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A. Estimation

We now derive a sampling algorithm to estimate IRS from
a observational dataset D = {x(i)

, g(i)
}i=1,...,N where

x(i)
2 Rn and g(i)

2 G = G1 ⇥ · · · ⇥ GK with each
Gk being discrete and finite. In case of continous Gk we
first need to perform a discretization. The discretization
steps trade off bias and variance of the estimate through the
number of samples that are available per combination of
generative factors.

We will provide an estimation procedure for
EMPIDA(L|I, J) as:
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From that, also the IRS can be computed. In Section A.1
we provide a simplified version that is sufficient for disen-
tanglement benchmarking based on perfectly crossed noise
free datasets. Readers most interested in this application
might skip to that part.

The main ingredient for this estimation to work is provided
by our constrained causal model (i.e., a disentangled pro-
cess) that implies that the backdoor criteria can be applied,
which we showed in Proposition 1. Further, we already
saw in Eq. (3.2) that p(zL|x, do(GI  gI ,GJ  g4

J )) =
p(zL|x). This can be used to write the conditional expected
value of ZL as:
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where the elements L of encoding E(·) are defined as:

E(x)L :=

Z
zL q�(zL|x) dzL.

It is now apparent how this formula can be used to es-
timate the expected value using the sample mean (or
a robust alternative in case outliers in x are to be
expected) based on a set of samples D̃ drawn fromR
p(x|gI , g

4
J , g\(I[J)) p(g\(I[J)) dg\(I[J) using the law

of large numbers (LLN), i.e.,
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However, all we are given are the samples D drawn from
p(x, g) = p(x|g) p(g) where the generative factors could
be confounded p(g) =

R
p(g|c)p(c) dc. This is why we

now provide an importance sampling based adjusted estima-
tion of the expected value of any function of the observations
h(X) after an intervention on GJ has occured and while
conditioning on GI , i.e., E[h(X)|do(GI  gI ,GJ  

g4
J )]. This procedure can then be used to estimate Eq. (5),

as a special case with h(·) = E(·)L, directly from D.

By denoting the Kronecker-delta as � we obtain:
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We can rewrite the weighting term as:

wi :=
p(g(i)

\(I[J))

N p(g(i))
=

1

N p(g(i)
I , g(i)

J |g(i)
\(I[J))

which gives us the natural interpretation that samples gI , gJ
that would occur more often together with a certain g\(I[J)

need to be downweighted in order to correct for the con-
founding effects. We can also see that in case of statistical
independence between the generative factors, this reweight-
ing is not needed and we can simply use the sample mean
with the subselection of the dataset Dsel = {(x(i)

, g(i)) 2

D : g(i)
I = gI and g(i)

J = g4
J }.

Since we assume G to be discrete, we can estimate these
reweighting factors wi from observed frequencies. Even
though this sampling procedure looks non-trivial, we show
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in Section 5 how it can be used to obtain an O(N) estima-
tion algorithm for EMPIDA(L|I, J).

A.1. Crossed Dataset without Noise: Benchmarking

Disentanglement

In many benchmark datasets for disentanglement (e.g.
dsprites) the observations are obtained noise free and
the dataset contains all possible crossings of genera-
tive factors exactly ones. This makes the estimation
of the disentanglement score very efficient, as we have
|D

(k,l)
I={i},J={1,...,K}\{i}| = 1. Furthermore, since no con-

founding is present, we can use conditioning to estimate the
interventional effect, i.e., p(x|do(Gi  gi)) = p(x|gi), as
seen in Proposition 1 (g). In order to obtain the disentangle-
ment score of Zl, as discussed in Eq. (3), we therefore just
need to compute the PIDA value:
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realizations g(k)i to obtain:
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The estimate for the disentanglement score in Eq. (3) for Zl

follows from that:
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B. Proof of Proposition 1

Proof. Property (a) directly follows from Definition 1 and
the definition of an independent causal mechanism. (b)
and (c) can be read off the graphical model (Koller et al.,
2009) in Figure 1 which does not contain any arrow from
Gi to Gj for i 6= j by Definition 1 of the constrained SCM.
This is due to the fact that any distribution implied by an
SCM is Markovian with respect to the corresponding graph
(Peters et al., 2017, Prop. 6.31). (d) follows from the data
processing inequality since we have X ?? C|G. The non-
existence of a directed path from Gj to Gi implies that there
is no total causal effect (Peters et al., 2017, Prop. 6.14). This,
in turn, is equivalent to property (e) (Peters et al., 2017, Prop.
6.13). Finally, since there are no arrows between the Gi’s,
the backdoor criterion (Peters et al., 2017, Prop. 6.41) can
be applied to estimate the interventional effects in (f). In
particular, G\j blocks all paths from Gj to X entering Gj

through the backdoor (i.e., Gj  · · · ! X) but at the
same time does not contain any descendents of Gj since
by definition Gj 6! Gi 8i 6= j. Property (g) also follows
from Gj 6! Gi 8i 6= j by using parent adjustment (Peters
et al., 2017, Prop. 6.41), where in the case no confounding
PAj = ;. These properties is why the constrained SCM in
Definition 1 is important for further estimation.

C. Proof of Proposition 2

Proof. The encodings in line 1 requires one pass through
the dataset D. So does the estimation of the occurance
frequencies in line 1 as one can use a hash table to keep track
of the number of occurances of each possible realization.
Therefore, the preprocessing steps scale with O(N).

Further, also the partitioning of the full dataset into D =
SNI

k=1

SN(k)
I,J

l=1 D
(k,l)
I,J , which is done in lines 1, 1 and 1, can

be done with two passes through the dataset by using hash
tables: In the first pass we create buckets with g(k)

I as keys.
Consequently, we can pass through all of these buckets to
create subbuckets where g(l)

J is used as key. This reasoning
is further illustrated in Figure 5 and leads us to the O(N)
complexity of the partitioning.

The remaining computational bottleneck are the com-
putations of mean in line 1 and meanintv in line
1. Using Eq. (7) we obtain E[ZL|do(GI  

g(k)
I )] ⇡

P
x(i)2D(k)

I
wi E(x(i)) to compute mean

and E[ZL|do(GI  g(k)
I ,GJ  g(l)

J )] ⇡P
x(i)2D(k,l)

I,J
w̃i E(x(i)) to compute meanintv. Since we

already computed the encodings as well as the reweight-
ing terms in the preprocessing step, these summations
scale as O(|D(k)

I |) and O(|D(k,l)
I,J |). As can be seen in

Figure 5, it holds that
PNI

k=1 |D
(k)
I | = N as well as

PNI

k=1

PN(k)
I,J

l=1 |D
(k,l)
I,J | = N which implies the total com-

putational complexity of O(N).

Real World Considerations: Though this estimation pro-
cedure scales O(N) in the dataset size, the required number
of observations for a fixed estimation quality (i.e., if |D(k,l)

I,J |

should stay constant) might become very large, as we have
exponentially growing (in |I| and |J |) many possible com-
binations to consider. This is why some trade-offs need
to be made when comparing large sets of factors. The es-
timation for |I|, |J | = 1, 2 or 3, however, usually works
well. One trade-off parameter is the discretization step of
of gi’s. Partitioning a factor into fewer realizations yields
less possible combinations and hence larger sets D(k,l)

I,J . In
general, the more noise we expect in x the larger the sets
D

(k,l)
I,J we want to have in order to obtain stable estimates
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Figure 5. Partitioning of Dataset: In order to estimate EMPIDA(L|I, J) we first partition the dataset according to possible realizations
of GI (first column), where we assume there are NI many. This partitioning can be done in linear time O(N) by using hash tables
with g(i)

I as keys. For each such partition D(k)
I we can further split these sub-datasets according to realizations of GJ to obtain

D
(k,l)
I,J = {(x, g) 2 D s.t. gI = g(k)

I , gJ = g(l)
J }, l = 1, . . . , N (k)

I (illustrated as boxes in third column). We denote with N (k)
I the

number of realizations of GJ that occur together with g(k)
I (i.e., can be found in D

(k)
I ). This takes O(|D(k)

I |) time per partition D(k)
I or

O(
PNI

k=1 |D
(k)
I |) = O(N) in total by again making use of hash tables.
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of the expected values. Also, if we allow for fewer possible
realizations in the generative factors, the smaller our dataset
can be to cover all relevant combinations. However, larger
discretization steps come at the cost of having a less sensi-
tive score. Also note that taking the supremum is in general
not vulnerable to outliers in x as we compute distances of
expected values. When outliers are to be expected, a robust
estimate for these expected values can be used. Only when
little data is available special care needs to be taken.

D. Details of Experimental Setup

D.1. Validation Methods

We compute the feature importance based disentanglement
scores, as discussed by Eastwood & Williams (2018), using
random forests with 50 decision trees that are split up to
a minimal leaf size of 500. As opposed to Eastwood &
Williams (2018), we only use one single feature to ’ran-
domly choose from’ at each split, since this guarantees that
each feature is equally given the chance to prove itself in
reducing the out-of-bag error. When multiple features can
be chosen from at each split, it is well possible that features
with a mediocre importance are never chosen as there are
features always yielding a better split. This would lead to
an underestimation of their importance.

For the mutual information metric (Ridgeway & Mozer,
2018) we followed the original proposal of discretizing each
latent dimension into 20 buckets and computing the discrete
mutual information based on that. We found that using
smaller discretization steps (i.e., more buckets) does not
change the results notably.

Since we make comparisons to information based evalua-
tion methodologies by Eastwood & Williams (2018) and
Ridgeway & Mozer (2018), we here give a more in depth
overview of these methods. The validation method of East-
wood & Williams (2018) is based on training a predictor
model (e.g. a random forest) which tries to estimate the
true generative factors based on the latent encoding. The
way disentanglement can be observed is by analyzing the
feature importances implicit in this regressor. Intuitively,
we expect that in a disentangled representation, each di-
mension contains information about one single generative
factor. In particular, Eastwood & Williams (2018) proceed
as follows: Given a labeled dataset with generative factors
and observations D = {x(i)

, g(i)
}i=1,...,N and a given en-

coder E (to be evaluated), they first create the set of features
{z(i) = E(x(i)) 2 RK0

: i = 1, . . . , N}. Using these K
0

features as predictors, they train an individual regressor fi
for each generative factor Gi, i.e., Ĝi = fi(Z). As the basis
for further computations, they set up a matrix of relative
importances R based on these feature importance values. In
particular, Rij denotes the relative importance of the feature

Zi when predicting Gj .

Plotting the matrix R gives a good first impression of the dis-
entanglement capabilities of an encoder. Ideally, we would
want to see only one large value per row while the remain-
ing entries should be zero. In our experimental evaluations
we plot this matrix (together with similarly interpretable
matrices of the other metrics) as is shown for example in
Figure 6 on page 16.

To explicitly quantify this visual perspective, Eastwood &
Williams (2018) summarize disentanglement as one score
value which measures to what extent indeed each latent
dimension can only be used to predict one generative factor
(i.e., sparse rows). It is obtained by first computing the
‘probabilities’ of Zi being important to predict Gj ,

Pij = Rij/

K�1X

k=0

Rik

and the entropy of this distribution: HK(Pi·) =

�
PK�1

k=0 Pik logK Pik, where K = dim(g) is the num-
ber of generative factors. The disentanglement score of
variable Zi is then defined as Di = (1 � HK(Pi·)). For
example, if only one generative factor Gu can be predicted
with Zi, i.e., Pij = �iu, we obtain Di = 1. If the explana-
tory power spreads over all factors equally, the score is zero.
Using relative variable importance ⇢i =

P
j Rij/

P
ij Rij ,

which accounts for dead or irrelevant components in Z, they
find an overall disentanglement score as weighted average
SD =

P
i ⇢iDi. When later plotting the full importance

matrices, we also provide information about the individual
feature disentanglement scores Di in the corresponding row
labels. These feature-wise scores are better comparable be-
tween metrics since all of them have different heuristics to
obtain the (weighted) average SD.

As an additional measure to obtain a more complete picture
of the quality of the learned code, they additionally propose
the informativeness score. It tells us how much information
about the generative factors is captured in the latent space
and is computed as the out-of-bag prediction accuracy of
the regressors f1, . . . , fK . In our evaluations in Section 6
we will also provide this score, as there is often a trade-
off between a disentangled structure and information being
preserved.

The mutual information based metric by Ridgeway & Mozer
(2018) proceeds in a similar way to Eastwood & Williams
(2018). However, instead of relying on a random forest to
compute the feature importances, they use an estimate of
the mutual information between encodings and generative
factors. In particular, they also first compute an importance
matrix R̃ where the element R̃ij corresponds to the mutual
information between Zi and Gj . We also provide plots of
this matrix whenever evaluations are made (e.g. Figure 6
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on page 16). Another difference to Eastwood & Williams
(2018) is that Ridgeway & Mozer (2018) do not compute
entropies to measure the deviation from the ideal case of
having only one large value per row. Instead, they compute
a normalized squared difference between each row and its
idealized case where all values except the largest are set to
zero. To summarize the disentanglement scores of differ-
ent dimensions in a feature space they use an unweighted
average.

D.2. Disentanglement Approaches

For the disentangling VAE models we made use of existing
implementations where this was available. Classic VAE
(Kingma & Welling, 2014) and DIP-VAE (Kumar et al.,
2018) we implemented ourselves and trained them for 300
epochs using Adam (Kingma & Ba, 2015) with a learning
rate of 1e-4 and batch size of 512. We used the same
neural network architecture as is described in the appendix
of Chen et al. (2018). For DIP-VAE we set the parameters to
�d = 100,�od = 10, as is used in the original publication.
For the annealed �-VAE approach (Burgess et al., 2018)
we used the publicly available third party code from
https://github.com/1Konny/Beta-VAE, where
parameters are set to C = 20 and � = 100. Also, for Fac-
torVAE (Kim & Mnih, 2018) we used third party code from
https://github.com/1Konny/FactorVAE
with their parameter � = 6.4. Chen et al.
(2018) provided their own code for �-TCVAE at
https://github.com/rtqichen/beta-tcvae,
which we made use of. We kept their chosen default
parameters (� = 6.0).

E. Visualisations of Importance Matrices

Plots of the full importance matrices for the considered
latent spaces and all three validation metrics are included
in Figures 8, 9, 10, 11 and 12. The y labels include the
disentanglement scores of each individual feature Zi.

A related visualization possibility to the one we propose
in Section 6.3 is that of simple conditioning on different
generative factors (without keeping one factor fixed). This
is illustrated in Figure 7, where we plot the violin plots (i.e.,
density estimates) of p(zl|gj) for all generative factors Gj

(columns) and realizations of them gj (x axis). This kind
of visualization works well to discover simple dependency
patterns as well as their noise levels.

F. Visualisations of Interventional Effects

We provide further visualizations of the full latent spaces
and their dependency structure (produced by the to be made
publicly available code) of a couple of models in Figures
13, 14, 15, 16 and 17.
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Figure 6. Dependency Matrices: These plots illustrate the different dependency structure matrices (of the features learned by the DIP
model) that are used by the three discussed evaluation metrics. The rows correspond to the latent space dimensions Zi (disentanglement
score of each feature is given in brackets) and the columns to generative factors Gj (labels indicates their interpretation in the dsprites
dataset).

Figure 7. Visualising Conditional Distributions: These plots illustrate the violin plots (density estimates) of the conditional distributions
p(zl|gj) for all generative factors Gj (different boxes) and for all realizations gj of Gj each (x axis in each plot). The upper plot
corresponds to the well disentangled and robust feature Z3 of the DIP model, the lower to the disentangled (according to MI and FI) but
not robust (according to IRS) feature Z6.
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Figure 8. Importance matrices of all three validation metrics for the classic VAE model (Kingma & Welling, 2014).

Figure 9. Importance matrices of all three validation metrics for the DIP-VAE model (Kumar et al., 2018).
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Figure 10. Importance matrices of all three validation metrics for the annealed �-VAE model (Higgins et al., 2017; Burgess et al., 2018).

Figure 11. Importance matrices of all three validation metrics for the FactorVAE model (Kim & Mnih, 2018).
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Figure 12. Importance matrices of all three validation metrics for the �-TCVAE model (Chen et al., 2018).



Robustly Disentangled Causal Mechanisms

Figure 13. Visualization of interventional effects in the regular VAE model (Kingma & Welling, 2014).
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Figure 14. Visualization of interventional effects in the DIP-VAE model (Kumar et al., 2018).
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Figure 15. Visualization of interventional effects in the annealed �-VAE model (Higgins et al., 2017; Burgess et al., 2018).
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Figure 16. Visualization of interventional effects in the Factor-VAE model (Kim & Mnih, 2018).
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Figure 17. Visualization of interventional effects in the �-TCVAE model (Chen et al., 2018).


