
1 Proofs

We now give proofs for all the results presented in the paper. Most proofs
follow standard patterns from calculus and numerical schemes for differ-
ential equations, except for Theorem 3, which uses an argument specific to
reinforcement learning to prove that the continuous-time advantage function
contains all the necessary information for policy improvement.

The first result presented is a proof of convergence for discretized tra-
jectories.

Lemma 1. Let F : S × A → Rn and π : S → A be the dynamic and policy
functions. Assume that, for any a, s → F (s, a) and s → F (s, π(s)) are C1,
bounded and K-lipschitz. For a given s0, define the trajectory (st)t≥0 as the
unique solution of the differential equation

dst
dt

= F (st, π(st)). (1)

For any δt > 0, define the discretized trajectory (skδt)k which amounts to
maintaining each action for a time interval δt; it is defined by induction as
s0
δt = s0, sk+1

δt is the value at time δt of the unique solution of

ds̃t
dt

= F (s̃t, π(skδt)) (2)

with initial point skδt. Then, there exists C > 0 such that, for every t ≥ 0

‖st − s
b t
δt
c

δt ‖ ≤ δt
C

K
eKt. (3)

Therefore, discretized trajectories converge pointwise to continuous trajecto-
ries.

Proof. The proof mostly follos the classical argument for convergence of the
Euler scheme for differential equations. For any k, define

ekδt = ‖skδt − sδtk‖. (4)

Let s̃t be the solution of Eq. (62) with initial state skδ . This s̃t is C2 on [0, δt].
Consequently, the Taylor integral formula gives

sk+1
δt = skδt + F (skδt, π(skδt))δt+

∫ δt

0
(δt− t)d

2s̃t
dt2

dt (5)

sδt(k+1) = sδtk + F (sδtk, π(sδtk))δt+

∫ δt

0
(δt− t)d

2st+δtk
dt2

dt. (6)

1

Now, both d2st/dt
2 and d2s̃t/dt

2 are uniformly bounded, by boundedness
and Lipschitzness of s → F (s, π(s)) and s → F (s, π(skδt)). Consequently,
there exists C such that

ek+1
δt ≤ ‖skδt − sδtk‖+ ‖F (skδt, π(skδt))− F (sδtk, π(sδtk))‖δt+ Cδt2 (7)

≤ (1 +Kδt)ekδt + Cδt2. (8)

Now, it is easy to prove by induction that

ekδt ≤ (1 +Kδt)k(e0
δt +

C

K
δt)− C

K
δt. (9)

As e0
δt = 0, this translates to

ekδt ≤ ((1 +Kδt)k − 1)δt
C

K
(10)

≤ (eKδtk − 1)δt
C

K
. (11)

Consequently,

e
bt/δtc
δt ≤ (eK(t+δt) − 1)δt

C

K
. (12)

Finally, by boundedness, of s→ F (s, π(s)), there exists C ′ such that

‖sδtbt/δtc − st‖ ≤ δtC ′. (13)

Combining Eq. (13) with Eq. (12), one can find C ′′ such that

‖st − sbt/δtcδt ‖ ≤ δtC
′′

K
eKt. (14)

In what follows, we assume that the continuous-time reward function
r : S ×A → R is bounded, to ensure existence of V π and V π

δt for all δt .

Theorem 1. Assume that r : S×A → R is bounded, and that s→ r(s, π(s))
is Lr-Lipschitz continuous, then for all s ∈ S, one has V π

δt (s) = V π(s)+o(1)
when δt→ 0.

Proof. Let s̃tδt := s
bt/δtc
δt . We have:

V π
δt (s) =

∫
t
γtr(s̃tδt, π(s̃tδt))dt+O(δt) (15)

2

Indeed:

V π
δt (s) =

∞∑
k=0

γkδtr(skδt, π(skδt))δt (16)

=
∞∑
k=0

γkδt
∫ k+1

u=k
r(s̃uδtδt , π(s̃uδtδt))du (17)

=
∞∑
k=0

δt log γ

γδt − 1

∫ k+1

u=k
γuδtr(s̃uδtδt , π(s̃uδtδt))du (18)

=
δt log γ

γδt − 1

∫ ∞
t=0

γtr(s̃tδt, π(s̃tδt))dt (19)

(20)

But:

δt log γ

γδt − 1
=

δt log γ

δt log γ +O(δt2)
(21)

= 1 +O(δt) (22)

(23)

Therefore:

V π
δt (s) =

∫
t
γtr(s̃tδt, π(s̃tδt))dt+O(δt) (24)

We now have, for any T > 0,

|V π
δt (s)− V π(s)| = |

∫ ∞
t=0

γt
(
r(s̃tδt, π(s̃tδt))− r(st, π(st))

)
dt|+O(δt) (25)

= |
∫ T

t=0
γt
(
r(s̃tδt, π(s̃tδt))− r(st, π(st))

)
dt| (26)

+ |
∫ ∞
t=T

γt
(
r(s̃tδt, π(s̃tδt))− r(st, π(st))

)
dt|+O(δt) (27)

The second term can be bounded by the supremum of the reward:

|
∫ ∞
t=T

γt
(
r(s̃tδt, π(s̃tδt))− r(s̃t, π(st))

)
dt| ≤ 2

‖r‖∞
log(1

γ)
γT (28)

3

The first term can be bounded by using Lemma. 1:

|
∫ T

t=0
γt
(
r(s̃tδt, π(s̃tδt))− r(st, π(st))

)
dt| ≤

∫ T

t=0
γtLr‖st − s̃tδt‖dt (29)

≤
∫ T

t=0
Lr
Cδt

K
exp((K + log γ)t)dt

(30)

≤ LrC

K(K + log γ)
exp((K + log γ)T)δt

(31)

Let us set T := − 1
K log(δt). By plugging into Eq. (28), we have:

|
∫ ∞
t=T

γt
(
r(s̃tδt, π(s̃tδt))− r(st, π(st))

)
dt| = O(δt− log γ) = o(1). (32)

By plugging T into equation (31), we have:

|
∫ T

t=0
γt
(
r(s̃tδt, π(s̃tδt))− r(st, π(st))

)
dt| = O(δt−

log γ
K) = o(1), (33)

yielding our result.

For the following proof, we further assume that both V π and V π
δt are

continuously differentiable, and that the gradient and Hessian of V π
δt w.r.t.

s are uniformly bounded in both s and δt. We also assume convergence of
∂sV

π
δt (s) to ∂sV

π(s) for all s.

Theorem 2. Under the hypothesis above, there exists Aπ : S → R such that
Aπδt converges pointwise to Aπ as δt goes to 0. Besides,

Aπ(s, a) = r(s, a) + ∂sV
π(s)F (s, a) + log γV π(s). (34)

Proof. Denote s̃tδt(s0) the evaluation at instant t of the solution of ds̃t/dt =
F (s̃t, π(s0)) with starting point s0.

The Bellman equation on Qπδt yields

Qπδt(s, a) = r(s, a)δt+ γδtV π
δt (s̃

δt
δt(s)). (35)

For all s, a first-order Taylor expansion yields

s̃δtδt(s) = s+ F (s, a)δt+O(δt2) (36)

4

where the constant in O() is uniformly bounded thanks to the assumptions
on the Hessian. Thus, by uniform boundedness of the Hessian of V π

δt ,
1

Qπδt(s, a) = r(s, a)δt+(1+ln(γ)δt+O(δt2))(V π
δt (s)+δt∂sV

π
δt (s)F (s, a)+O(δt2).

(37)
Now, this yields

Aπδt(s, a) = r(s, a) + ln(γ)V π
δt (s) + ∂sV

π
δt (s)F (s, a) +O(δt), (38)

and using the convergence of V π
δt (s) to V π(s) (Thm. 1) and ∂sV

π
δt (s) to

∂sV
π(s) (hypothesis) yields the result with

Aπ(s, a) = r(s, a) + ln(γ)V π(s) + ∂sV
π(s)F (s, a). (39)

We now show that policy improvement works with the continous time
advantage function, i.e.

Theorem 3. Let π and π′ be two policies such that both s → r(s, π(s))
and s → r(s, π′(s)) are continuous. Assume that both V π and V π′ are
continuously differentiable. Define the advantage function for policies π and
π′ as in Eq. (39).

If for all s, Aπ(s, π′(s)) ≥ 0, then for all s, V π(s) ≤ V π′(s). Moreover,
if for all s, V π′(s) > V π(s), then there exists s′ such that Aπ(s′, π′(s′)) > 0.

Proof. Let (st)t≥0 be a trajectory sampled from π′ i.e. solution of the equa-
tion

dst/dt = F (st, π
′(st)) (40)

with initial condition s0 = s.
Define

B(T) =

∫ T

t=0
γtr(st, π

′(st))dt+ γTV π(sT). (41)

This function if continuously differentiable, and its derivative is

Ḃ(T) = γT r(sT , π
′(sT)) + γT∂sV

π(s)F (s, π′(s)) + γT ln(γ)V π(sT) (42)

= γTAπ(sT , π
′(sT)) ≥ 0.

(43)

1Without boundedness of the Hessian, we cannot write the second order Taylor expan-
sion of V πδt (s̃δtδt(s)) in term of δt.

5

Thus B is increasing, and B(0) = V π(s), lim
T→∞

B(t) = V π′(s). Consequently,

V π(s) ≤ V π′(s). Furthermore, if V π(s) < V π′(s), then there exists T0 such
that Ḃ(T0) > 0 (otherwise B is constant), and Aπ(sT0 , π

′(sT0)) > 0.

Theorem 4. Let A = RA be the action space, and let P1 = Rp1 and P2 =
Rp2 be parameter spaces. Let A : P1×S ×A → R and V : P2×S → R be C2

function approximators with bounded gradients and Hessians. Let (at)t≥0 be
a C1 exploratory action trajectory and (st)t≥0 the resulting state trajectory,
when starting from s0 and following dst/dt = F (st, at). Let θkδt and ψkδt be
the discrete parameter trajectories resulting from the gradient descent steps
in the main text, with learning rates ηV = αV δtβ and ηA = αAδtβ for some
β ≥ 0. Then,

• If β = 1 the discrete parameter trajectories converge to continuous
parameter trajectories as δt goes to 0.

• If β > 1, parameter trajectories become stationary as δt goes to 0.

• If β < 1, parameters can grow arbitrarily large after an arbitrarily
small physical time when δt goes to 0.

Proof. Let (st, at)t≥0 be the trajectory on which parameters are learnt. To
simplify notations, define

Aψ(s, a) = Āψ(s, a)− Āψ(s, π(s)). (44)

Define F as

F θ(θ, ψ, s, a) = αV (r(s, a) + ln(γ)Vθ(s) + ∂sVθ(s)F (s, a)−Aψ(s, a))∂θVθ(s)
(45)

Fψ(θ, ψ, s, a) = αA(r(s, a) + ln(γ)Vθ(s) + ∂sVθ(s)F (s, a)−Aψ(s, a))∂ψAψ(s, a).
(46)

From the bounded Hessians and Gradients hypothesis, V , A, ∂sV , ∂θV and
∂ψA are uniformly Lipschitz continuous in θ and ψ, thus F is Lipschitz
continuous.

The discrete equations for parameters updates with learning rates αV δtβ

6

and αAδtβ are

δQ = r(skδt, akδt)δt+ γδtVθkδt
(s(k+1)δt)− Vθkδt(skδt)−Aψ(skδt, akδt) (47)

θk+1
δt = θkδt + αV δtβ

δQ

δt
∂θVθkδt

(skδt) (48)

ψk+1
δt = ψkδt + αAδtβ

δQ

δt
∂ψAθkδt

(skδt, akδt) (49)

Under uniform boundedness of the Hessian of s 7→ Vθ(s), one can show(
θk+1
δt

ψk+1
δt

)
=

(
θkδt
ψkδt

)
+ δtβF (θkδt, ψ

k
δt, skδt, akδt) +O(δtβδt), (50)

with a O independent of k. With the additional hypothesis that the gradient
of (s, a)→ Āψ(s, a) is uniformly bounded, we have

• For β = 1, a proof scheme identical to that of Thm. 1 shows that dis-
crete trajectories converge pointwise to continuous trajectories defined
by the differential equation

d

dt

(
θt
ψt

)
= F (θt, ψt, st, at), (51)

which admits unique solutions for all initial parameters, since F is
uniformly lipschitz continuous.

• Similarly, for β > 1, the proof scheme of Thm. 1 shows that discrete
trajectories converge pointwise to continuous trajectories defined by
the differential equation

d

dt

(
θt
ψt

)
= 0 (52)

and thus that trajectories shrink to a single point as δt goes to 0.

We now turn to proving that when β < 1, trajectories can diverge instantly
in physical time. Consider the following continuous MDP,

st = sin(t) (53)

whatever the actions, with reward 0 everywhere and 0 < γ < 1. The result-
ing value function is V (s) = 0 (since there are no actions, V is independent

7

of a policy), and the advantage function is 0. We consider the function ap-
proximator Vθ(s) = θs (which can represent the true value function). The
update rule for θ is

δQkδt = γδtθkδt sin((k + 1)δt)− θkδt sin(kδt) (54)

θk+1
δt = θkδt + αδtβ

γδtθkδt sin((k + 1)δt)− θkδt sin(kδt)

δt
sin(kδt) (55)

Set Kδt := bδt−
β+3
4 c, then for all k ≤ Kδt, o(kδt) = o(1) and

θk+1
δt = θkδt(1 + αδtβ(1 + o(1)) sin(kδt)) (56)

(57)

Let ρkδt := log θkδt. Then

ρkδt = ρkδt + αkδtβ+1 + o(kδtβ+1). (58)

Finally,

ρKδtδt = ρ0
δt + α

Kδt(Kδt + 1)

2
δtβ + o(K2

δtδt
β+1) (59)

= ρ0
δ + αδt

β−1
3 + o(δt

β−1
3) (60)

−−−→
δt→0

+∞. (61)

Thus parameters diverge in an infinitesimal physical time when δt goes to 0.

Theorem 5. Let F : S × A → Rn be the dynamic, and π : S × A → [0, 1]
be the policy, such that π(s, ·) is a probability distribution over A. Assume
that F is C1 with bounded derivatives, and that π is C1 and bounded. For
any δt > 0, define the discretized trajectory (skδt)k which amounts to sample
an action from π(s, ·) and maintaining each action for a time interval δt; it
is defined by induction as s0

δt = s0, sk+1
δt is the value at time δt of the unique

solution of
ds̃t
dt

= F (s̃t, ak) (62)

with ak ∼ π(skδt, ·) and initial point skδt.
Then the agent’s trajectories converge when δt → 0 to the solutions of

the deterministic equation:

dst
dt

= Ea∼π(st,·)F (st, a). (63)

8

Notably, if π is an epsilon greedy strategy that mixes a deterministic ex-
ploitation policy πdeterministic with an action taken from a noise policy πnoise

with probability ε at, the trajectory converge to the solutions of the equation:

dst/dt = (1− ε)F (st, π
deterministic(st)) + εEa∼πnoise(a|s)F (st, a) (64)

Proof. Consider (sδt2) the random trajectory of a near-continuous MDP with
time-discretization δt2 obtained by taking at each step k an action ak along
ak ∼ π(a|sk

δt2
) independantly. We have:

s
b1/δtc
δt2

= s0
δt2

+

b1/δtc∑
k=1

sk
δt2
− sk−1

δt2
+O(δt2) (65)

= s0
δt2

+

b1/δtc∑
k=1

F (sk−1
δt2

, ak−1)δt2 +O(δt2) (66)

We define f(s) := Ea∼π(s) [F (s, a)] =
∫
a∈A F (s, a)π(s, a). Since π and F

are bounded and C1, we know that f is C1. We have:

s
b1/δtc
δt2

= s0
δt2

+

b1/δtc∑
k=1

f(sk−1
δt2

)δt2 +

b1/δtc∑
k=1

(F (sk−1
δt2

, ak−1)− f(sk−1
δt2

))δt2 +O(δt2)

(67)

s
b1/δtc
δt2

= s0
δt2

+

b1/δtc∑
k=1

f(sk−1
δt2

)δt2 + ξ +O(δt2) (68)

with ξ := δt2
∑b1/δtc

k=1

(
F (sk−1

δt2
, ak−1)− f(sk−1

δt2
)
)

. By definition, we have

E[ξ] = 0. Moreover, by using the independance of actions and the boundness
of F, there is σ > 0 such that:

E[‖ξ‖2] ≤ σ2δt3 (69)

We know that f is C1 on a compact space. Therefore, there is Lf such
that f is Lf Lipschitz, and we have:

‖

b1/δtc∑
k=1

f(sk−1
δt2

)δt

− f(s0
δt2

)‖ ≤ δtLf
b1/δtc∑
k=1

‖sk−1
δt2
− s0

δt2
‖ (70)

9

Since F is bounded, we know that ‖sk
δt2
− sk−1

δt2
‖ ≤ Cδt. Therefore:

‖

b1/δtc∑
k=1

f(sk−1
δt2

)δt

− f(s0
δt2

)‖ ≤ δtLfC
b1/δtc∑
k=1

kδt (71)

= O(δt2) (72)

Therefore:

s
b1/δtc
δt2

= s0
δt2

+ f(s0
δt2

)δt+ ξ +O(δt2) (73)

Therefore, we have a > 0 such that ‖sb1/δtc
δt2

−s0
δt2
−f(s0

δt2
)δt‖ ≤ ‖ξ‖+aδt2

We define (s̃δt) the deterministic near-continuous process with time dis-
cretization δt defined by s̃k+1

δt := skδt + f(skδt)δt. We have:

‖s(k+1)b1/δtc
δt2

− s̃k+1
δt ‖ ≤ ‖s

(k+1)b1/δtc
δt2

− skb1/δtc
δt2

− f(s
kb1/δtc
δt2

)δt‖+ ‖skb1/δtc
δt2

+ f(s
kb1/δtc
δt2

)δt− s̃k+1
δt ‖

(74)

We know that ‖s(k+1)b1/δtc
δt2

−skb1/δtc
δt2

−f(s
kb1/δtc
δt2

)δt‖ ≤ ‖ξk‖+aδt2. Moreover:

‖skb1/δtc
δt2

+ f(s
kb1/δtc
δt2

)δt− s̃k+1
δt ‖ ≤ ‖s

kb1/δtc
δt2

− s̃kδt‖+ δt‖f(s
kb1/δtc
δt2

)− f(s̃kδt)‖
(75)

≤ (1 + Lfδt)‖s
kb1/δtc
δt2

− s̃kδt‖ (76)

Therefore, we have:

‖s(k+1)b1/δtc
δt2

− s̃k+1
δt ‖ ≤ ‖ξk‖+ aδt2 + (1 + Lfδt)‖s

kb1/δtc
δt2

− s̃kδt‖ (77)

By induction, and by taking k = bt/δtc:

‖skb1/δtc
δt2

− s̃kδt‖ ≤
aδt

Lf
exp(Lf t) +

bt/δtc∑
j=0

(1 + δtLf)j‖ξj‖ (78)

10

Therefore, if ε > 0, we have :

P
(
‖skb1/δtc
δt2

− s̃kδt‖ > ε
)
≤ P

bt/δtc∑
j=0

(1 + δtLf)j‖ξj‖ > ε− aδt

Lf
exp(Lf t)


(79)

≤
E
[∑bt/δtc

j=0 (1 + δtLf)j‖ξj‖
]

ε− aδt
Lf

exp(Lf t)
(80)

≤ E [‖ξ‖]
ε− aδt

Lf
exp(Lf t)

exp(Lf t)

Lfδt
(81)

(82)

But E [‖ξ‖] ≤
√
E [‖ξ‖2] ≤ σδt3/2. Therefore, we have:

P
(
‖sbt/δtcb1/δtc
δt2

− s̃kδt‖ > ε
)

= O(
√
δt) (83)

Therefore, the process t 7→ s
bt/δtcb1/δtc
δt2

converges in probability to s̃.
Furthermore, by a similar argument than in Lemma 1, we know that the
discretized process s̃ converge to the continuous process defined by ds

dt =
f(st). We can conclude ou result.

2 Implementation details

All the details specifying our implementation are given in this section. We
first give precise pseudo code descriptions for both Continuous Deep Advan-
tage Updating (Alg. 1), as well as the variants of DDPG (Alg. 2) and DQN
(Alg. 3) used.

For DDPG and DQN, two different settings were experimented with:

• One with time discretization scalings, to keep the comparison fair. In
this setting, the discount factor is still scaled as γδt, rewards are scaled
as rδt, and learning rates are scaled to obtain parameter updates of
order δt. As RMSprop is used for all experiments, this amounts to
using a learning rate scaling as αQ = α̃Qδt, απ = α̃πδt.

• One without discretization scalings. In that case, only the discount
factor is scaled as γδt, to prevent unfair shortsightedness. All other

11

Algorithm 1 Discrete DAU

Inputs:
θ and ψ, parameters of Vθ and Āψ.
πexplore and νδt defining an exploration policy.
optV , optA, αV δt and αAδt optimizers and learning rates.
D, buffer of transitions (s, a, r, d, s′), with d the episode termination signal.
δt and γ, time discretization and discount factor.
nb epochs number of epochs.
nb steps, number of steps per epoch.
nb learn, number of learning step per epoch
N, training batch size

Observe initial state s0

t← 0
for e = 0,nb epochs do
for j = 1,nb steps do
at ← πexplore(st, νtδt).
Perform at and observe (rt+1, dt+1, st+1).
Store (st, at, rt+1, dt+1, st+1) in D.
t← t+ 1

end for
for k = 0,nb learn do

Sample a batch of N random transitions from D
for i=0, N do
δQi ←δt

(
Āψ(si, ai)− Āψ(si, πφ(si))

)
−
(
riδt+ (1− di)γδtVθ(s′i)− Vθ(si)

)
end for

∆θ ← 1
N

N∑
i=1

δQi∂θVθ(si)
δt

∆ψ ← 1
N

N∑
i=1

δQi∂ψ

(
Āψ(si,ai)−max

a′
Āψ(si,a′)

)
δt

Update θ with opt1, ∆θ and learning rate αV δt.
Update ψ with opt2, ∆ψ and learning rate αAδt.

end for
end for

12

Algorithm 2 DDPG

Inputs:
ψ and φ, parameters of Qψ and πφ.
ψ′ and φ′, parameters of target networks Qψ′ and πφ′ .
πexplore and ν defining an exploration policy.
optQ, optπ, αQ and απ, optimizers and learning rates.
D, buffer of transitions (s, a, r, d, s′), with d the episode termination signal.
γ discount factor.
τ target network update factor.
nb epochs number of epochs.
nb steps, number of steps per epoch.

Observe initial state s0

t← 0
for e = 0,nb epochs do
for j = 1,nb steps do
ak ← πexplore(sk, νk).
Perform ak and observe (rk+1, dk+1, sk+1).
Store (sk, ak, rk+1, dk+1, sk+1) in D.
k ← k + 1

end for
for k = 0, nb learn do

Sample a batch of N random transitions from D
Q̃i ← ri + (1− di)γQψ′(s′i, πφ′(s′i))

∆ψ ← 1
N

N∑
i=1

(
Qi − Q̃i

)
∂ψQ(si, ai)

∆φ← 1
N

N∑
i=1

∂aQψ(si, πφ(si))∂φπφ(si)

Update ψ with optQ, ∆ψ and learning rate αQ.
Update φ with optπ, ∆φ and learning rate απ.
ψ′ ← τψ′ + (1− τ)ψ
φ′ ← τφ′ + (1− τ)φ

end for
end for

13

Algorithm 3 DQN

Inputs:
ψ parameter of Qψ.
ψ′, parameters of target networks Qψ′ .
πexplore and ν defining an exploration policy.
optQ, αQ optimizer and learning rate.
D, buffer of transitions (s, a, r, d, s′), with d the episode termination signal.
γ discount factor.
τ target network update factor.
nb epochs number of epochs.
nb steps, number of steps per epoch.

Observe initial state s0

t← 0
for e = 0,nb epochs do
for j = 1,nb steps do
ak ← πexplore(sk, νk).
Perform ak and observe (rk+1, dk+1, sk+1).
Store (sk, ak, rk+1, dk+1, sk+1) in D.
k ← k + 1

end for
for k = 0, nb learn do

Sample a batch of N random transitions from D
Q̃i ← ri + (1− di)γmax

a′
Qψ′(s

′i, a′)

∆ψ ← 1
N

N∑
i=1

(
Qi − Q̃i

)
∂ψQ(si, ai)

Update ψ with optQ, ∆ψ and learning rate αQ.
ψ′ ← τψ′ + (1− τ)ψ

end for
end for

14

parameters are set with a reference δt0 = 1e − 2. For instance, for
all δt’s, the reward perceived is r ∗ δt0, and similarily for learning
rates, αQ = α̃Qδt0, απ = α̃Qδt0. These scalings don’t depend on the
discretization, but perform decently at least for the highest discretiza-
tion.

2.1 Global hyperparameters

The following hyperparameters are maintained constant throughout all our
experiments,

• All networks used are of the form

Sequential(

Linear(nb_inputs, 256),

LayerNorm(256),

ReLU(),

Linear(256, 256),

LayerNorm(256),

ReLU(),

Linear(256, nb_outputs)

).

Policy networks have an additional tanh layer to constraint action
range. On certain environments, network inputs are normalized by
applying a mean-std normalization, with mean and standard devia-
tions computed on each individual input features, on all previously
encountered samples.

• D is a cyclic buffer of size 1000000.

• nb steps is set to 10, and 256 environments are run in parallel to
accelerate the training procedure, totalling 2560 environment interac-
tions between learning steps.

• nb learn is set to 50.

• The physical γ is set to 0.8. It is always scaled as γδt (even for unscaled
DQN and DDPG).

• N , the batch size is set to 256.

15

• RMSprop is used as an optimizer without momentum, and with α =
1− δt (or 1− δt0 for unscaled DDPG and DQN).

• Exploration is always performed as described in the main text. The
OU process used as parameters κ = 7.5, σ = 1.5.

• Unless otherwise stated, α1 := α̃Q = αV = αA = 0.1, α2 := α̃π =
απ = 0.03.

• τ = 0.9

2.2 Environment dependent hyperparameters

We hereby list the hyperparameters used for each environment. Continuous
actions environments are marked with a (C), discrete actions environments
with a (D).

• Ant (C): State normalization is used. Discretization range: [0.05, 0.02, 0.01, 0.005, 0.002].

• Cheetah (C): State normalization is used. Discretization range:
[0.05, 0.02, 0.01, 0.005, 0.002]

• Bipedal Walker (C)2: State normalization is used, α2 = 0.02. Dis-
cretization range: [0.01, 0.005, 0.002, 0.001].

• Cartpole (D): α2 = 0.02, τ = 0. Discretization range: [0.01, 0.005, 0.002, 0.001, 0.0005].

• Pendulum (C): α2 = 0.02, τ = 0. Discretization range: [0.01, 0.005, 0.002, 0.001, 0.0005].

3 Additional results

Additional results mentionned in the text are presented in this section.

2The reward for Bipedal Walker is modified not to scale with δt. This does not introduce
any change for the default setup.

16

Figure 1: Policies obtained by DDPG (unscaled version) and AU at different
instants in physical time of training on the pendulum swing-up environment.
Each image represents the policy learnt by the policy network, with x-axis
representing angle, and y-axis angular velocity. The lighter the pixel, the
closer to 1 the action, the darker, the closer to −1.

Figure 2: Policies obtained by DDPG (scaled version) and AU at different
instants in physical time of training on the pendulum swing-up environment.
Each image represents the policy learnt by the policy network, with x-axis
representing angle, and y-axis angular velocity. The lighter the pixel, the
closer to 1 the action, the darker, the closer to −1.

17

Figure 3: Value functions obtained by DDPG (scaled version) and AU at
different instants in physical time of training on the pendulum swing-up
environment. Each image represents the value function learnt, with x-axis
representing angle, and y-axis angular velocity. The lighter the pixel, the
higher the value.

Figure 4: Learning curves for DAU and DDPG (scaled) on classic control
benchmarks for various time discretization δt: Scaled return as a function
of the physical time spent in the environment.

18

