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Abstract
Obtaining continuous representations of struc-
tural data such as directed acyclic graphs (DAGs)
has gained attention in machine learning and arti-
ficial intelligence. However, embedding complex
DAGs in which both ancestors and descendants
of nodes are exponentially increasing is difficult.
Tackling in this problem, we develop Disk
Embeddings, which is a framework for embed-
ding DAGs into quasi-metric spaces. Existing
state-of-the-art methods, Order Embeddings and
Hyperbolic Entailment Cones, are instances of
Disk Embedding in Euclidean space and spheres
respectively. Furthermore, we propose a novel
method Hyperbolic Disk Embeddings to handle
exponential growth of relations. The results of
our experiments show that our Disk Embedding
models outperform existing methods especially
in complex DAGs other than trees.

1. Introduction
Methods for obtaining appropriate feature representations
of a symbolic objects are currently a major concern in ma-
chine learning and artificial intelligence. Studies exploiting
embedding for highly diverse domains or tasks have
recently been reported for graphs (Grover & Leskovec,
2016; Goyal & Ferrara, 2018; Cai et al., 2018), knowledge
bases (Nickel et al., 2011; Bordes et al., 2013; Wang et al.,
2017), and social networks (Hoff et al., 2002; Cui et al.,
2018).

In particular, studies aiming to embed linguistic in-
stances into geometric spaces have led to substan-
tial innovations in natural language processing (NLP)
(Mikolov et al., 2013; Pennington et al., 2014; Kiros et al.,
2015; Vilnis & McCallum, 2015). Currently, word
embedding methods are indispensable for NLP tasks,
because it has been shown that the use of pre-learned word
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embeddings for model initialization leads to improvements
in various of tasks (Kim, 2014). In these methods, sym-
bolic objects are embedded in low-dimensional Euclidean
vector spaces such that the symmetric distances between
semantically similar concepts are small.

In this paper, we focus on modeling asymmetric transitive
relations and directed acyclic graphs (DAGs). Hierarchies
are well-studied asymmetric transitive relations that can be
expressed using a tree structure. The tree structure has
a single root node, and the number of children increases
exponentially according to the distance from the root.
Asymmetric relations that do not exhibit such properties
cannot be expressed as a tree structure, but they can be
represented as DAGs, which are used extensively to model
dependencies between objects and information flow. For
example, in genealogy, a family tree can be interpreted as a
DAG, where an edge represents a parent child relationship
and a node denotes a family member (Kirkpatrick, 2011).
Similarly, the commit objects of a distributed revision
system (e.g., Git) also form a DAG1. In citation networks,
citation graphs can be regarded as DAGs, with a document
as a node and the citation relationship between documents
as an edge (Price, 1965). In causality, DAGs have
been used to control confounding in epidemiological
studies (Robins, 1987; Merchant & Pitiphat, 2002) and as
a means to study the formal understanding of causation
(Spirtes et al., 2000; Pearl, 2003; Dawid, 2010).

Recently, a few methods for embedding asymmetric
transitive relations have been proposed. Nickel & Kiela
reported pioneering research on embedding symbolic
objects in hyperbolic spaces rather than Euclidean spaces
and proposed Poincaré Embedding (Nickel & Kiela, 2017;
2018). This approach is based on the fact that hyperbolic
spaces can embed any weighted tree while primarily
preserving their metric (Gromov, 1987; Bowditch, 2005;
Sarkar, 2011). Vendrov et al. developed Order Embedding,
which attempts to embed the partially ordered structure
of a hierarchy in Euclidean spaces (Vendrov et al., 2016).
This method embeds relations among symbolic objects
in reserved product orders in Euclidean spaces, which
is a type of partial ordering. Objects are represented
as inclusive relations of orthants in Euclidean spaces.

1 https://git-scm.com/docs/user-manual
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Furthermore, inheriting Poincaré Embeddings and Order
Embeddings, Ganea & Hofmann proposed Hyperbolic
Entailment Cones, which embed symbolic objects as
convex cones in hyperbolic spaces (Ganea et al., 2018).
The authors used polar coordinates of the Poincaré ball and
designed their cones such that the number of descendants
increases exponentially as one moves going away from
the origin. Although the researchers reported that their
approach can handle any DAG, their method is not suitable
for embedding complex graphs in which the number of
both ancestors and descendants grows exponentially, and
their experiments were conducted using only hierarchical
graphs. Recently, Dong et al. suggested a concept of
embedding hierarchy to n-disks (balls) in the Euclidean
space (Dong et al., 2019). However, their method cannot
be applied to generic DAGs, as it is a bottom up algorithm
that can only be applied to trees, which is previously
known to be expressed by disks in a Euclidean plane
(Stapleton et al., 2011).

In this paper, we propose Disk Embedding, a general
framework for embedding DAGs in metric spaces, or
more generally, quasi-metric spaces. Disk Embedding
can be considered as a generalization of the afore-
mentioned state-of-the-art methods: Order Embedding
(Vendrov et al., 2016) and Hyperbolic Entailment Cones
(Ganea et al., 2018) are equivalent to Disk Embedding in
Euclidean spaces and spheres, respectively. Moreover,
extending this framework to a hyperbolic geometry, we
propose Hyperbolic Disk Embedding. Because this method
maintains the translational symmetry of hyperbolic spaces
and uses exponential growth as a function of the radius,
it can process data with exponential increase in both
ancestors and descendants. Furthermore, we construct
a learning theory for general Disk Embedding using the
Riemannian stochastic gradient descent (RSGD) and derive
closed-form expressions of the RSGD for frequently used
geometries, including Euclidean, spherical, and hyperbolic
geometries.

Experimentally, we demonstrate that our Disk Embedding
models outperform all of the baseline methods, especially
for DAGs other than trees. We used three methods
to investigate the efficiency of our approach: Poincaré
Embeddings (Nickel & Kiela, 2017), Order Embeddings
(Vendrov et al., 2016) and Hyperbolic Entailment Cones
(Ganea & Hofmann, 2017).

Our contributions are as follows:

• To embed DAGs in metric spaces, we propose a
general framework, Disk Embedding, and systemize
its learning method.

• We prove that the existing state-of-the-art methods can
be interpreted as special cases of Disk Embedding.

• We propose Hyperbolic Disk Embedding by extend-
ing our Disk Embedding to graphs with bi-directional
exponential growth.

• Through experiments, we confirm that Disk Em-
bedding models outperforms the existing methods,
particularly for general DAGs.

2. Mathematical preliminaries
2.1. Partially ordered sets

As discussed by (Nickel & Kiela, 2018), a concept hierar-
chy forms a partially ordered set (poset), which is a set X
equipped with reflexive, transitive, and antisymmetric
binary relations ⪯. We extend this idea for application to a
general DAG. Considering the reachability from one node
to another in a DAG, we obtain a partial ordering.

Partial ordering is essentially equivalent to the inclusive
relation between certain subsets called the lower cone (or
lower closure), C⪯(x) = {y ∈ X|y ⪯ x}.

Proposition 1 Let (X,⪯) be a poset. Then, x ⪯ y holds if
and only if C⪯(x) ⊆ C⪯(y).

Embedding DAGs in continuous space can be interpreted
as mapping DAG nodes to lower cones with a certain
volume that contains its descendants.

Order isomorphism. A pair of poset (X,⪯), (X ′,⪯′) is
order isomorphic if there exists a bijection f : X → X ′

that preserves the ordering, i.e., x ⪯ y ⇔ f(x) ⪯′ f(y).
We further consider that two embedded expressions of a
DAGs are equivalent if they are order isomorphic.

2.2. Metric and quasi-metric spaces

A metric space is a set in which a metric function d :
X × X → R satisfying the following four properties
is defined: non-negativity: d(x,y) ≥ 0, identity of
indiscernibles: d(x,y) = 0 ⇒ x = y, subadditivity:
d(x,y) + d(y, z) ≤ d(x, z), symmetry: d(x,y) =
d(y,x) for all x,y, z ∈ X .

For generalization, we consider a quasi-metric as a natural
extension of a metric that satisfies the above properties
except for the symmetry (Goubault-Larrecq, 2013a;b). In
a Euclidean space Rn, we can obtain various quasi-metrics
as follows:

Proposition 2 (Polyhedral quasi-metric) Let W = {wi}
be a finite set of vectors in Rn such that coni(W ) :=
{
∑

i aiwi|ai ≥ 0} = Rn. Let

dW (x,y) := max
i

{
w⊤

i (x− y)
}
. (1)

Then dW is a quasi-metric in Rn.
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Figure 1. Lower cones (solid blue lines) of generalized formal
disks in B(X). (x, r) ⊒ (y, s), (x, r) ⊒ (z, t) holds and (z, t)
has a negative radius t < 0.

The assumption coni(W ) = Rn in Prop. 2 is equivalent
to the condition that convex polytope spanned by W
contains the origin in its interior. The shape of disk
dW (p,x) ≤ r for fixed p and r is a polytope whose facets
are perpendicular to the vectors of W . For instance, let
{ek} be a standard basis and W = {±ek}nk=1; then, dW
becomes a uniform distance d∞(x,y) = maxk |xk − yk|,
whose disks form hypercubes. An example of dW whose
disks are (n−1)-simplices appears in Theorem 1 in Sec. 4.1.
Except for it, the word quasi-metric in this paper can be
replaced by metric since metric is quasi-metric.

2.3. Formal disks

Let (X, d) be a quasi-metric space and consider a closed
disk D(x, r) = {p ∈ X|d(p,x) ≤ r}, which is a closed
set in the sense of topology induced by d. In considering
a Euclidean space with ordinary Euclidean distances, the
inclusive relation of two closed disks is characterized as
follows:

D(x, r) ⊇ D(y, s) ⇐⇒ d(x,y) ≤ r − s. (2)

Because this relation is a set inclusion relation, it forms a
poset, as discussed above.

In a general metric space, we introduce formal
disks (balls)2, which were first introduced by
Weihrauch & Schreiber and studied as a computational
model of metric space (Blanck, 1997; Edalat & Heckmann,
1998; Heckmann, 1999). Formal disks are also naturally
extended to quasi-metric spaces (Goubault-Larrecq,
2013b). Let (X, d) be a quasi-metric space, where a formal
disk is defined as a pair (x, r) ∈ B+(X) = X × R+ of
center x and radius r. The binary relation ⊒ of formal
disks holds such that

(x, r) ⊒ (y, s) ⇐⇒ d(x,y) ≤ r − s (3)

is a partial ordering (Edalat & Heckmann, 1998).

2 This is generally called a formal ball, but we call it a formal
disk in this paper, even in high-dimensional spaces for clarity.

When defining a partial order with (3), it is straightforward
to determine that the radii of formal disks need not
be positive. We define B(X) = X × R as a
collection of generalized formal disks (Tsuiki & Hattori;
Goubault-Larrecq, 2013a) that are allowed to have negative
radius. Lower cones C⊑(x, r) of formal disks are shown
in Figure 1. The cross section {(x′, 0) ∈ C⊑(x, r)} of
the lower cone C⊑(x, r) at r = 0, which is described as
a solid green segment in Fig. 1, is a closed disk in X. The
negative radius of generalized formal disk can be regarded
as the radius of the cross section of the upper cone (dashed
red line in Fig. 1).

The following properties hold for generalized formal disks.

Translational symmetry. For all a ∈ R,
(x, r) ⊒ (y, s) ⇔ (x, r + a) ⊒ (y, s+ a). (4)

Reversibility. If d is symmetric (i.e., d is metric),
(x, r) ⊒ (y, s) ⇔ (x,−r) ⊑ (y,−s). (5)

These properties reflect the reversibility of the graph and
symmetry between generations, which are important when
embedding DAGs in posets of formal disks.

2.4. Riemannian manifold

A Riemannian manifold is a manifold M with a collection
of inner products gx : TxM × TxM → R, called a
Riemann metric. Let γ : [0, 1] → M be a smooth curve,
where a length of γ is calculated by:

ℓ(γ) =

∫ 1

0

√
gγ(t)(γ′(t), γ′(t)) dt.

The infimum of the curve length dM(x,y) = infγ ℓ(γ)
from x to y, which becomes metric (and, consequently,
quasi-metric) at M.

Geodesic: A geodesic is a Riemannian analog of straight
lines in Euclidean spaces and is defined as a locally length-
minimizing curve. If Riemannian manifold is complete,
for every two points x and y, there exists a geodesic that
connects x and y with a minimal length.

Exponential map: An exponential map expx : TxM →
M is defined as expx(v) = γ(1), where γ is a unique
geodesic satisfying γ(0) = x with an initial tangent vector
γ′(0) = v. The map can also be interpreted as the
destination reached after a unit time when traveling along
the geodesic from x at an initial velocity of v. Therefore,
d(x, expx(v)) =

√
gx(v,v) holds in a sufficiently small

neighborhood of v = 0.

2.5. Hyperbolic geometry

A hyperbolic geometry is a uniquely characterized
complete and simply connected geometry with constant
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negative curvature. Hyperbolic geometries with curvature
of −1 are described by several models that are identical
up to isometry. The frequently used models in machine
learning include the Poincaré ball model (Nickel & Kiela,
2017) and the Lorentz model (Nickel & Kiela, 2018).

Poincaré ball model Dn is a Riemannian manifold de-
fined on the interior of an n-dimensional unit ball,
where distances are calculated as

dD(x,y) = arcosh

(
1 + 2

∥x− y∥2

(1− ∥x∥2)(1− ∥y∥2)

)
,

(6)
and its geodesics are arcs that perpendicularly
intersect the boundary sphere.

Lorentz model Ln is defined on n-dimensional hyper-
boloid

{
(x0, · · · , xn)

∣∣−x20 +∑n
k=1 x

2
k = −1

}
em-

bedded in (n+1)-dimensional Euclidean space, where
distance is calculated as

dL(x,y) = arcosh(−⟨x,y⟩L), (7)

where −⟨x,y⟩L = −x0y0 +
∑n

k=1 xkyk.

Translational symmetry Hyperbolic geometry is sym-
metric with respect to translations, i.e., geometric
properties including distances do not change even if
all points are translated in the same time. In the
Poincaré ball model, a translation that maps the origin
to y is obtained as

x 7→ (1− ∥y∥2)x+ (1 + 2 ⟨x,y⟩+ ∥x∥2)y
1 + 2 ⟨x,y⟩+ ∥y∥2 ∥x∥2

, (8)

where ⟨·, ·⟩ is an ordinary Euclidean inner product.

3. Disk Embedding models
In this section, we introduce Disk Embeddings as a
general platform for embedding DAGs in quasi-metric
spaces. We first define Disk Embeddings and evaluate its
representability. Second, we introduce Hyperbolic Disk
Embeddings and discuss its qualitative nature. Third, we
derive loss functions and an optimization method for Disk
Embeddings and finally obtain closed-form expressions for
some commonly used geometries.

3.1. Disk Embeddings and its representability

Let C = {ci}Ni=1 be a set of entities with partial ordering
relations ⪯, and let (X, d) be a quasi-metric space. Disk
Embeddings are defined as a map ci 7→ (xi, ri) ∈ B(X)
such that ci ⪯ cj if and only if (xi, ri) ⊑ (xj , rj).

We can use various type of quasi-metric spaces (X, d),
where X can represent spherical or hyperbolic spaces,

United
Kingdom

Ireland
(island)

Ireland
(state)

Nothern
Ireland

England Scotland

Wales

Figure 2. Disk Embeddings in 2D Euclidean space with
non-negative radii are equivalent to 2D Euler diagrams of circles.

and d can be a unique quasi-metric. Assuming that X
is an ordinary 2D Euclidean plane R2 and that formal
disks have positive radii, Disk Embeddings become an
inclusive relation of closed disks, which is equivalent to
an Euler diagram with circles, except that only inclusions
are meaningful and intersections do not make sense
(Figure 2). Stapleton et al. studied the drawability of 2D
Euler diagrams and demonstrated that a certain class of
diagrams, termed pierced diagrams, can be drawn with
circles (Stapleton et al., 2011). This result suggests that
our Disk Embeddings will be effective for certain classes
of problems, even for only three dimensions (two for
centers and one for radii). As Dong et al. mentioned,
the tree structure can be obviously embedded in n-disks
because it is the simplest pierced diagram, in which
none of circles intersect each other (Dong et al., 2019).
In higher Euclidean spaces, Disk Embeddings have a
greater representability than 2D because all graphs that
are representable in 2D can also be embedded in higher
dimensions via a natural injection ι : R2 → Rn, s.t.
ι(x1, x2) = (x1, x2, 0, · · · , 0).

As a related work, embedding DAGs in Minkowski
spacetime is introduced by (Clough & Evans, 2017), in
which the related nodes are timelike separated. The lower
(upper) cones in Disk Embeddings can be interpreted to the
light cones of Minkowski spacetime.

Since we focus on transitive relation of DAGs, non-
transitive details of DAGs are not reserved in any
models based on order isomorphism including Disk
Embeddings, Hyperbolic Cones (Ganea et al., 2018) and
Order Embeddings (Vendrov et al., 2016). For instance,
a DAG with three node x, y, z and edges x → y and
y → z will have a same representation as a DAG having
an additional edge x→ z.

3.2. Hyperbolic Disk Embeddings

We now introduce Disk Embeddings for a hyperbolic
geometry. In a hyperbolic geometry of two or more
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dimensions, it is known that the area of the disk increases as
an the exponential function of the radius. Thus, the lower
cone section, shown in Figure 1, increases exponentially as
the generation moves from parent to child in the DAG. In
addition, it should be noted that both the inner and outer
sides of the lower cones becomes wider. For instance,
when (x, r) ⊒ (y, s), the region C⊑(x, r)−C⊑(y, s) also
increases exponentially. This property of the Hyperbolic
Disk Embeddings is suitable for embedding graphs in
which the number of descendants increases rapidly.

Considering the reversibility of Disk Embeddings (5), the
above property is established for not only the descendant
but also the ancestor direction. In other words, not only
lower cones but also upper cones show an exponential
extension. In addition, considering translational symmetry
in hyperbolic spaces (8) and along radial axis (4), the same
result holds for lower and upper cones starting from any
node in the graph. Thus, in Hyperbolic Disk Embeddings,
complex threads that repeatedly intersect and separate from
each other in a complex DAG can be accurately expressed.

3.3. Loss functions

We define a protrusion parameter between two formal
disks (xi, ri), (xj , rj) ∈ B(X) as

lij = l(xi, ri;xj , rj) = d(xi,xj)− ri + rj . (9)

Because (xi, ri) ⊒ (xj , rj) implies lij ≤ 0, an appropriate
representation can be obtained by learning such that lij
is small for positive examples and large for negative
examples.

Although various loss functions can be used, we adopt the
following margin loss in this study, similar to that adopted
by (Vendrov et al., 2016; Ganea et al., 2018):

L =
∑

(i,j)∈T

h+(Eij) +
∑

(i,j)∈N

h+(µ− Eij), (10)

where T and N are sets of positive and negative samples,
µ is a constant margin, h+(x) = max(0, x) and Eij =
E(xi, ri;xj , rj) is an arbitrary energy function such that
Eij > 0 if and only if lij > 0. The shape of (10) is shown
in Figure 3. Naturally, we can simply set

Eij = lij , (11)

in which case, the loss function corresponds to ones
used by (Vendrov et al., 2016) and (Ganea et al., 2018),
except they used h+(lij) instead, causing that the gradient
vanishes at lij < 0 in negative samples (dashed line in
Fig. 3).

Positive sample
Negative sample
Case of

Figure 3. Loss function. solid lines are the case of (11) and
dashed line is the case of Eij = h+(lij).

3.4. Riemannian optimization

Given that X is a general Riemannian manifold, we must
account for the Riemannian metric when optimizing the
loss function. In this case, we utilize the RSGD method
(Bonnabel, 2013), which is similar to the ordinary SGD
except that the Riemannian gradient is used instead of the
gradient and an exponential map is used for updates.

To execute the RSGD on B(X) = X × R, we must
determine the Riemannian metric in the product space
and calculate the corresponding Riemannian gradient. To
maintain translational symmetry Eq.(4) along the radial
axis, the Riemannian gradient on B(X) should have the
following form

∇B(X)f(x, r) =

(
λ∇X;xf(x, r), ν

∂

∂r
f(x, r)

)
, (12)

where ∇X;x is the Riemannian gradient on X for variable
x and λ, ν are positive constants. Then the update formulae
of RSGD for the parameters (xi, ri) are given as follows:

x
(t+1)
i = exp

x
(t)
i

[
−ηλ∇X;xi

L(t)
]
, (13)

r
(t+1)
i = r

(t)
i − ην

∂L(t)

∂ri
, (14)

where η is a learning ratio.

A specific form of (13) is directly derived from the
Riemannian gradient of quasi-metric d(x,y) and the
exponential map for each geometry via equations (9) to
(11). Especially, if the distance function dX induced from
the Riemannian metric in X is used as the quasi-metric d
for formal disks in (9), the Riemannian gradient of d has a
special form:

∇X;xd(x,y) = ∇X;xd(y,x) = −γ′(0) (15)

where γ′(0) is the initial tangent vector of the unit speed
geodesic connecting from x to y. In addition, for
frequently used geometries, we here present closed form
expressions as follows.
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(a) (b)

Figure 4. Equivalence of Disk Embeddings and existing methods.
(a) Order Embeddings (Vendrov et al., 2016) and (b) Hyperbolic
Entailment Cones (Ganea et al., 2018).

Euclidean geometry. The RSGD in Euclidean spaces is
equivalent to the standard SGD, where the gradient
of the distance is ∇xd(x,y) = x−y

∥x−y∥ and the
exponential map is expx(v) = x+ v.

Spherical geometry. The RSGD on an n-sphere Sn with
spherical distance dS is conducted using the following
formulae,

∇S;x dS(x,y) =
−h

∥h∥
, h = y − ⟨x,y⟩x,

expS;x(v) = x cos(∥v∥) + v

∥v∥
sin(∥v∥).

Hyperbolic geometry. We use the Lorentz model
(Nickel & Kiela, 2018) for Hyperbolic Disk
Embeddings because the RSGD in the Lorentz
model involves considerably simpler formulae and
has a greater numerical stability compared to the
Poincaré ball model. In the Lorentz model, the
gradient of the distance and the exponential map are
computed as follows,

∇L;x dL(x,y) =
−h

∥h∥L
, h = y + ⟨x,y⟩L x,

expL;x(v) = x cosh(∥v∥L) +
v

∥v∥L
sinh(∥v∥L),

where ∥v∥L =
√

⟨v,v⟩L.

4. Equivalence of Disk Embedding models
In this section, we illustrate the relationship between our
Disk Embeddings and the current state-of-the-art methods.
We demonstrate that the embedding methods for DAGs
in metric spaces are equivalent to Disk Embeddings by
projecting lower cones into appropriate n− 1 subspaces.

4.1. Order Embeddings (Vendrov et al., 2016)

Vendrov et al. proposed Order Embeddings, in which a
partial ordering relation is embedded in reversed product

order on Rn
+,

x ⪰ord y ⇔ xk ≤ yk for k = 1, · · · , n. (16)

In Order Embeddings, the shape of the lower cone
C⪯(x) = [x1,∞)× · · · × [xn,∞) is orthant.

As shown in Figure 4(a), we consider a projection onto
a hyperplane Hn−1 =

{
(x1, · · · , xn)

∣∣ 1
n

∑n
k=1 xk = a

}
,

that is isometric to Rn−1. The shape of the cross-section
of the lower cone with Hn−1 is (n− 1)-simplex3 Thus,
we can consider the relation (16) as an inclusive relation
between corresponding simplices. By using a polyhedral
quasi-metric dW (1), we show that this is equivalent to
Disk Embeddings in Hn with an additional constraint r <
a − dW (0,x), which forces all entities to be descendants
of the origin.

Theorem 1 Order Embeddings (16) is order isomorphic
to Euclidean Disk Embeddings with quasi-metric dW with
W ={Pek}nk=1 via a smooth map ϕord :Rn

+ → B(Hn−1),

ϕord(x) = (x′, r) =

(
Px, a− 1

n

n∑
k=1

xk

)
, (17)

where P = I − 1
n11

⊤ is a projection matrix onto Hn−1,
1⊤ = (1, · · · , 1).

The energy function used for their loss function is

Eord(x,y) = ∥h+(x− y)∥2, (18)

which cannot be directly expressed using lij defined in (9),
but can be well approximated by a lower bound.

Theorem 2 Energy function (18) has a lower bound:

Eord
ij ≥ h+(lij)

2, (19)

and the equality holds iff
∣∣{k∣∣(xj − xi)k > 0

}∣∣ ≤ 1.

In contrast to (11), (19) has a quadratic form, which may
cause optimization being exponential decay of lij instead
of crossing zero and a vanishing gradient in lij < 0 even
for negative samples, making the optimization inefficient.

4.2. Hyperbolic Entailment Cones (Ganea et al., 2018)

Ganea et al. developed a method for embedding cones
extending in the radial direction of the Poincaré ball model.
The embedding relation is expressed as follows

x ⪰hyp y ⇔ ψ(x) ≥ Ξ(x,y), (20)

where Ξ(x,y) is the angle π − ∠Oxy and ψ(x) =

arcsin
(
K 1−∥x∥2

∥x∥

)
is the generatrix angle of the cone.

3 1-simplex is a line segment, 2-simplex is a regular triangle,
3-simplex is a regular tetrahedron, and so on.
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The authors focused on the polar coordinates of the
Poincaré ball, in which rotational symmetry around the
origin is assumed and the position in the hierarchical
structure is mapped to the radial component. Thus,
they implicitly assumed a non-trivial separation of the
hyperbolic space into Sn−1 × R+. To illustrate this point,
we consider projections of entailment cones onto the border
of a Poincaré ball ∂D ∼= Sn−1. As shown in Figure 4(b),
the projections of the entailment cones form disks in an
(n − 1)-sphere, and relation (20) is represented as the
inclusion of corresponding disks.

Theorem 3 Hyperbolic Cones (20) are order isomorphic
to Disk Embeddings on (n−1)-sphere Sn−1 via a smooth
map: ϕhyp : Dn → B(Sn−1),

ϕhyp(x) = (x′, r)

=

(
x

∥x∥
, arcsin

(
1 + ∥x∥2

2∥x∥
sin θ0

)
− θ0

)
,

(21)

where θ0 = arctan 2K.

Their energy function is given as

Ehyp(x,y) = h+ (Ξ (x,y)− ψ (∥x∥)) , (22)

and is also represented in the format of Disk Embeddings,
by using only distances between centers and the radii of
formal disks.

Theorem 4 Energy function (22) has the following form:

Ehyp
ij = h+

(
arcsin

(
q(dij , ri, rj) · 2 sin

(
lij
2

)))
,

(23)
where

q(dij , ri, rj) =
cos
(

ri+rj−dij

2 + θ0

)
cos θ0 sin θ0

(24)

×
√

sin ri sin(ri + 2θ0)

s2i + s2j − 2sisj cos dij − sin2 dij
,

and si =
sin(ri+θ0)

sin θ0
, sj =

sin(rj+θ0)
sin θ0

.

As can be easily seen from (23), the energyEhyp
ij is linearly

approximated by:

Ehyp
ij = q(ri − rj , ri, rj) · h+(lij) +O

(
d2ij
)
, (25)

around dij ≈ ri − rj for fixed ri, rj . Equation (25) is
similar to (11) except that the coefficient q(ri − rj , ri, rj)
and gradient vanishing at lij < 0 as observed for (19).

Table 1. Dataset statistics. The average number of ancestors
(descendants) of leaf (root) nodes are shown.

Dataset Nodes Edges Ancestors Descendants

WordNet 82,115 743,086 9.2 82114.0

4.3. Vector Embedding models

Ordinary embedding models based on similarity, e.g,
word2vec (Mikolov et al., 2013) and Poincaré Embed-
dings (Nickel & Kiela, 2017; 2018), can be seen as
a application of Disk Embeddings in which radius
information is neglected.

Nickel & Kiela argued that when embedding in hyperbolic
spaces, general concepts can be obtained closer to the
origin by learning with loss function distances between
points. However, because a hyperbolic space has
translational symmetry, there are no special point and any
point can be the origin. Thus, simultaneously translating all
of the points does not change the loss function, and which
node is closer to the origin is determined only by the initial
vectors. Furthermore, an approach in which distances from
the origin are interpreted as levels in a hierarchy is not
suitable for complex DAGs in which both ancestors and
descendants grow exponentially, with no single root.

5. Experiments
In this section we evaluate Disk Embedding models for
various metric spaces including Euclidean, spherical and
hyperbolic geometries.

5.1. Datasets

For evaluation we use the WordNet R⃝ (Miller, 1995)4, a
large lexical database that provides hypernymy relations.
In our experiments, we used a noun closure for evaluating
hierarchical data. The statistics for the dataset are shown in
Table 1. The WordNet noun dataset is an example of a tree-
like hierarchical network, characterized by a highly limited
number of ancestors, whereas the number of descendants is
considerably large. We also used data obtained by inverting
the relations in WordNet noun dataset. Because the reverse
of a DAG is a DAG, this data is considered to be an example
of non-tree structural DAG.

5.2. Training and evaluation details

We conducted learning by using pairs of nodes connected
by edges of these graph data as positive examples (i, j) ∈
T such that ci ⪯ cj . Because these data only have
positive pairs, we randomly sampled negative pairs for each
iteration of RSGD. For evaluating the learned expression,

4 https://wordnet.princeton.edu/
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Table 2. Test F1 results for various models. Hyperbolic Entailment Cones is proposed by (Ganea et al., 2018), Order Embeddings is
proposed by (Vendrov et al., 2016) and Poincaré Embeddings is proposed by (Nickel & Kiela, 2017).

Embedding Dimension = 5 Embedding Dimension = 10

Percentage of Transitive Closure (Non-basic) Edges in Training
0% 10% 25% 50% 0% 10% 25% 50%

WordNet nouns
Our Euclidean Disk Embeddings 35.6% 38.9% 42.5% 45.1% 45.6% 54.0% 65.8% 72.0%
Our Hyperbolic Disk Embeddings 32.9% 69.1% 81.3% 83.1% 36.5% 79.7% 90.5% 94.2%
Our Spherical Disk Embeddings 37.5% 84.8% 90.5% 93.4% 42.0% 86.4% 91.5% 93.9%
Hyperbolic Entailment Cones 29.2% 80.0% 87.1% 92.8% 32.4% 84.9% 90.8% 93.8%
Order Embeddings 34.4% 70.6% 75.9% 82.1% 43.0% 69.7% 79.4% 84.1%
Poincaré Embeddings 28.1% 69.4% 78.3% 83.9% 29.0% 71.5% 82.1% 85.4%

WordNet nouns reversed
Our Euclidean Disk Embeddings 35.4% 38.7% 42.3% 44.6% 46.6% 55.9% 67.3% 70.6%
Our Hyperbolic Disk Embeddings 30.8% 49.0% 66.8% 78.5% 32.1% 53.7% 79.1% 88.2%
Our Spherical Disk Embeddings 34.8% 59.0% 76.8% 84.9% 38.0% 60.6% 83.1% 90.1%
Hyperbolic Entailment Cones 17.3% 57.5% 71.8% 75.7% 20.5% 61.9% 73.1% 75.8%
Order Embeddings 32.9% 33.8% 34.8% 35.8% 34.7% 36.7% 38.8% 41.4%
Poincaré Embeddings 26.0% 48.4% 48.8% 51.4% 27.4% 49.7% 50.9% 51.9%

we use an F1 score for a binary classification of whether a
randomly selected pair (i, j) satisfies the transitive relation
ci ⪰ cj , in other words, to assess whether there exists a
directed path from i to j in the DAG.

5.3. Baselines

We also evaluated Poincaré Embeddings (Nickel & Kiela,
2017), Order Embeddings (Vendrov et al., 2016) and
Hyperbolic Entailment Cones (Ganea et al., 2018) as
baseline methods. For these baseline methods, we
used the implementation reported by Ganea et al.5. In
addition, experimental conditions such as hyperparameters
are designed to be nearly similar to those of the
experiments conducted by Ganea et al.. Considering that
Hyperbolic Cones (Ganea et al., 2018) use Poincaré
Embeddings (Nickel & Kiela, 2017) for pretraining, we
also apply this approach to Spherical Disk Embeddings
(which is equivalent to Hyperbolic Cones as shown in
Theorem 3) to make a fair comparison. Although Poincaré
Embeddings (Nickel & Kiela, 2017) is a method used for
learning symmetric relations based on similarity, it can
also be used to estimate asymmetric relations by using a
heuristic score S(x,y) = (1 + λ(∥x∥ − ∥y∥)) dD(x,y),
where the parameter λ is determined by maximizing the F1
score for validation data which are sampled separately from
the test data.

5.4. Results and discussion

Table 2 shows the F1 score on each dataset. As shown in
Section 4, we proved equivalence between our Spherical

5 https://github.com/dalab/hyperbolic cones

Disk Embeddings and Hyperbolic Entailment Cones. It
is observed that our Spherical Disk Embeddings reaches
almost the same result of Hyperbolic Entailment Cones
with WordNet nouns. The slight improvement of our
model can be explained the change of the loss function.
WordNet nouns reversed is generated from WordNet by
reversing directions of all edges, nevertheless, it is an
example of DAGs. In this data, our Disk Embeddings
models obviously outperformed other existing methods
because our methods maintain reversibility (Eq. (5)) while
existing methods implicitly assume hierarchical structure.

6. Conclusion
We introduced Disk Embeddings, which is a new
framework for embedding DAGs in quasi-metric spaces
to generalize the state-of-the-art methods. Furthermore,
extending this framework to a hyperbolic geometry, we
propose Hyperbolic Disk Embedding. Experimentally we
demonstrate that our methods outperform all of the baseline
methods, especially for DAGs other than tree.

For future work, large-scale experiments for complex
DAGs such such as citation networks is desired, in which
both ancestors and descendants increase rapidly, and
exponential nature of Hyperbolic Disk Embedding will
demonstrate its core.

For reproducibility, our source code for the experiments are
publicly available online6. The datasets we used are also
available online. See Section 5.1.

6 https://github.com/lapras-inc/disk-embedding
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