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1. Effect of Imbalance on Type S Error Rate

In this section we prove that, under certain assumptions,
imbalance increases the error rate in decision-making. We
start by a sketch of the proof and then continue with details.

Sketch of proof: First, we assume a probabilistic model
of potential outcomes, with broad prior distributions. This
implies that when the sample size is small, posteriors will be
wide. Then, we show that imbalance decreases the expected
number of samples locally, therefore increasing the expected
Type S error rate locally. Finally, we provide conditions
under which local increase in the expected Type S error rate
also increases the expected global Type S error rate.

Assumption S1. (Prior). Assume a broad prior on the
expected potential outcomes pi: p(g) > D > 0V, €
[~ K, K]. The action a € {0,1}.

Assumption S2. (Likelihood). Likelihood of observation
P(Ya | a) > C > 0Vy, € [-K, K].

Comment. Consequence of Assumptions S1 and S2 is that
if sample size is small, the posterior will be wide.

Lemma S1. Given observations on two potential outcomes
D = {y1,:}i21 U{yo,j};2,, the probability of Type S error
has lower bound p(“Type S error”) > 2K2D2Cm™+7m0,

Proof: We prove Lemma S1 for the case where the true
treatment effect is negative, that is, mg > mj.

Posterior of y, given data is:
P(tta | D) = 20(Ya | Ha)P(tta)-
The probability of the Type S error is

p(“Type S error”) = / p(p; po | D)dppodpn
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where (1) follows from assuming factorization, and (2) by
Assumptions S1 and S2. O

Assumption S3. (Covariate distributions). Let p®(z) :=
p(z | a) be the covariate distribution of group a in covariate
space X. Assume p*(z) are Lipschitz continuous with
constant L.

Definition: (Imbalance). Imbalance can be measured us-
ing Integral Probability Metric as described by Shalit et al.
(2017). Let G be a function family consisting of functions
g : X — R. For a pair of distributions p, q over X the
Integral Probability Metric is defined as

IPMc¢(p,q) = sup
geG

/ @) (@) — d@)da| . B
X

Assumption S4. (Imbalance). Assume there exists non-
empty ) = {x € X | [p'(z) — p°(x)| > h} where h > 0.
(For small enough h this holds if there is any imbalance).

Lemma S2. Denote 7(z) = p'(x) — p(x). Then given
Assumption S3, n(x) is Lipschitz continuous with constant
2L.

Proof-
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Definition: Let 7 be the smallest radius 7/ > 0 of a neigh-
borhood B, (z.) of z,. € €2, such that [n(x)| = 0 for some
z in the border 0B,.(x..).

Lemma S3. Given assumptions S3 and S4, then r > * for
all z, € Q.
Proof: Counter-example: Show that if r < 3 L, then there
does not exist x € B,.(x.) for which |n(x)| = 0.
For any « € B,.(x.) it holds that
In(ze) = n(@)| = [In(ze)] — [n(z)]|
= [n(ze)| — [n(z)| )
& (@) = [n(ze)| = |n(xe) —n(z)]
> h—2L|z. — x| (5)
> h—2Lr
> h— 2Li =0 (6)
2L

where the equality in (4) comes from the fact that a necessary

condition for |n(z)| = 0is that |n(z)| < |n(ze)|,

Assumption S4, and (6) is due to the counter-assumption
h

r < 5L

Therefore |n(x)| cannot be zero in OB, (x.) unless

T Z i O
Lemma S4. Given assumption S3, z € R, and assuming
p*(ze) > p'~%(z.), then the expected number of sam-
ples from the group 1 — a in B,.(z.) is upper-bounded by

Elni—a] < (1-p(a)N(P, (,., — 22).

Proof:

E[n1-q]

= (1 —=p(a))N . P!~ (a)da

= (1—p(a))N (p*(2) = (" () —p'~"(x))) dz

B, (ze)

= (1 —p(a))N (Pgrrxe)/g( )(p“(x)pla(z))dSC)

= (1 —p(a))N (Pér(xe)—/JB( )In(x)ldﬂf)

h2
< (1 -p(a))N (Pﬁr(me) - QL) ;

where we have used [ . \[n(z)|dz > L2 when z € R.
This comes from the fact that |n(z.)| > h (Assumption S4),
and by definition |n(z)| = 0 for some = € B, (x.). Thus
the integral has its smallest value when |n(z)| decreases

from h as fast as possible, that is, by Lipschitz constant 2L
(Lemma S2), s.t. [n(x)| = OVa € 0B, (z¢). Incase z € R,
this yields the integrated area to be a triangle with height h,
width 2r and area %th > h% = % (Lemma S3).

O

Theorem 1. Let IV be the sample size, and a the treatment
with the higher number of observations in B, (x.), and z €
R. Then the expected probability of Type S error in B, (z,)
has lower bound ,
p(“Type S error”) > 2K2D2CN Pi e ~(=p(@)31)
Theorem 1 shows that, with fixed 7, N and p(a), the larger

the local imbalance (k) in B,.(z.), the higher Type S error
rate in B, (z,) is.

Proof of Theorem 1. The expected number of samples of

group a in B, (z.) is E[n,] = p(a )NPB (.)- The expected

Type S error over all samples of size N from the true dis-
tribution is proportional to E[C("1F70)] > C(Elma]+E[nol)
(Lemma S1 and Jensen’s inequality).

From this and Lemma S4 it follows that the expected Type
S error in B,.(x.) has lower bound
p(“Type S error”) > 2K 2 D?CFnal +Em1-d]

s 952 D20 (P@ONPE, (o +1=p(@)N (P, ()~ 7))
s 9k2 2N (Phro—(-pl@) 52))

O

In higher dimension, the key difference is in the result of
Lemma S4 affecting the term +. Specifically, the integral
f Bo(x x)|ldxe > M, Where M depends on the dimen-

s10na11ty of x; in one dimension M = S—L as in Lemma
S4.

Now, we have shown that imbalance increases locally the
Type S error rate. Then the question remains whether the
error rate increases globally as well, or do the local effects
cancel out each other. We prove this in one-dimensional
case, but we see no reason why the proof would not extend
to higher dimensions as well. The following assumption and
theorem give conditions under which imbalance increases
the global Type S error rate.

Assumption S5. Assume the following balanced and im-
balanced settings. In the balanced setting, let

pl(x) = p°(z) = p(z), and = € R. Without loss of gener-
ality we assume that imbalance arises from a shift in p° (),
s.t. in the imbalanced setting p°(x) = p'(x) — n(z), where
n(z) € R, and [ n(z)dx = 0.
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Lemma S5. In the imbalanced setting and under assumption
S5, p(w) = up* () + (1 —u)p’(z) = p* (z) — (L —u)n(x),
where u := p(a = 1).

Proof. By simply: p(z) = up'(z) + (1 — u)p’(z) =
upt () +(1—u)(p* () —n(x)) = up'(z)+(1—u)p'
1 —wn(x) =p'(z) — (1 —uw)n(x).

Lemma S6. Given assumption S3, the maximum probabil-
ity density at © € X' iS pmax < VL.

)=

Proof: By Assumption S3,

/

Ip*(z) — p*(2)| < Llz — 2’|, and
|p°(z) — p°(2)| < L|z — 2’|, and
p(x) = up' (x)+(1 — u)p°(x),
= |p(x) — p(z")| < ullz — 2’|+ (1 —u)L|z — 2’|

= Llz —2'|.

Because p(x) integrates to one, the highest possible density
is achieved by first increasing p(x) as quickly as possible to
Pmax»> and then decreasing it back to zero; Otherwise some
of the density would be spread to a wider range. Therefore,
we get the maximum P, by the sum of two triangles with
height ppax and width Poe:

1 Drmax
2 max
* oPmar (777

< Pmax < \/Z

) <1

O

The following theorem gives a sufficient condition for the
increase of the expected global Type S error rate.

Theorem 2. Denote P>y = [, I(n(z) > h)p(z)dz,
where p;(x) is the covariate distribution in the test set. Given
Assumption S5, if P>, > CNA=wh then imbalance n(z)
increases the lower bound of the expected global Type S
error rate in X

Proof of Theorem 2. We prove this in one-dimensional set-
ting. The intuition is that since the error rate increases
exponentially with decreasing number of samples, then in
high-imbalance areas, where 1(x) > h, the local increase in
the error rate cannot be compensated elsewhere. We start by
decomposing the lower bound to the bound without imbal-
ance and a term that depends on imbalance. We then show
that the imbalance-related term is greater than zero when
P>, is high enough, and therefore the imbalance increases
the lower bound of the global Type S error rate.

In an infinitesimally small interval dz, the expected number
of observations over all samples of size N from the true

distribution, is pydr = E[n;] = uNp'(z)dx and
podx = E[ng] = (1 — u)Np®(x)dz.

Then, by Assumption S5, p; + po = uNp'(z) + (1 —
u)N(p'(z) — n(x)) = Np'(z) — (1 — u)Nn(z) =
N(p'(x) — (1 — u)n(z)) = Np(z). (Last equation from
Lemma S5).

Then the expected effect on the expected Type S error is
proportional to E[C(1+70)] > C(Emal+Eo]) — C(piteo)
(Jensen’s inequality and Lemma S1), and the expected error
rate in X is

v > 2K2D2/ CPrteo)p () da
X

:2K2D2/ CNP@)y, (z)da.
X

Denote the expected error rate in the balanced setting as
Y% > 2K?D? [, CNP' @) p,(z)dx = by, which comes
from the Assumption S5. Then the expected error rate in
the imbalanced setting has a lower bound

v > 2K2D2/ oNP@)y, (z)dx
X

which by Lemma S5 is
_ 2K2D2/ CN(pl(x)f(lfu)n(w))pt(x)dx
X
_ 2K2D2 / (CNpl(a:)C*N(lfu)n(I)
X
oV @) ch1<w>> pi(x)da
= 2K2D2/ cNe @) (C*N“*“)”“‘) -~ 1) pe(z)d
X
+2K2%D? / CNPH @) py () da
X
= 2K2D2/ NP @) (C*N(I*“)”“) - 1) pe(x)dx + bo
X
> 2K2D2/ CNpmax (C*N(lfu)n(w) _ 1) pt(x)dx —+ bo,
X

and by Lemma S6

> 2K2D20N\/f (/ C—N(l—“)"(’”)pt(a?)dx _ 1) + bo.
X

Since by is the lower bound in the balanced setting, the
lower bound of the expected Type S error rate increases with
increasing imbalance, if [, C~N1=Wn@)p, ()dz > 1.

Next, we consider when does this condition hold. Denote
the set where n(z) > 0 as X, and similarly X'~ the set
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where n(x) < 0. Then

/ C-N=0n@), ()

X

_ [ o-Na-wnE)
X+

+ [ NI, (1) da
-

> / OV, () d
X\ Xp>n

pe(z)dx

CN(l—u)nmaxpt(g[/,)daC
v

2/ pe(z)dz + C’fN(k”)h/ pe(x)dx
X\ > Xn>n
+CN(1—u)nmz|x/

_ P0§n<h =+ C_N(l_u)thZh 4 CN(l—u)UmaxPn<O
> OfN(lfu)thZh
if P>y > CNU-wh

+/ C_N(l_u)hpt<$)d$+
Xn>n

pe(x)dx

> 1,

Here nmax is the maximum difference between the the distri-
butions p!(z) and p°(z), and
Xy>n ={x € X |n(x) > h},h>0. O

2. Details of the Implementations

2.1. The Observed and Estimated Type S Error Rate in
Imbalanced Data

Data is generated from

x ~ N(0,1)
a ~ Bernoulli(6,)
b, b1 ~ N(0,0.5)
ylz,a~N(f(z)+ (o + frz)a,0f), and

f(x) =2 <1+61+b - o.5> ,

where imbalance is generated by setting 6, = e, forz <0
and 0, = 1 —e, forz > 0. Heree, = pla =1 | x)
is the propensity score. Technical details: The shape of
f(x) € (—1,1) is chosen to be half of a sigmoid within
range of 1o from Z, so as to either have a saturating effect
or an increasingly increasing effect (defined by the sign of
be {—1,1}, b ~ uniform).

The outcome model generation (bg, by and d) is repeated 200
times, and for each outcome model we generate 6 training
sets. The training data generation differs in the propensity
scores e; € {0.0,0.1,...,0.5}, resulting in different levels
of imbalance in the training data sets. The size of the test
set is 500.

We measure imbalance using the Maximum Mean Discrep-
ancy (MDD) (Gretton et al., 2012), with Gaussian kernel
and length-scale 0.8. We model the potential outcomes
using two independent Gaussian Processes with squared
exponential kernel.

2.2. Simulated Example

Synthetic data. The outcome y € {0,1} is Bernoulli
distributed with parameter 6, ,, given a one-dimensional
covariate z € R and treatment a € {0,1}. The data is
generated from a logistic regression model with interaction
between a and 3 radial basis functions (RBF) ¢(z). The
data is generated as follows:

x ~ uniform(—4.5, 4.5)
alx=1if < —-1.5, 0 else

y | z,a ~ Bernoulli(6, ,),

where 6,, = logit ! (w] ¢(z) + w{ ¢(zx)a), and RBF
centers are at —3,0,3, have lenght-scale 1, and wy =
0515157, w; =[1 —1 —3.0]T.

Training sample size is 30. The 9 test points are set with
equal distance to each other in the range of x. Data genera-
tion is repeated 100 times, and the reported values are the
mean and the 95% bootstrap confidence intervals.

Model and learning. We model the data with a logistic
regression model p(y | z,a) ~ Bernoulli(d, ,), where
0, has the same form as in the data generation process.
The model is fit using a probabilistic programming language
Stan (Stan Development Team, 2017; Carpenter et al., 2017).
We assume that the RBF centers and length-scale are known
(—3,0, 3, and lenght-scale 1), so that only w( and w; need
to be learned.

2.3. Gaussian Process Model with Direct Feedback

For modeling the Gaussian process with direct feedback
on patient response, a Gaussian process prior with squared
exponential covariance function and Gaussian likelihood
was used. Responses for different treatments were modeled
with independent models. We use Gamma distribution with
shape 1.5 and rate 3.0 as prior for lengthscale, variance and
noise. The models were implemented with GPy-framework
I, Since the observed data and the counterfactual feedback
were obtained from different sources, both were assumed to
have separate noise priors. Since different attributes have
very different effect on the response, the covariance function
used different lengthscale parameters for different dimen-

lGPy v. 1.9.2 https://github.com/SheffieldML/
GPy
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Figure 1. The observed () and estimated (%) Type S error rate in
1200 data sets. Low estimated error indicates low observed error.
Solid lines show the regression line for each sample size.

sions. Hyper-parameters were estimated by maximizing the
marginal likelihood.

3. Additional results

3.1. The Observed and Estimated Type S Error Rate in
Imbalanced Data

The observed and estimated Type S error rates from the
experiment described in Section 2.1 (Section 5.1 in the
paper) are shown in Figure 1. The results show that low
estimated error indicates low observed error.

3.2. K-Nearest Neighbor Approximation of D-M aware

We additionally tested the idea to approximate full D-M
aware by only computing the expected minimization of
Type S error rate for the k nearest neighbors of the test unit.
Important here is that we use the model’s distance measure,
which in the case of GPs is the optimized kernel (with
Automatic Relevance Determination ARD). Our preliminary
results (Fig. 2) show that selecting too few neighbors will
impair the performance of active learning.
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