ,Xn] ∈ Rb×(Lnln).

We construct a virtual sample matrix V̂ n by copying each
element Ln times and then concatenating column by col-
umn:

V̂ n = [vn
1 , · · · ,vn

1 , · · · ,vn
ln , · · · ,vn

ln ] ∈ Rb′×(lnLn).

We vectorize T n by concatenating its columns:

T̂ n = [tn1,1, · · · , tnLn,1 · · · , tn1,ln , · · · , tnLn,ln ] ∈ R(Lnln)×1.

We finally construct the overall data matrix X̂ as the con-
catenation of all X̂n, n = 1, · · · , N by row:

X̂ = [X̂1, · · · , X̂N ] ∈ R
b×

∑
n
(Lnln)

.

Similarly, the overall virtual matrix V̂ is constructed as the
concatenation of all V̂ n, n = 1, · · · , N by row:

V̂ = [V̂ 1, · · · , ˆV N ] ∈ R
b′×

∑
n
(Lnln)

.

We also concatenate all T̂ n, n = 1, · · · , N into a long
vector T̂ :

T̂ = [T̂ 1
T
, · · · , T̂N

T
]T ∈ R

∑
n
(Lnln)×1

.

Then the solution Eq. (5) can be reformulated as:

W ∗ = (T̂ ⊙ (X̂X̂T ) + βNI)−1(T̂ ⊙ (X̂V̂ T )), (7)

where ⊙ denotes element-wise product.

We further define X̂s and V̂s by

X̂s = T̂
1
2 ⊙ X̂,

V̂s = T̂
1
2 ⊙ V̂ ,

where T̂
1
2 should be understood as element-wise square

root, then Eq. (7) can further be expressed as

W ∗ = (X̂sX̂
T
s + βNI)−1(X̂sV̂

T
s ), (8)

This solution is also equivalent to

W ∗ = X̂s(X̂
T
s X̂s + βNI)−1V̂ T

s , (9)

Let ϕ(x) be a nonlinear transformation for the element x in
sequences. K(x,x′) = ϕ(x)Tϕ(x′) is the corresponding
kernel. Following (Perrot & Habrard, 2015), Eq. (9) can be
kernelized as

W ∗ = ϕ(X̂s)(KX̂s
+ βNI)−1V̂ T

s , (10)

where ϕ(X̂s) = [ϕ(x̂si)]i is generated by applying the
transformation to all column vectors in X̂s and KX̂s

=

ϕ(X̂s)
Tϕ(X̂s).

The transformed element x in any sequence with the pro-
jection Eq. (10) is given by

W ∗Tϕ(x) = (ϕ(x)TW ∗)T

= (ϕ(x)Tϕ(X̂s)(KX̂s
+ βNI)−1V̂ T

s )T

= (KX̂s
(x)(KX̂s

+ βNI)−1V̂ T
s )T

, (11)

where KX̂s
(x) = [K(x, x̂s1), · · · ,K(x, x̂s

∑
n
(Lnln))].

Once the transformation Eq. (10) is obtained, the projected
sequences can be obtained by applying Eq. (11) to all the
elements. Dn

I (W ) for any training-virtual sequence pair
can then be calculated. Given Dn

I (W ), T n can be updated
in Step 5 without any modification. Therefore, to obtain the
kernelized version of Alg. 1, we only need to replace the
update of the transformation in Step 3 with the kernelized
solutions Eq. (10) and Eq. (11).

Performing the kernel version of RVSML needs to process
matrices with a size of

∑
n
(Lnln) ×

∑
n
(Lnln), therefore is

often prohibitive in practice due to the huge overhead on
both time and memory.
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3. Deep version of RVSML
The proposed RVSML can be extended to learn non-
linear representations by replacing the linear transforma-
tion WX with a non-linear transformation by a deep neu-
ral network. Let h(X, θ) denotes the final layer activations
of the network, where θ represents the set of parameters of
the network, then the objective function of deep RVSML is
formulated as follows by omitting the regularization on the
transformation.

min
W

1
N

N∑
n=1

gI(h(X
n, θ),V n) = 1

N

N∑
n=1

⟨T n∗,Dn
I (h, θ)⟩

s.t. T n∗ = argmin
T∈Φ

⟨T n,Dn
I (h, θ)⟩+ R(T n)

(12)

where Dn
I (h, θ) denotes the matrix of all the pairwise Eu-

clidean distances between the non-linear representations
generated by the network with the parameter set θ. The op-
timization of Eq. (12) follows the similar alternating pro-
cedures with the linear-RVSML. When the parameters of
the deep network are fixed, The procedure for updating the
alignments remain the same. That is, after the non-linear
representations are obtained by the network, the alignments
between any transformed sequences can be inferred by op-
timizing Eq. (14) in the main text. Differently, when the
alignments are fixed, no closed form solution is available
for updating the non-linear transformation. To update the
parameters of the network, we simply calculate the subgra-
dient of Eq. (12) w.r.t. θ and employ the back propagation
algorithm to train the network. Through the chain rule, The
subgradient w.r.t. θ can be obtained by the product of the
gradient of Eq. (12) w.r.t. h and the gradient of h (the ac-
tivation of the final layer) w.r.t. θ. Any type of neural net-
work can be employed and given a network with a specific
structure, the latter can be computed in a standard manner.

The two procedures are alternated until convergence. In
this way, the neural network and the alignments can be
jointly learned. However, deep networks generally requires
a large amount of training sequences to estimate massive
parameters. We leave the evaluation of the deep version of
RVSML for future work.

4. Another virtual sequence generation
method

The virtual sequences can be generated using various meth-
ods according to the desired properties of the metric, the
prior knowledge on the data, etc. We present another virtu-
al sequence generation method in this section.

Large-margin-based virtual sequences. In this approach,
we construct a virtual sequence for a training sequence

based on the relative location of the training sequence w.r.t.
other sequences. Special attention should be pay to those
sequences distributed near the boundaries among different
classes. If we push any sequence near the boundaries to an-
other sequence far away from the boundaries, the margins
among different sequence classes would become larger.

Specifically, for each training sequence, we calculate its
distances to the nearest training sequence from the same
class and the nearest sequence from other classes w.r.t. a
meta-distance measure as the smallest intra-class and inter-
class distances, respectively. We also compute the sums of
all pair-wise distances between this sequence and all oth-
er sequences from the same class and those from different
classes as the overall intra-class and inter-class distances,
respectively. We select the sequences whose overall inter-
class distance is larger than the overall intra-class distance
while the smallest inter-class distance is also larger than the
smallest intra-class distance as candidates.

For each class, we select k training sequences of this class
from the candidates with the largest differences between
the overall inter-class and intra-class distances. These se-
quences are considered to have large margins with other
classes and hence serve as the target sequences of this class.
There are Ck target sequences in total. The virtual se-
quence for a training sequence is selected as the nearest
target sequence of the same class. We summarize the gen-
eration process of such large-margin (LM) based virtual
sequences in Alg. 1.

We denote the virtual sequences generated in the main text
by temporal-structure (TS) based virtual sequences. We
denote RVSML with TS-based virtual sequences and LM-
based virtual sequences by RVSML-TS and RVSML-LM,
respectively. RVSML-TS is equivalent to RVSML in the
main text.

5. Influence of hyper-parameters
The RVSML framework has one hyper-parameter: β.
The generation of the virtual sequences has one hyper-
parameter: m, the number of elements in each virtual se-
quence. We evaluate the influence of them on RVSML in-
stantiated by OPW on the MSR Action3D dataset. We first
evaluate the influence of m by fixing β to 0.01. The per-
formances as functions of m are shown in Fig. 1(a). We
observe that a small m within the range of 4 to 8 works
well. When m = 1, RVSML assumes that each sequence
class contains only one temporal structure and degenerates
into applying RVML by viewing elements in sequences as
independent samples. As shown in Sec. 5 in the main tex-
t, RVSML with m > 1 outperforms RVML, this indicates
that introducing more temporal structures helps to better ex-
plore the temporal information. However, since the dimen-
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Algorithm 1 Generating LM-based Virtual Sequences
1: Input: A set of labeled training sequences

{Xn, zn}Nn=1; the number of target sequences
per class k

2: Output: The associated virtual sequences {V n}Nn=1

3: for n = 1, · · · , N do
4: sao(n) =

∑
n′:zn′=zn,n′ ̸=n

gI(X
n,Xn′

);

5: sro(n) =
∑

n′:zn′ ̸=zn

gI(X
n,Xn′

);

6: sam(n) = min
n′:zn′=zn,n′ ̸=n

gI(X
n,Xn′

);

7: srm(n) = min
n′:zn′ ̸=zn

gI(X
n,Xn′

);

8: end for
9: for c = 1, · · · , C do

10: Θ = {n|zn = c, sro(n) > sao(n), s
r
m(n) > sam(n)};

11: select k indexes n1, · · · , nk from Θ with the largest
k values of sro(n)− sao(n), for n ∈ Θ;

12: Ψc = {Xn|n = n1, · · · , nk};
13: end for
14: for n = 1, · · · , N do
15: V n = f(Xn, zn) = argmin

V ∈Ψzn

gI(X
n,V );

16: end for
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Figure 1. Performances of RVSML as functions of (a) m and (b)
log(β) on the MSR Action3D dataset.

sionality of elements in virtual sequences depends on m,
the size of W increases with m. Therefore, the parameters
in W may be too many to be adequately trained for large
m. We then evaluate β by fixing m to 4. The performances
as functions of m are illustrated in Fig. 1(b). Generally,
as β is only a regularization coefficient, it seems that very
small β leads to satisfactory results.

The generation of the LM-based virtual sequences has one
hyper-parameter: k, the number of target sequences per
class. For RVSML-LM, we evaluate k by fixing β to 0.005
and evaluate β by fixing k to 2. The performances as func-
tions of the variables are shown in Fig. 2. We can observe
that a small k works better and increasing k leads to perfor-
mance degradation. When k is larger than the maximum
number of training sequences among all classes, the virtual
sequences for the training sequences that can be correctly
classified with the Euclidean metric are themselves. As a
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Figure 2. Performances of RVSML-LM as functions of (a) k and
(b) log(β) on the MSR Action3D dataset.

result, the within-class variations may still be larger. When
k = 1, the virtual sequence for the training sequences of the
same class is the sequence that has the largest margin with
other classes. If the distribution of the sequences is multi-
modal, a linear transformation may not be able to move all
sequences to a single center. Therefore, a small k coincid-
ing with the number of modes is preferred. Again, only
a very small β is enough to regularize the transformation.
For the other two datasets, we fix β, m, and k to 0.0005, 4,
and 1, respectively.

6. Evaluation of the LM-based virtual
sequences on the MSR Action3D dataset

The comparisons of RVSML with the LM-based virtu-
al sequences with other metric learning methods on the
MSR Action3D dataset are presented in Tab. 1. Recall
that RVSML-TS is equivalent to RVSML in the main tex-
t. We can observe that RVSML-LM performs best on this
dataset instantiated by both the DTW distance and the OP-
W distance. With the OPW distance, RVSML-TS performs
worse than some other metric learning methods. In this
case, the original sequences can already be separated well,
and forcibly projecting the elements to different unit vec-
tors does not improve the performance. However, RVSML-
TS outperforms RVML consistently. This indicates that ex-
ploring the temporal information for such projection still
benefits. Due to the different properties and real distribu-
tions of the sequence data and different distance measures
for sequences, different virtual sequences can lead to differ-
ent effects on the learned metric. Selecting appropriate vir-
tual sequences helps the RVSML framework to determine
the metric that better captures the entire spatial-temporal
separability of sequences from different classes.

7. Evaluation with another type of
frame-wide features on the MSR Action3D
dataset

We also employ another type of frame-wide features, i.e.,
the 60-dimensional motion features as used in (Lee et al.,
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Table 1. Comparison of the proposed RVSML variants instantiated by (a) DTW and (b) OPW with other metric learning methods using
the NN classifier with the (a) DTW and (b) OPW distance on the MSR Action3D dataset.

(a) DTW

Method MAP Accuracy

Ori (Su & Hua, 2018) 58.95 81.32
ITML (Davis et al., 2007) 59.19 80.95
LMNN (Weinberger & Saul, 2009) 54.14 80.95
SCML (Shi et al., 2014) 42.79 63.00
RVML (Perrot & Habrard, 2015) 57.41 80.95
LDMLT (Mei et al., 2014) 64.29 84.98
SWMD (Huang et al., 2016) 59.65 80.95
RVSML-TS 59.30 82.78
RVSML-LM 64.97 84.62

(b) OPW

Method MAP Accuracy

Ori (Su & Hua, 2018) 58.70 84.25
ITML (Davis et al., 2007) 59.48 83.52
LMNN (Weinberger & Saul, 2009) 32.73 82.42
SCML (Shi et al., 2014) 39.63 64.10
RVML (Perrot & Habrard, 2015) 44.58 73.63
LDMLT (Mei et al., 2014) 53.61 80.59
SWMD (Huang et al., 2016) 43.23 66.67
RVSML-TS 47.54 76.56
RVSML-LM 62.25 85.35

Table 2. Comparison of the proposed RVSML variants instantiat-
ed by (a) DTW and (b) OPW with other metric learning methods
using the NN classifier with the (a) DTW and (b) OPW distance
on the MSR Action3D dataset.

(a) DTW

Method MAP Accuracy

Ori (Su & Hua, 2018) 47.78 80.95
ITML (Davis et al., 2007) 48.91 80.22
LMNN (Weinberger & Saul, 2009) 54.05 80.59
RVML (Perrot & Habrard, 2015) 30.33 63.00
LDMLT (Mei et al., 2014) 52.11 81.32
SWMD (Huang et al., 2016) 46.83 80.22
RVSML 59.89 86.08

(b) OPW

Method MAP Accuracy

Ori (Su & Hua, 2018) 21.81 47.99
ITML (Davis et al., 2007) 17.50 40.66
LMNN (Weinberger & Saul, 2009) 37.62 67.40
RVML (Perrot & Habrard, 2015) 10.16 17.95
LDMLT (Mei et al., 2014) 21.57 48.35
SWMD (Huang et al., 2016) 17.98 41.76
RVSML 23.33 52.01

2017). The experimental setup remains the same as evalu-
ating with the relative angle based features in the main text.
The classification results in comparison with other metric
learning methods are shown in Tab. 2. We can observe
that RVSML instantiated by OPW obtains the second best
results after LMNN by the 1-NN classifier with the OPW
distance, while RVSML instantiated by DTW outperforms
other metric learning methods significantly by a margin of
about 5% by the 1-NN classifier with the DTW distance.

Table 4. Comparison of the training times.
Dataset HAS

LDMLT (Mei et al., 2014) 10863.32 (247.0112)
SWMD (Huang et al., 2016) 1497.786 (65.3938)
RVSML(DTW) 212.3670 (32.0198)
RVSML(OPW) 150.2897 (8.7143)

8. Comparisons with other metric learning
methods on the HAS dataset

“High-quality recordings of Australian Sign Language
signs (HAS)” dataset (Kadous, 2002) consists of 2, 565
sequences from 95 Australian Sign Language sign types.
The dataset is also included in the UCI Machine Learn-
ing Repository (Bache & Lichman, 2013). There are 27 se-
quence samples for each class. Each sequence is comprised
of ordered 22-dimensional vectors. Following (Su et al.,
2018), we split the sequences into five subsets and con-
duct experiments by five-fold cross validation. Each time
four subsets are used for training and the remaining sub-
set is used for testing. For the HAS dataset, the sequences
have already been represented as a series of 22-dimensional
feature vectors. The parameters λ1, λ2, and σ of OP-
W are fixed to 50, 0.1 and 1, respectively, as suggested
in (Su & Hua, 2018).

The comparisons with other metric learning methods are p-
resented in Tab. 3. The comparisons of training times on
this dataset are presented in Tab. 4. In addition to the aver-
age performance measures, the standard deviations over dif-
ferent folds are shown in parentheses. We can observe that
RVSML instantiated by DTW and OPW achieves slightly
worse results than LDMLT, but outperforms other metric
learning methods by the 1-NN classifier with the DTW and
OPW distance, respectively. However, the training speeds
of RVSMLs are more than five times faster than LDMLT.
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Table 3. Comparison of the proposed RVSML instantiated by (a) DTW and (b) OPW with other metric learning methods using the NN
classifier with the (a) DTW and (b) OPW distance on the HAS dataset.

(a) DTW

Method MAP Accuracy

Ori (Su & Hua, 2018) 48.87 (1.09) 86.95 (2.89)
ITML (Davis et al., 2007) 14.50 (1.58) 48.90 (3.69)
LMNN (Weinberger & Saul, 2009) 60.94 (1.08) 92.34 (1.88)
SCML (Shi et al., 2014) 45.85 (10.62) 80.82 (10.93)
RVML (Perrot & Habrard, 2015) 74.21 (1.45) 94.82 (2.07)
LDMLT (Mei et al., 2014) 82.80 (1.28) 96.60 (0.82)
SWMD (Huang et al., 2016) 47.16 (3.74) 85.05 (4.68)
RVSML 74.64 (1.47) 95.65 (2.01)

(b) OPW

Method MAP Accuracy

Orib (Su & Hua, 2018) 43.29 (0.87) 81.09 (2.90)
ITML (Davis et al., 2007) 13.58 (1.38) 40.44 (2.24)
LMNN (Weinberger & Saul, 2009) 59.15 (1.03) 90.03 (2.23)
SCML (Shi et al., 2014) 39.44 (9.24) 74.47 (10.52)
RVML (Perrot & Habrard, 2015) 68.02 (1.34) 92.87 (2.47)
LDMLT (Mei et al., 2014) 73.39 (0.87) 95.00 (1.22)
SWMD (Huang et al., 2016) 41.99 (2.38) 79.22 (2.81)
RVSML 71.36 (1.05) 93.72 (2.45)

b In (Su & Hua, 2018), σ is set to 12 on this dataset. We fix σ to 1 on all datasets.
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