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Abstract

The ability to learn disentangled representations
that split underlying sources of variation in high
dimensional, unstructured data is important for
data efficient and robust use of neural networks.
While various approaches aiming towards this
goal have been proposed in recent times, a com-
monly accepted definition and validation proce-
dure is missing. We provide a causal perspective
on representation learning which covers disentan-
glement and domain shift robustness as special
cases. Our causal framework allows us to intro-
duce a new metric for the quantitative evaluation
of deep latent variable models. We show how
this metric can be estimated from labeled observa-
tional data and further provide an efficient estima-
tion algorithm that scales linearly in the dataset
size.

1. Introduction

Learning deep representations in which different semantic
aspects of data are structurally disentangled is of central
importance for training robust machine learning models.
Separating independent factors of variation could pave the
way for successful transfer learning and domain adaptation
(Bengio et al., 2013). Imagine the example of a robot learn-
ing multiple tasks by interacting with its environment. For
data efficiency, the robot can learn a generic representation
architecture that maps its high dimensional sensory data
to a collection of general, compact features describing its
surrounding. For each task, only a subset of features will
be required. If the robot is instructed to grasp an object, it
must know the shape and the position of the object, however,
its color is irrelevant. On the other hand, when pointing to

1Department of Computer Science, ETH Zurich, Switzerland
2MPI for Intelligent Systems, Tübingen, Germany. Correspon-
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all red objects is demanded, only position and color are
required.

Having a disentangled representation, where each feature
captures only one factor of variation, allows the robot to
build separate (simple) models for each task based on only a
relevant and stable subselection of these generically learned
features. We argue that robustness of the learned representa-
tion is a crucial property when this is attempted in practice.
It has been proposed that features should be selected based
on their robustness or invariance across tasks (e.g., Rojas-
Carulla et al., 2018), we hence do not want them to be
affected by changes in any other factor. In our example,
the robot assigned with the grasping task should be able
to build a model using features well describing shape and
position of the object. For this model to be robust, however,
these features must not be affected by changing color (or
any other nuisance factor).

It is striking that despite the recent popularity of disentan-
gled representation learning approaches, a commonly ac-
cepted definition and validation metric is missing (Higgins
et al., 2018). We view disentanglement as a property of a
causal process (Spirtes et al., 1993; Pearl, 2009) responsible
for the data generation, as opposed to only a heuristic charac-
teristic of the encoding. Concretely, we call a causal process
disentangled when the parents of the generated observations
do not affect each other (i.e., there is no total causal effect
between them (Peters et al., 2017, Definition 6.12)). We
call these parents elementary ingredients. In the example
above, we view color and shape as elementary ingredients,
as both can be changed without affecting each other. Still,
there can be dependencies between them if for example our
experimental setup is confounded by the capabilities of the
3D printers that are used to create the objects (e.g., certain
shapes can only be printed in some colors).

Combining these disentangled causal processes with the
encoding allows us to study interventional effects on feature
representations and estimate them from observational data.
This is of interest when benchmarking disentanglement ap-
proaches based on ground truth data (Locatello et al., 2018)
or trying to evaluate robustness of a deep representations
w.r.t. known nuisance factors (e.g., domain changes). In the
example of robotics, knowledge about the generative factors
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(e.g., the color, shape, weight, etc. of an object to grasp) is
often availabe and can be controlled in experiments.

We will start by first giving an overview of previous work
in finding disentangled representations and how they have
been validated in Section 2. In Section 3 we introduce our
framework for the joint treatment of the disentangled causal
process and its learned representation. We introduce our
notion of interventional effects on encodings and the follow-
ing interventional robustness score in Section 4 and show
how this score can be estimated from observational data
with an efficient O(N) algorithm in Section 5. Section 6
provides experimental evidence in a standard disentangle-
ment benchmark dataset supporting the need of a robustness
based disentanglement criterion.

OUR CONTRIBUTIONS:

• We introduce a unifying causal framework of disen-
tangled generative processes and consequent feature
encodings. This perspective allows us to introduce a
novel validation metric, the interventional robustness
score.

• We show how this metric can be estimated from ob-
servational data and provide an efficient algorithm that
scales linearly in the dataset size.

• Our extensive experiments on a standard benchmark
dataset show that our robustness based validation is
able to discover vulnerabilities of deep representations
that have been undetected by existing work.

• Motivated by this metric, we additionally present a
new visualisation technique which provides an intuitive
understanding of dependency structures and robustness
of learned encodings.

NOTATION:

We denote the generative factors of high dimensional ob-
servations X as G. The latent variables learned by a
model, e.g., a variational auto-encoder (VAE) (Kingma &
Welling, 2014), are denoted as Z. We use the notation
E(·) to describe the encoding which in case of VAEs corre-
sponds to the posterior mean of q�(z|x). Capital letters de-
note random variables, and lower case observations thereof.
Subindices ZJ for a set J or Zj for a single index j denote
the selected components of a multidimensional variable. A
backslash Z\J denotes all components except those in J .

2. Related Work

In the framework of variational auto-encoders (VAEs)
(Kingma & Welling, 2014) the (high dimensional) obser-
vations x are modelled to be generated from some latent
features z with chosen prior p(z) according to the proba-
bilistic model p✓(x|z)p(z). The generative model p✓(x|z)
as well as the proxy posterior q�(z|x) can be estimated

using neural networks by maximizing the variational lower
bound (ELBO) of log p(x1, . . . ,xN ):

LV AE =
PN

i=1 Eq�(z|x(i))[log p✓(x
(i)
|z)]�DKL(q�(z|x(i))kp(z)).

(1)
This objective function a priori does not encourage much
structure on the latent space (except some similarity to
the chosen prior p(z) which is usually isotropic Gaussian).
More precisely, for a given encoder E and decoder D any
bijective transformation g of the latent space z = E(x)
yields the same reconstruction x̂ = D(g(g�1(E(x))) =
D(E(x)).

Various proposals for more structure imposing regulariza-
tion have been made, either with some sort of supervision
(e.g. Siddharth et al., 2017; Bouchacourt et al., 2017; Liu
et al., 2017; Mathieu et al., 2016; Cheung et al., 2014) or
completely unsupervised (e.g. Higgins et al., 2017; Kim
& Mnih, 2018; Chen et al., 2018; Kumar et al., 2018; Es-
maeili et al., 2018). Higgins et al. (2017) proposed the
�-VAE penalizing the Kullback-Leibler divergence (KL)
term in the VAE objective (1) more strongly, which en-
courages similarity to the factorized prior distribution. Oth-
ers used techniques to encourage statistical independence
between the different components in Z, e.g., FactorVAE
(Kim & Mnih, 2018) or �-TCVAE (Chen et al., 2018),
similar to independent component analysis (e.g. Comon,
1994). With disentangling the inferred prior (DIP-VAE),
Kumar et al. (2018) proposed encouraging factorization of
q�(z) =

R
q�(z|x)p(x) dx.

A special form of structure in the latent space which has
gained a lot of attention in recent time is referred to as dis-
entanglement (Bengio et al., 2013). This term encompasses
the understanding that each learned feature in Z should
represent structurally different aspects of the observed phe-
nomena (i.e., capture different sources of variation).

Various methods to validate a learned representation for
disentanglement based on known ground truth generative
factors G have been proposed (e.g. Eastwood & Williams,
2018; Ridgeway & Mozer, 2018; Chen et al., 2018; Kim &
Mnih, 2018). While a universal definition of disentangle-
ment is missing, the most widely accepted notion is that one
feature Zi should capture information of only one generative
factor (Eastwood & Williams, 2018; Ridgeway & Mozer,
2018). This has for example been expressed as the mutual
information of a single latent dimension Zi with generative
factors G1, . . . , GK (Ridgeway & Mozer, 2018), where in
the ideal case each Zi has some mutual information with
one generative factor Gk but none with all the others. Simi-
larly, Eastwood & Williams (2018) trained predictors (e.g.,
Lasso or random forests) for a generative factor Gk based
on the representation Z. In a disentangled model, each di-
mension Zi is only useful (i.e., has high feature importance)
to predict one of those factors (see appendix D for details).
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Validation without known generative factors is still an open
research question and so far it is not possible to quantita-
tively validate disentanglement in an unsupervised way. The
community has been using ”latent traversals” (i.e., changing
one latent dimension and subsequently re-generating the im-
age) for visual inspection when supervision is not available
(see e.g. Chen et al., 2018). This can be used to encounter
physically meaningful interpretations of each dimension.

3. Causal Model

We will first consider assumptions for the causal process
underlying the data generating mechanism. Following this,
we discuss consequences for trying to match encodings Z
with causal factors G in a deep latent variable model.

3.1. Disentangled Causal Model

As opposed to previous approaches that defined disentangle-
ment heuristically as properties of the learned latent space,
we take a step back and first introduce a notion of disen-
tanglement on the level of the true causal mechanism (or
data generation process). Subsequently, we can use this
definition to better understand a learned probabilistic model
for latent representations and evaluate its properties.

We assume to be given a set of observations from a (po-
tentially high dimensional) random variable X . In our
model, the data generating process is described by K causes
of variation (generative factors) G = [G1, . . . , GK ] (i.e.,
G ! X) that do not cause each other. These factors G
are generally assumed to be unobserved and are objects of
interest when doing deep representation learning. In par-
ticular, knowledge about G could be used to build lower
dimensional predictive models, not relying on the (unstruc-
tured) X itself. This could be classic prediction of a label
Y , often in ”confounded” direction (i.e., predicting effects
from other effects) if G! (X, Y ) or in anti-causal direc-
tion if Y ! G!X . It is also relevant in a domain change
setting when we know that the domain S has an impact on
X , i.e., (S,G)!X .

Having these potential use cases in mind, we assume the
generative factors themselves to be confounded by (multi-
dimensional) C, which can for example include a potential
label Y or source S. Hence, the resulting causal model
C ! G!X allows for statistical dependencies between
latent variables Gi and Gj , i 6= j, when they are both
affected by a certain label, i.e., Gi  Y ! Gj .

However, a crucial assumption of our model is that these
latent factors should represent elementary ingredients to
the causal mechanism generating X (to be defined below),
which can be thought of as descriptive features of X that
can be changed without affecting each other (i.e., there is
no causal effect between them). A similar assumption on

the underlying model is likewise a key requirement for the
recent extension of identificability results of non-linear ICA
(Hyvarinen et al., 2018). We formulate this assumption of a
disentangled causal model as follows (see also Figure 1):
Definition 1 (Disentangled Causal Process). Con-
sider a causal model for X with generative factors
G, described by the mechanisms p(x|g), where
G could generally be influenced by L confounders
C = (C1, . . . , CL). This causal model for X is called
disentangled if and only if it can be described by a
structural causal model (SCM) (Pearl, 2009) of the form

C  Nc

Gi  fi(PAC
i , Ni), PAC

i ⇢ {C1, . . . , CL}, i = 1, . . . ,K

X  g(G, Nx)
with functions fi, g and jointly independent noise variables
Nc, N1, . . . , NK , Nx. Note that 8i 6= j Gi 6! Gj .

In practice we assume that the dimensionality of the con-
founding L is significantly smaller than the number of fac-
tors K.

G1 G2 · · · GK�1 GK

C

X

Figure 1. Disentangled Causal Mechanism: This graphical
model encompasses our assumptions on a disentangled causal
model. C stands for a confounder, G = (G1, G2, . . . , GK) are
the generative factors (or elementary ingredients) and X the ob-
served quantity. In general, there can be multiple confounders
affecting a range of elementary ingredients each.

This definition reflects our understanding of elementary in-
gredients Gi, i = 1, . . . ,K, of the causal process. Each
ingredient should work on its own and is changable without
affecting others. This reflects the independent mechanisms
(IM) assumption (Schölkopf et al., 2012). Independent
mechanisms as components of causal models allow interven-
tion on one mechanism without affecting the other modules
and thus correspond to the notion of independently con-
trollable factors in reinforcement learning (Thomas et al.,
2017). Our setting is broader, describing any causal process
and inheriting the generality of the notion of IM, pertaining
to autonomy, invariance and modularity (Peters et al., 2017).

Based on this view of the data generation process, we can
prove (see Appendix B) the following observations which
will help us discuss notions of disentanglement and deep
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latent variable models.

Proposition 1 (Properties of a Disentangled Causal Pro-
cess). A disentangled causal process as introduced in Defi-
nition 1 fulfills the following properties:

(a) p(x|g) describes a causal mechanism invariant to
changes in the distributions p(gi).

(b) In general, the latent causes can be dependent

Gi 6?? Gj , i 6= j.

Only if we condition on the confounders in the data
generation they are independent

Gi ?? Gj |C 8i 6= j.

(c) Knowing what observation of X we obtained renders
the different latent causes dependent, i.e.,

Gi 6?? Gj |X.

(d) The latent factors G already contain all information
about confounders C that is relevant for X , i.e.,

I(X;G) = I(X; (G, C)) � I(X;C)

where I denotes the mutual information.
(e) There is no total causal effect from Gj to Gi for j 6= i;

i.e., intervening on Gj does not change Gi, i.e,

8g
4
j p(gi|do(Gj  g

4
j )) = p(gi)

⇣
6= p(gi|g

4
j )

⌘

(f) The remaining components of G, i.e., G\j , are a valid
adjustment set (Pearl, 2009) to estimate interventional
effects from Gj to X based on observational data, i.e.,

p(x|do(Gj  g
4
j )) =

Z
p(x|g4j , g\j)p(g\j) dg\j .

(g) If there is no confounding, conditioning is sufficient to
obtain the post interventional distribution of X:

p(x|do(Gj  g
4
j )) = p(x|g4j )

3.2. Disentangled Latent Variable Model

We can now understand generative models with latent vari-
ables (e.g., the decoder p✓(x|z) in VAEs) as models for
the causal mechanism in (a) and the inferred latent space
through q�(z|x) as proxy to the generative factors G. Prop-
erty (d) gives hope that under an adequate information bot-
tleneck we can indeed recover information about causal par-
ents and not the confounders. Ideally, we would hope for a
one-to-one correspondance of Zi to Gi for all i = 1, . . . ,K.
In some situations it might be useful to learn multiple la-
tent dimensions for one causal factor for a more natural
description, e.g., describing an angle ✓ as cos(✓) and sin(✓)

G1 G2 · · · GK�1 GK

X

· · ·Z2Z1 ZK0�1 ZK0

Figure 2. We assume that the data are generated by a process in-
volving a set of unknown independent mechanisms Gi (which may
themselves be confounded by other processes, see Figure 1). In the
simplest case, disentangled representation learning aims to recover
variables Zi that capture the independent mechanisms Gi in the
sense that they (i) represent the information contained in the Gi

and (ii) respect the causal generative structure of G ! X in an
interventional sense: in particular, for any i, localized interventions
on another cause Gj (j 6= i) should not affect Zi. In practice,
there need not be a direct correspondence between Gi and Zi

variables (e.g., multiple latent variables may jointly represent one
cause), hence our definitions deal with sets of factors rather than
individual ones. Note that in the unsupervised setting, we do not
know G nor the mapping from G to X (we do know, however,
the “decoder” mapping from Z to X , not shown in this picture).
In experimental evaluations of disentanglement, however, such
knowledge is usually assumed.

(Ridgeway & Mozer, 2018). Hence, we will generally al-
low the encodings Z to be K

0 dimensional, where usually
K

0
� K. The �-VAE (Higgins et al., 2017) encourages

factorization of q�(z|x) through penalization of the KL to
its prior p(z). Due to property (c) other approaches were
introduced making use of statistical independence (Kim &
Mnih, 2018; Chen et al., 2018; Kumar et al., 2018). Esmaeili
et al. (2018) allow dependence within groups of variables
in a hierarchical model (i.e., with some form of confound-
ing where property (b) becomes an issue) by specifically
modelling groups of dependent latent encodings. In con-
trast to the above mentioned approaches, this requires prior
knowledge on the generative structure. We will make use
of property (f) to solve the task of using observational data
to evaluate deep latent variable models for disentanglement
and robustness. Figure 2 illustrates our causal perspective on
representation learning which encompasses the data gener-
ating process (G!X) as well as the subsequent encoding
through E(·) (X ! Z). Based on this viewpoint, we de-
fine the interventional effect of a group of generative factors
GJ on the implied latent space encodings ZL with proxy
posterior q�(z|x) from a VAE, where J ⇢ {1, . . . ,K} and
L ⇢ {1, . . . ,K 0

} as:

p(zI |do(GJ  g4
J )) :=

R
q�(zI |x) p(x|do(GJ  g4

J )) dx

This definition is consistent with the above graphical model
as it implies that p(zI |x, do(GJ  g4

J )) = q�(zI |x).
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4. Interventional Robustness

Building on the definition of interventional effects on deep
feature representations in Eq. (3.2), we now derive a robust-
ness measure of encodings with respect to changes in certain
generative factors.

Let L ⇢ {1, . . . ,K 0
} and I, J ⇢ {1, . . . ,K}, I \J = ; be

groups of indices in the latent space and generative space.
For generality, we will henceforth talk about robustness
of groups of features ZL with respect to interventions on
groups of generative factors GJ . We believe that having
this general formulation of allowing disagreements between
groups of latent dimensions and generative factors provides
more flexibility, for example when multiple latent dimen-
sions are used to describe one phenomenon (Esmaeili et al.,
2018) or when some sort of supervision is available through
groupings in the dataset according to generative factors
(Bouchacourt et al., 2017). Below, we will also discuss
special cases of how these sets can be chosen.

If we assume that the encoding ZL captures information
about the causal factors GI and we would like to build a
predictive model that only depends on those factors, we
might be interested in knowing how robust our encoding is
with respect to nuisance factors GJ , where I \ J = ;. To
quantify this robustness for specific realizations of gI and
g4
J we make the following definition:

Definition 2 (Post Interventional Disagreement). For any
given set of feature indices L ⇢ {1, . . . ,K 0

}, gI and g4
J ,

we call

PIDA(L|gI , g
4
J ) :=

d

⇣
E[ZL|do(GI  gI)], E[ZL|do(GI  gI ,GJ  g4

J )]
⌘

the post interventional disagreement (PIDA) in ZL due to
g4
J given gI . Here, d is a suitable distance function (e.g.,

`2-norm).

The above definition on its own is likewise a contribution to
the defined but unused notion of extrinsic disentanglement
in Besserve et al. (2018). PIDA now quantifies the shifts in
our inferred features ZL we experience when the generative
factors GJ are externally changed to g4

J while the gen-
erative factors that we are actually interested in capturing
with ZL (i.e., GI ) remain at the predefined setting of gI .
Using expected values after intervention on the generative
factors (i.e., Pearl’s do-notation), as opposed to regular con-
ditioning, allows for interpretation of the score also when
factors are dependent due to confounding. The do-notation
represents setting these generative values by external inter-
vention. It thus isolates the causal effect that a generative
factor has, which in general is not possible using standard
conditioning (Pearl, 2009). This neglects the history that
might have led to the observations in the collection phase

of the observational dataset. For example, when a robot
is trained with various objects of different colors, it might
be the case that certain shapes occur more often in specific
colors (e.g., due to 3D printer capabilities). When we would
condition the feature encoding on on a specific color, the
observed effects might as well be due to a change in object
shape. The interventional distribution, on the other hand,
measures by definition the change features experience due
to externally setting the color while all other generative fac-
tors remain the same. If there was no confounding in the
generative process, this definition is equivalent to regular
conditioning (see Proposition 1 (g)).

For robustness reasons, we are interested in the worst case
effect any change in nuisance parameters g4

J might have.
We call this the maximal post interventional disagreement
(MPIDA): MPIDA(L|gI , J) := supg4

J
PIDA(L|gI , g

4
J ).

This metric is still computed for a specific realization of
GI . Hence, we weight this score according to occurance
probabilities of gI , which leads us to the expected MPIDA:
EMPIDA(L|I, J) := EgI [MPIDA(L|gI , J)]. EMPIDA
is now a (unnormalized) measure in [0,1) quantifying the
worst-case shifts in the inferred ZL we have to expect due
to changes in GJ even though our generative factors of
interest GI remain the same. This is for example of interest
when the robot in our introductory example learns a generic
feature representation Z of his environment from which
he wants to make a subselection of features ZL in order to
perform a grasping task. For this model to work well, the
generative factor of the object I = {shape,weight} are
important, however, factor J = {color} is not. Now, the
robot can evaluate how robust its features ZL perform at the
task requiring I but not J .

We propose to normalize this quantity with
EMPIDA(L|;, {1, . . . ,K}), which represents the
expected maximal deviation from the mean encoding of ZL

without fixed generative factors as it is often useful to have
a normalized score for comparisons. Hence, we define:
Definition 3 (Interventional Robustness Score).

IRS(L|I, J) := 1�
EMPIDA(L|I, J)

EMPIDA(L|;, {1, . . . ,K})
(2)

This score yields 1.0 for perfect robustness (i.e., no harm is
done by changes in GJ ) and 0.0 for no robustness. Note that
IRS has a similar interpretion to a R

2 value in regression.
Instead of measuring the captured variance, it looks at worst
case deviations of inferred values.

Special Case: Disentanglement One important special
case includes the setting where L = {l}, I = {i} and J =
{1, . . . , i�1, i+1, . . . ,K}. This corresponds to the degree
to which Zl is robustly isolated from any extraneous causes
(assuming Zl captures Gi), which can be interpreted as the
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concept of disentanglement in the framework of Eastwood
& Williams (2018). We define

Dl := max
i2{1,...,K}

IRS({l}|{i}, {1, . . . ,K}\{i}) (3)

as disentanglement score of Zl. The maximizing i
? is in-

terpreted as the generative factor that Zl captures predomi-
nantly. Intuitively, we have robust disentanglement when a
feature Zl reliably captures information about the generative
factor Gi? , where reliable means that the inferred value is
always the same when gi? stays the same, regardless of what
the other generative factors G\i? are doing.

In our evaluations of disentanglement, we also
plot the full dependency matrix R̂ with R̂li =
IRS({l}|{i}, {1, . . . ,K}\{i}) (see for example Fig-
ure 6 on page 16) next to providing the values Dl and their
weighted average.

Special Case: Domain Shift Robustness If we under-
stand one (or multiple) generative factor(s) GS as indicating
source domains which we would like to generalize over, we
can use PIDA to evaluate robustness of a selected feature
set ZL against such domain shifts. In particular,

IRS(L|{1, . . . ,K}\{S}, {S})

quantifies how robust ZL is when changes in GS occur. If
we are building a model predicting a label Y based on some
(to be selected) feature set L, we can use this score to make
a trade-off between robustness and predictive power. For
example, we could use the best performing set of features
among all those that satisfy a given robustness threshold.

5. Estimation and Benchmarking

Disentanglement

In the supplementary material A we provide the derivation
of our estimation procedure for EMPIDA(L|I, J). Here
we only present the specific algorithm how EMPIDA can
be estimated from a generic observational dataset D in Al-
gorithm 1. The main ingredient for this estimation to work
is provided by our constrained causal model (i.e., a disen-
tangled process) that implies that the backdoor criteria can
be applied, which we showed in Proposition 1.

Even though the sampling procedure might look non-
trivial at first sight, the algorithm 1 for estimating
EMPIDA(L|I, J) has O(N) complexity as indicated by
the following result:
Proposition 2 (Computational Complexity). The EMPIDA
estimation algorithm described in Algorithm 1 scales O(N)
in the dataset size N = |D|.

The proof of Proposition 2 can be found in Appendix C.
Note that a dataset capturing all possible variations gener-
ally grows exponentially in the number of generative factors.

Algorithm 1 EMPIDA Estimation
1: Input:

2: dataset D = {(x(i)
, g(i))}i=1,...,N

3: trained encoder E
4: subsets of factors L ⇢ {1, . . . ,K 0

} and I, J ⇢

{1, . . . ,K}

5: Preprocessing:

6: encode all samples to obtain {z(i) = E(x(i)) : i =
1, . . . , N}

7: estimate p(g(i)) and p(g(i)
\(I[J)) 8i from relative fre-

quencies in D

8: Estimation:

9: find all realizations of GI in D: {g(k)
I , k = 1, . . . , NI}

10: partition the dataset according to those realizations:
D

(k)
I := {(x, g) 2 D s.t. gI = g(k)

I }

11: for k = 1, . . . , NI do

12: estimate mean  E[ZL|do(GI  g(k)
I )] using

Eq. (7) and samples D(k)
I

13: partition D
(k)
I according to realizations of GJ :

D
(k,l)
I,J := {(x, g) 2 D

(k)
I s.t. gJ = g(l)

J }

14: initialize mpida(k) 0.0

15: for l = 1, . . . , N (k)
I,J do

16: meanint  E[ZL|do(GI  g(k)
I ,GJ  g(l)

J )]

using Eq. (7) and samples D(k,l)
I,J for estimation

17: compute pida d(mean, meanint)
18: update mpida(k) max (mpida(k), pida)
19: end for

20: end for

21: Return empida 
PNI

k=1
|D(k)

I |
|D| mpida(k)

While this is a general issue for all validation approaches
and care needs to be taken when collecting such datasets
in practice, we just remind that due to the generally large
nature of N it is particularly important to have such an effi-
cient validation procedure. In many benchmark datasets for
disentanglement (e.g. dsprites) the observations are obtained
noise-free and the dataset contains all possible combinations
of generative factors exactly once. This makes the estima-
tion of the disentanglement score even easier, as we have
|D

(k,l)
I={i},J={1,...,K}\{i}| = 1. Furthermore, since no con-

founding is present, we can use conditioning to estimate the
interventional effect, i.e., p(x|do(Gi  gi)) = p(x|gi), as
seen in Proposition 1 (g). The disentanglement score of Zl,
as discussed in Eq. (3) , follows (see A.1 for details) as:

Dl = max
i2{1,...,K}

✓
1�

EMPIDAli

supx̃2D d (E[Zl], E(x̃))

◆
.
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6. Experiments

Our evaluations involve five different state of the art unsu-
pervised disentanglement techniques (classic VAE, �-VAE,
DIP-VAE, FactorVAE and �-TCVAE), each learning 10
features.

6.1. Methods Comparison

In Table 1 we provide a compact summary of our evaluation.
Our objective is the analysis of various kinds of learned la-
tent spaces and their characteristics, not primarily evaluating
which methods work best under some metric. In particu-
lar, we used each method with the parameter settings that
were indicated in the original publications (details are given
in Appendix D) and did not tune them further in order to
achieve a better robustness score, which is certainly feasible.
Rather, we are interested in evaluating latent spaces as a
whole, which encompasses both the method and its settings
in combination. We can for example observe that �-TCVAE
achieves a relatively low feature importance based measure
by Eastwood & Williams (2018). This is due to the fact that
Chen et al. (2018) did not consider shape to be a generative
factor in their tuning (which also leads to a lower informa-
tiveness score in our evaluation that includes this factor),
and also because their model ends up with only few active
dimensions. The treatment of such inactive components can
make a difference when averaging disentanglement scores
of the single Zi to an overall score. FI uses a simple aver-
age, MI weights the components with their overall feature
importance and we weight them according to worst case
deviation from mean (i.e., normalization of the IRS).

Table 1. Metrics Overview: IRS: (ours), FI: (Eastwood &
Williams, 2018), MI: (Ridgeway & Mozer, 2018), INFO: informa-
tiveness score (Eastwood & Williams, 2018) (higher is better). The
number in parentheses indicates the rank according to a particular
metric. Experimental details are given in Section D.

Model IRS FI MI Info

VAE 0.33 (5) 0.23 (4) 0.90 (3) 0.82 (1)
Annealed �-VAE 0.57 (2) 0.35 (2) 0.86 (5) 0.79 (4)
DIP-VAE 0.43 (4) 0.39 (1) 0.89 (4) 0.82 (1)
FactorVAE 0.51 (3) 0.31 (3) 0.92 (1) 0.79 (4)
�-TCVAE 0.72 (1) 0.16 (5) 0.92 (1) 0.74 (5)

Believing that it is most insightful to look at scores for each
dimension separately, which indicates the quality of a single
feature, we included the full evaluations including plots of
correspondance matrices (as in Figure 6) in Appendix E.
For future extensions and applications our work is added to
the disentanglement lib of Locatello et al. (2018).

6.2. Robustness as Complementary Metric

As we could already see in Table 1, different metrics do
not always agree with each other about which model disen-

Figure 3. Relationship Metrics: Visualization of all learned fea-
tures Zi in our universe (5 models with 10 dimensions each) based
on their MI disentanglement score on the x axis and interventional
robustness (IRS) on the y axis. The red box indicates the features
that obtained a high disentanglement score according to mutual
information (i.e., they share high mutual information with only one
generative factor), but still provide low robustness according to
IRS. These are the cases where the robustness perspective delivers
additional insight into disentanglement quality.

tangles best. This is consistent with the recent large scale
evaluation provided by Locatello et al. (2018). In Figure 3
we further illustrate the dependency between MI score and
our IRS on the finer granularity of considering the metrics of
individual features (instead of the full latent space). There
seems to be a clear positive correlation between the two
evaluation metrics. However, there are features classified
as well disentangled according to MI, but not robustly (ac-
cording to IRS). These features are marked with the red
rectangle in Figure 3. We explore one typical such example
in more detail in Figures 4, 6 and 7 in the appendix, for the
case of the DIP model.

When there are rare events happening that still have a major
impact on the features or when there is a cumulative effect
from several generative factors (e.g., in Figure 4), pairwise
information based methods (such as MI or FI) cannot cap-
ture this vulnerability of deeply learned features. IRS, on
the other hand, looks specifically at these cases. For a well
rounded view on disentanglement quality, we propose to
use both types of measures in a manner that is comple-
mentary and use-case specific. Specificially when critical
applications are designed on top of deep representations
quantifying its robustness can be decisive.

6.3. Visualising Interventional Robustness

We further introduce a new visualization technique for la-
tent space models based on ground truth factors which is



Robustly Disentangled Causal Mechanisms

Figure 4. Visualising Interventional Robustness: Plots of E[Zl|gi⇤, do(Gj  g4j )] as a function of g4j for different Gj per column as
explained in Section 6.3. The upper row is an example of good, robust disentanglement (Z3 from the DIP model discussed in Figure
6). The lower row illustrates Z6 which is classified as well disentangled according to FI (top 18%) and MI (top 33%) but still has
a low robustness score (bottom 4%). This stems from the fact that even though Z6 is very informative about scale (almost a linear
function in expectation), its value can still be changed remarkably by switching any of posX, posY or orientation. These additional
dependencies are not discovered by mutual information (or feature importance) due to the higher noise in these relationships (see Figure
7) and because they are partly hidden in cumulated effects.

motivated by interventional robustness and illustrates how
robust a learned feature is with respect to changes in nui-
sance factors. Figure 4 illustrates this approach on two
features learned by the DIP model. Each row corresponds to
a different feature Zl. The upper row corresponds to a well
disentangled and robust feature (Z3) which gets classified
as such by all three metrics. The lower (Z6) also obtaines a
high FI and MI score, however, IRS correctly discovers that
this feature is not robust. This illustrates a case where having
a robustness perspective on disentanglement is important.
The columns correspond to different generative factors Gj

(shape, scale, orientation, posX, posY) which
potentially influence Zl. For each latent variable Zl we first
find the generative factor Gi⇤ which is most related to it
by choosing the maximizer of Eq. (3) (i.e., the factor that
renders Zl most invariant). In the column i

⇤ we then plot
the estimate of E[Zl|gi⇤ ] together with its confidence bound
in order to visualize the informativeness of Zl about Gi⇤ .
For example the upper row in plot 4 corresponds to Z3 in
the DIP model and mostly relates to posY. This is why we
plot the dependence of Z3 on posY in the fifth column. The
remaining columns then illustrate how Z3 changes when
interventions on the other generative factor are made, even
though posY is being kept at a fixed value. Each line with
different color corresponds to a particular value posY can
take on. More generally speaking, we plot in the jth column
E[Zl|gi⇤, do(Gj  g

4
j )] as a function of g4j for all possi-

ble realizations gi⇤ of Gi⇤. All values with constant gi⇤ are
connected with a line. For a robustly disentangled feature,
we would expect all of these colored lines to be horizontal

(i.e., there is no more dependency on any Gj after account-
ing for Gi⇤). As such visualizations can provide a much
more in depth understanding of learned representations than
single numbers, we provide the full plots of various models
in the appendix F.

7. Conclusion

We have proposed a framework for assessing disentangle-
ment in deep representation learning which combines the
generative process responsible for high dimensional obser-
vations with the subsequent feature encoding by a neural net-
work. This perspective leads to a natural validation method,
the interventional robustness score. We show how it can be
estimated from observational data using an efficient algo-
rithm that scales linearly in the dataset size. As special cases,
this proposed measure captures robust disentanglement and
domain shift stability. Extensive evaluations showed that the
existing metrics do not capture the effects that rare events
or cumulative influences from multiple generative factors
can have on feature encodings, while our robustness based
validation metric discovers such vulnerabilities.

We envision that the notion of interventional effects on en-
codings may give rise to the development of novel, robustly
disentangled representation learning algorithms, for exam-
ple in the interactive learning environment (Thomas et al.,
2017) or when weak forms of supervision are available
(Bouchacourt et al., 2017; Locatello et al., 2019). The ex-
ploration of those ideas, especially including confounding,
is left for future research.
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