Hyperbolic Disk Embeddings for Directed Acyclic Graphs

A. Proof of Proposition 1

From the definition of C<(y), x € C<(y) iff # < y. Then, we will show that x € C<(y) < C<(x) C C<(y).

(<) This is obvious because z € C<(x) holds.

(=) For arbitrary z € C<(z), z < z follows the definition of C<(x). Likewise, x < y follows z € C<(y). Then, z < y
holds because of the transitivity, which implies that C<(z) C C<(y). O

B. Proof of Proposition 2
B.1. Non-negativity

We will demonstrate this proposition by contradiction. Assume dy (x,y) < 0; then, s; = wj—r(w — vy) < 0 holds for
all j = 1,--- ,m. From the assumption coni(W) = R", there exists a1, - ,a, > 0such thatx —y = Z;nzl
Therefore,

aj'w.

lz —yl* = (- y)" (x—y)
= aw/(x—y) =Y ajs;. (B.1)
Jj=1 j=1

Considering a; > 0 and s; < 0, ||l — y||* < 0 leads to a contradiction.

B.2. Identity of indiscernibles

If dy (x,y) = 0, s; < 0 holds forall j = 1,--- ,m. Considering a; > 0 and s; < 0 in (B.1), we obtain || — y||*> < 0;
then, x = y.

B.3. Subadditivity

dw (z,y) = mjax{wf(w -y)}
= mjax{ij(w —z)+ ij(Z -y)}
< mjax{w;r(w —2)}+ InJaX{w;r(Z -y)}

=dw(z,z) +dw(z,y). U

C. Proof of Theorem 1

Condition (16) is equivalent to max,{z, — yr} < 0. Thus, we will show that max,{z, — yi} = d(z',y') — o + 1y if
¢0rd(w) = (CL'/,TI), d)ord(y) = (y/ﬂ”y)-
LetP, =1—P= %11T; then,

m]?x{xk — Ykt = mgx{el(w -y}

= mkax{eZ(P +P)(x—1y)}

Here, considering P, e, = %1, Pe;, = wy,, P2 = P, we find

1Tz 1Ty
max{zy, -y} = max{wp Pz —y)} + — -

= m}gX{wk(w/ —y)+(a—ry) —(a—ry)

=dw(@',y)—ry +ry. O (C.2)
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D. Proof of Theorem 2

By using a uniform norm in (18) instead of a Euclidean norm,

1+ (2 = y)lloo = max {[h (2 —yi)l}

=hy (m]iiX {z), — yk})

=hy (dw (&', y') —rs +1y)

=hy (lzy) , (D.3)
where I, = (2, 75;y’,ry) and hy is applied element-wise. We used (C.2) for the third equation of (D.3).

From the inequality between the uniform norm and the Euclidean norm ||x|| > ||z||~, we find

E Yz, y) = |lhe(z - y)|* 2 A (@ = y)l% = he (1y)*

The equality holds iff

[hi(x =Yl = Ptz — Y)lloo,
i.e.,

{klhy(zr —yr) #0} < 1. O
E. Proof of Theorem 3

We first prove Theorem 4 and then use our results to prove Theorem 3. Thus, see Sec. F first.
By eliminating d, from (F.5) and (F.11), we obtain

. L+ ||| .
sin(r, + 6p) = 2||Hw|||| sin 6,

which is followed by (21).

The equivalence of ordering (3) and (20) is directly derived from Theorem 4 since

E}X? <0 1; <0. O (E.4)

F. Proof of Theorem 4

Figure 5. Hyperbolic Entailment cones.

To obtain (23), we present ) — = in Figure 5 as a function of rx, ry, and D. Let d, d,;, and d, be
dm - dD(Oa X)

d]D)(Oa Y)

dey = dp(X,Y)

=y
<
|
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and x and y be

dz

x = ||z|| = tanh 5 (E5)
dy

y = ||yl = tanh 5 (F.6)

Assume that X P = s in the Euclidean triangle AOPX; then, OP = 1 — s. Thus,
(1 —s)sinry = ssin. (E7)

By applying the law of cosines to ZPOX, it is shown that
s2 =22+ (1—s)% —2x(1 — s)cosry. (E8)

By removing s from (F.7) and (F.8) and substituting (E.5), we have

sinry

siny = (F9)

coshd, —sinhd, cosrx

In addition, from the assumption of Hyperbolic Cones (Ganea et al., 2018),

1— 22 2K
sing x sinh d,, E10)

Comparing the right-hand side of equations (F.9) and (F.10), we have

1 i 0
cothdm:cosrXqLﬁsian = W (F.11)
where 0y = arctan 2K.

In the same manner, we have
sin(ry + 6o)

cothd, = Sl

(F.12)

By substituting (F.11) into (F.10),

siny = 2Ky/coth?d, — 1

. 2 _
:taneofmvxeo)_l

sin2 90

B \/sin(rX) sin(rx + 2¢o)
o cos by

. (F.13)

Applying the law of sines and the law of cosines to the hyperbolic triangle AOXY", we have
sinh dy sin D = sinh d, sin E, (F.14)

coshd, coshd, — coshd,,

D =
€08 sinh d sinh d,

(F.15)

By eliminating d, from (F.14) and (F.15), and substituting (F.11) and (F.12), it is finally shown that

rX — Ty — D) cos (XY=L 4 §,) sinry sin(rx + 26)
2 cos By sin 6 s% + 8% —2sxsy cosD — sin> D’

(F.16)

sin(E—v¢) =2 Sin<

where
sin(rx + 6p) _sin(ry + 6)

- Sy = -
sinfy sin 6g

Sx =
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G. Euclidean Entailment Cones

Similar to Hyperbolic Cones (Ganea et al., 2018), Euclidean Cones are also considered as Disk Embeddings. Here, we
will show that ¢» — = in Euclidean entailment cones is also represented by Rx, Ry and D.

Let d, dy, and d, be

d, = d(0,X) = z,
dy =d(0,Y) =y,

(G.17), (G.18), and (G.19) are determined by applying the law of sines to AOAB and AOXY:
M = sin v, (G.17)
x
i - R
sin(@ = By) _ ging, (G.18)
Y
sinE:sinD. (G.19)
Yy day
Moreover, for Euclid entailment cones,
K
siny = — (G.20)
K
sing = —. (G.21)
Y
(G.22)
By applying the law of cosines to AOXY', we obtain d,:
dmy2 =22 4+ 9% — 2zycos D. (G.23)

We represent ¢ — Z as rx, ry, dgy, and K. By eliminating x, ¥, dzy, and ¢ from (G.17) to (G.23), it is finally shown that

B 20 x COS (’“X*EY*D) sin (TXJ““Z"*D + fg)

sin(¢y — =) =
( ) V0% + 0% —20x0oy cos D

, (G.29)
where ox = sin(rx + &), o0y = sin(ry + &) and §, = arcsin K.

H. Loss functions for Hyperbolic Entailment Cones in Disk Embedding format

In Figure 6, we illustrate values of energy function (23) for l;; with fixed r;, r;.
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Figure 6. Values of £;?” for li; with fixed i, ;.



