1 Proofs

We now give proofs for all the results presented in the paper. Most proofs
follow standard patterns from calculus and numerical schemes for differ-
ential equations, except for Theorem 3, which uses an argument specific to
reinforcement learning to prove that the continuous-time advantage function
contains all the necessary information for policy improvement.

The first result presented is a proof of convergence for discretized tra-
jectories.

Lemma 1. Let F: S x A = R" and 7: § — A be the dynamic and policy
functions. Assume that, for any a, s — F(s,a) and s — F(s,7(s)) are C!,
bounded and K -lipschitz. For a given so, define the trajectory (s¢)i>0 as the
unique solution of the differential equation

d
= Flsim(s). (1)
For any 6t > 0, define the discretized trajectory (slgt)k which amounts to

maintaining each action for a time interval &; it is defined by induction as

sgt = S, slgtﬂ 18 the value at time &t of the unique solution of
dgt - k
- F(3t,m(sg)) (2)

with initial point s’gt. Then, there exists C' > 0 such that, for everyt >0
L C
st — s < bt e, (3)
Therefore, discretized trajectories converge pointwise to continuous trajecto-

Ti€es.

Proof. The proof mostly follos the classical argument for convergence of the
Euler scheme for differential equations. For any k, define

k k
es = |5 — st ll- (4)

Let 5; be the solution of Eq. (62) with initial state s§. This 5 is C2 on [0, 6t].
Consequently, the Taylor integral formula gives

ot 2z
d
sl = sb 4 F(sh, m(sh))at +/ (6t — t)%dt (5)
0
o d? e stk
satry = swe + Flownlom)it+ [(@ - 0 Ba (o
0

Now, both d?s;/dt? and d?5;/dt? are uniformly bounded, by boundedness

and Lipschitzness of s — F(s,7(s)) and s — F(s,7(s})). Consequently,

there exists C such that

et < Isk — sakll + [|F (s, w(s5)) — F(sar, 7(sar)) |6t + Cot> (7)
< (1+ Kot)ek + Cot>. (8)

Now, it is easy to prove by induction that
C C
k< (14 Kdt)k(e) + 70 — 0t (9)

As €}, = 0, this translates to

b <((1+ Kot)k - 1)&% (10)
C
< (Kot _ |\t
< (e 1)5tK (11)
Consequently,
eb/ < (R 1)&% (12)

Finally, by boundedness, of s — F(s,m(s)), there exists C’ such that
[sste/6t) — sell < GtC". (13)

Combining Eq. (13) with Eq. (12), one can find C” such that
C//
s — sH/H) < ot !, (14)

In what follows, we assume that the continuous-time reward function
r: S x A — R is bounded, to ensure existence of V™ and Vj for all & .

Theorem 1. Assume thatr: S x A — R is bounded, and that s — r(s,7(s))

is L,-Lipschitz continuous, then for all s € S, one has Vi (s) = V™(s)+o(1)
when & — 0.
Proof. Let s, Lt/) We have:

Vi) = [5t (st + O (15)

Indeed:

But:
otlogy ot log vy
Yt —1 " Gtlogy + O(6t?)
=1+ 0(d&)

Therefore:
VI (s) = / (3l m(3))dt + O(ét)
t

We now have, for any T > 0,

Vit (5) = V7 (s)| = | t: 7 (r(85, m(55)) — (st m(st))) di] + O(dt)

T

= ’Yt((55 7(55)) — (st (s0))) dlt|

+ I/ r(8%, m(3%)) — r(se, m(s0))) dt| + O(3t)

The second term can be bounded by the supremum of the reward:

| / (8, 7(3%)) — (@ m(s0))) di] < 2Tl

log(3)

(25)
(26)

(27)

(28)

The first term can be bounded by using Lemma. 1:

T

T
[A e n)~ rsems) at < [Al —shlde(29)

T
§/ Lr%exp((KJrlogv)t)dt
t=0 K

(30)

L.C
gm exp((K + log~)T)dt
(31)

Let us set T := —% log(dt). By plugging into Eq. (28), we have:

| /:; 7 (r(3h m(35)) = (s, m(s0))) di] = Ot '8 7) = o(1). (32)

By plugging T into equation (31), we have:

log v

T
[(e m(580) = o))] = 06 F) =of1), (39)

yielding our result.

O]

For the following proof, we further assume that both V™ and Vg are
continuously differentiable, and that the gradient and Hessian of Vi w.r.t.
s are uniformly bounded in both s and §. We also assume convergence of
0sVi (s) to 0,V (s) for all s.

Theorem 2. Under the hypothesis above, there exists A™: S — R such that
A%, converges pointwise to AT as §t goes to 0. Besides,

A" (s,a) =r(s,a) + 0sV"(s)F(s,a) +logyV7"(s). (34)

Proof. Denote §%(so) the evaluation at instant ¢ of the solution of ds;/dt =
F(5;,m(s0)) with starting point sg.
The Bellman equation on)} yields

Q5(s,a) = r(s,a)dt + V5 (35(s)). (35)
For all s, a first-order Taylor expansion yields

5%(s) = s+ F(s,a)dt + O(5t?) (36)

where the constant in O() is uniformly bounded thanks to the assumptions
on the Hessian. Thus, by uniform boundedness of the Hessian of Vg .

Q% (s,a) = 7(s,a)0t+(14+1In(7)st+0(t2)) (Vi (5)+6t0s VT (s) F (s, a) +O(6t%).
(37)
Now, this yields

A% (s,a) = r(s,a) +In(y) Vs (s) + 05V (s)F(s,a) + O(dt), (38)

and using the convergence of Vi (s) to V™(s) (Thm. 1) and 95V (s) to
0sV™(s) (hypothesis) yields the result with

A" (s,a) =1r(s,a) +In(y)V™(s) + 0V (s)F (s, a). (39)
0

We now show that policy improvement works with the continous time
advantage function, i.e.

Theorem 3. Let m and 7' be two policies such that both s — r(s,m(s))
and s — r(s,7'(s)) are continuous. Assume that both V™ and V™ are
continuously differentiable. Define the advantage function for policies m and
7' as in Eq. (39).

If for all s, A™(s,7'(s)) > 0, then for all s, V™(s) < V™ (s). Moreover,
if for all s, V™ (s) > V7(s), then there exists s' such that A™(s',7'(s')) > 0.

Proof. Let (st)1>0 be a trajectory sampled from 7’ i.e. solution of the equa-
tion

dsi/dt = F(s¢, 7' (st)) (40)
with initial condition sg = s.
Define -
B(T) = / v (s, 7 (s¢))dt —i—’yTV’T(sT). (41)
=0

This function if continuously differentiable, and its derivative is

B(T) =y"r(sp, (s1)) + ¥ 0 V™ () F(s,7'(s)) + 4" In(7)V™(s7) (42)
=T A" (s7, 7 (s1)) > 0.
(43)

"Without boundedness of the Hessian, we cannot write the second order Taylor expan-
sion of Vi (5%(s)) in term of .

Thus B is increasing, and B(0) = V7 (s), Tlim B(t) = V™ (s). Consequently,
—00

VT(s) < V™ (s). Furthermore, if V™(s) < V™ (s), then there exists Ty such
that B(Tp) > 0 (otherwise B is constant), and A™ (s, 7' (s7,)) > 0.
O

Theorem 4. Let A = RA be the action space, and let P; = RP! and Py =
RP2 be parameter spaces. Let A: Py xSxA—R and V: Py xS — R be C?
function approximators with bounded gradients and Hessians. Let (ai)i>0 be
a Ct exploratory action trajectory and (s¢)¢>o the resulting state trajectory,
when starting from sg and following dsy/dt = F(s¢,ar). Let 93 and ¢§t be
the discrete parameter trajectories resulting from the gradient descent steps
in the main text, with learning rates n¥ = avot? and nt = a6t? for some
8 >0. Then,

o If B = 1 the discrete parameter trajectories converge to continuous
parameter trajectories as ot goes to 0.

o If B > 1, parameter trajectories become stationary as & goes to 0.

o If B < 1, parameters can grow arbitrarily large after an arbitrarily
small physical time when 8t goes to 0.

Proof. Let (s¢, at)i>0 be the trajectory on which parameters are learnt. To
simplify notations, define

Ay(s,a) = Ay(s,a) — Ayls,m(s)). (44)
Define F as

Fa(ﬁ,w, s,a) = av(r(s, a) +1In(7)Vp(s) + 0sVa(s)F(s,a) — Ay(s, a))(?ng(si
45

FY(0.4,5,a) = o’ (r(s,a) +1n(y)Vo(s) + 0sVo(s)F (s,a) — Ay(s, a))awtw(? a).
46

From the bounded Hessians and Gradients hypothesis, V', A, 0sV, 0yV and
Oy A are uniformly Lipschitz continuous in ¢ and %, thus F' is Lipschitz
continuous.

The discrete equations for parameters updates with learning rates aVéth

and a?6t? are

0Q = (s, arat) Ot + 7™ Vor (s 1)) — Vop (ska) — Ay (skars ars) (47)

0Q
0

Under uniform boundedness of the Hessian of s +— Vj(s), one can show

9k+1 ek‘ & &
(wdlg+1> = (w%) + &ﬂF(g&a 77/}&7 Skét ak&) + O(atﬁ&)7 (50)
ot

with a O independent of k. With the additional hypothesis that the gradient
of (s,a) = Ay(s,a) is uniformly bounded, we have

e For 8 =1, a proof scheme identical to that of Thm. 1 shows that dis-
crete trajectories converge pointwise to continuous trajectories defined
by the differential equation

d (0
% (Jt) = F(et,¢t, St,at)a (51)

which admits unique solutions for all initial parameters, since F' is
uniformly lipschitz continuous.

e Similarly, for § > 1, the proof scheme of Thm. 1 shows that discrete
trajectories converge pointwise to continuous trajectories defined by

the differential equation
d (6
— =0 52
dt <¢t> (52)

and thus that trajectories shrink to a single point as & goes to 0.

We now turn to proving that when § < 1, trajectories can diverge instantly
in physical time. Consider the following continuous MDP,

s¢ = sin(t) (53)

whatever the actions, with reward 0 everywhere and 0 < v < 1. The result-
ing value function is V(s) = 0 (since there are no actions, V' is independent

of a policy), and the advantage function is 0. We consider the function ap-
proximator Vp(s) = s (which can represent the true value function). The
update rule for 0 is

oQ% = 705 sin((k + 1)dt) — 0% sin(kdt) (54)

Ek sin((k + 1)dt) — 0% sin(két)

OETt = 0% + ast? 5

sin(kdt) (55)

Set Kg := L(St*#j, then for all k¥ < Kg, o(kdt) = o(1) and

OETY = 0% (1 + adt® (1 + o(1)) sin(kdt)) (56)

Let pf}t = log 9§t. Then

Pk = pk + akdt? 4 o(kotPHY). (58)
Finally,
Kg(K 1
pRE = pd + ai&(&+)5t5 + o(K26t°H1) (59)
=)+ adt™s 4ot) (60)
— 400. (61)

&t—0

Thus parameters diverge in an infinitesimal physical time when d goes to 0.
O

Theorem 5. Let F': S x A — R" be the dynamic, and 7: S x A — [0,1]
be the policy, such that w(s,-) is a probability distribution over A. Assume
that F is C1 with bounded derivatives, and that w is C* and bounded. For
any 6 > 0, define the discretized trajectory (slgt)k which amounts to sample
an action from 7(s,+) and maintaining each action for a time interval &t; it
1s defined by induction as sgt = S0, s]gtH is the value at time 8t of the unique
solution of

dsy

— = F(5,a 62

= Fnan) (62

with a ~ 7(sk,-) and initial point s&.
Then the agent’s trajectories converge when ot — 0 to the solutions of
the deterministic equation:

dSt

E = E(ZNTF(St,')F(St7 a)' (63)

Notably, if m is an epsilon greedy strategy that mixes a deterministic ex-
ploitation policy wetermmistic yyth an action taken from a noise policy m™°™¢
with probability € at, the trajectory converge to the solutions of the equation:

dsi/dt = (1 — &) F (s, wdeterministic g)y 4 EE g rnoise(q)s) F (8¢, @) (64)

Proof. Consider (sg2) the random trajectory of a near-continuous MDP with
time-discretization &2 obtained by taking at each step k an action aj along
ag ~ ﬂ(a]slth) independantly. We have:

[1/dt]

352/(% = sgt2 + Z Slgtg — s];t;l + O(6t%) (65)
1/5t

= s02 + Z (sh", ar—1)6t" + O(5t) (66)

We define f(s) :=Equr(s) [F(s,a)] = [, 4 F(s,a)n(s,a). Since m and F
are bounded and C', we know that f is C'. We have:

s [1/6t] [1/ét]
352/ V= sth Z Shot? + Z &2 Lap_1) — f(sl;tgl))étZ +O(8t%)
k=1
(67)
[1/6t]
sof =50, + Z FSEED82 + € + O(6t2) (68)

with & := ot U/&J ((s Zzl,ak 1) — f(s](;21)). By definition, we have

E[¢] = 0. Moreover, by using the independance of actions and the boundness
of F, there is ¢ > 0 such that:

E[|¢|] < o?t® (69)

We know that f is C' on a compact space. Therefore, there is L 7 such
that f is Ly Lipschitz, and we have:

[1/#) 11/
I D fsha)ot | = Fsgalll S 8tLy D s’ = sgel (70)
k=1 k=1

Since F' is bounded, we know that Hs’gt2 - s’;tng < C6dt. Therefore:

[1/6t] |1/6t]
I D f(shahot | — F(sha)ll S StLyC D kot (71)
k=1 k=1
= O(8t?) (72)
Therefore:
st = 00 4 f(9)8t + €+ O(8t?) (73)

Therefore, we have a > 0 such that ||3L1/&J sth —f(sgt2)5t|] < ||€||+adt?
We define (55) the determlnlstlc near—contlnuous process with time dis-

cretization 0t defined by 3k+1 = sk + f(sk)ot. We have:

Hs((sf;l)U/&J _ glgt+1|| < ||S((552+1)U/&J _ SZEI/&J _ f(slg‘tgl/&)ot|| + ” kU/&J + f(s kll/&J) _ §l§t+1”
(74)

We know that H (krLL/8] _ ’“E/&J —f(s’;gl/&J)étH < |||l +adt?. Moreover:

k dt k ot ~ 5t ot -
IsEE/ %0 4 (L6 — gt < sELY gk e p(sELY M) — p(Eh)|
(75)
<(1+ Ly 5t)||s’““/5” &) (76)
Therefore, we have:
IsUsFOU bl < iy || + adt® + (1 + Lyét) st /™ — 35| (77)
By induction, and by taking k = |t/dt]:
K[1/%) adt o ;
Ishs /™ — 84l < ffeXp(Lft) + (4oL (78)
=0

10

Therefore, if € > 0, we have :

Lt/

- ; adt
P (lls’™ =5kl >) <P [- (4Ll > & = T exp(Lst)
j=0 i
(79)
E [z“/‘”(l + L) &
< (80)
€— L—f % exp(Lyst)
E[I¢ exp(Lt))
Te—- exp(Lft) Lot
(82)
But E[||¢]]] < VE[E]?] < o6t®2. Therefore, we have:
P (|lsyf MU 55 > £) = o(Vat) (83)

Therefore, the process t — Sl‘t/ otjL1/et] converges in probability to s.
Furthermore, by a similar argument than in Lemma 1, we know that the
discretized process § converge to the continuous process defined by % =
f(st). We can conclude ou result.

O]

2 Implementation details

All the details specifying our implementation are given in this section. We
first give precise pseudo code descriptions for both Continuous Deep Advan-
tage Updating (Alg. 1), as well as the variants of DDPG (Alg. 2) and DQN
(Alg. 3) used.

For DDPG and DQN, two different settings were experimented with:

e One with time discretization scalings, to keep the comparison fair. In
this setting, the discount factor is still scaled as ¥, rewards are scaled
as rdt, and learning rates are scaled to obtain parameter updates of
order dt. As RMSprop is used for all experiments, this amounts to
using a learning rate scaling as a@ = a%dt, o™ = a"ot.

e One without discretization scalings. In that case, only the discount
factor is scaled as 4%, to prevent unfair shortsightedness. All other

11

Algorithm 1 Discrete DAU
Inputs:
6 and v, parameters of Vy and /_11/,.
7exXPlore and vg defining an exploration policy.
opty, opta, a6t and a*ét optimizers and learning rates.
D, buffer of transitions (s, a, 7, d, s'), with d the episode termination signal.
&t and ~y, time discretization and discount factor.
nb_epochs number of epochs.
nb_steps, number of steps per epoch.
nb_learn, number of learning step per epoch
N, training batch size

Observe initial state s°
t<0
for e = 0, nb_epochs do
for j = 1,nb_steps do
at — 7.(.explore(5t7 Vgt)
Perform a' and observe (r'*! dtt1 stt1),
Store (s',al,ri*1, dt*1 st+1) in D.
t—t+1
end for
for k = 0,nb_learn do
Sample a batch of N random transitions from D
for i=0, N do
5Q" <—5t(fl¢(si, a’) — A¢(si,7r¢(si)))
= (ri6t+ (1= d')y™Va(s") = V(s
end for N
A %l; 6Q 3951:‘/9(8)

N Q%0 (A¢(si,ai)—maxﬁw(si,a’))
A+ £ 3 of
i=1
Update 6 with opty, Af and learning rate o' ot.
Update) with opts, At and learning rate adt.
end for
end for

12

Algorithm 2 DDPG

Inputs:

Y and ¢, parameters of @)y, and 7g.

¢ and ¢, parameters of target networks Qv and my .

7e*Plore and v defining an exploration policy.

optg, opt,, a? and o™, optimizers and learning rates.

D, buffer of transitions (s, a, 7, d, s'), with d the episode termination signal.
~ discount factor.

T target network update factor.

nb_epochs number of epochs.

nb_steps, number of steps per epoch.

Observe initial state s°
t<+0
for e = 0,nb_epochs do
for j = 1,nb_steps do
CLk Y 71.explore(sk7 Vk).
Perform a* and observe (rF+1, dFt+1 sk+1),
Store (s¥,ak, r*+1, dF+1 k1) in D,
k< k+1
end for
for £k = 0,nb_learn do
Sample a batch of N random transitions from D

Q' 1+ (1= d')yQui (s, (s)
N . ~. . .
Mg e 5 Q- @) 0,Q(s')

Ap <+ x ; 0aQy (8", my(8"))0pms(s")

Update ¢ with optg, At and learning rate a?.
Update ¢ with opt,, A¢ and learning rate o™.
YT+ (1= 1)
¢ —T1d+(1—7)p
end for
end for

13

Algorithm 3 DQN

Inputs:

1 parameter of Q.

', parameters of target networks Q.
7e*Plore and v defining an exploration policy.

optg, a® optimizer and learning rate.

D, buffer of transitions (s, a,r,d, s'), with d the episode termination signal.
~ discount factor.

T target network update factor.

nb_epochs number of epochs.

nb_steps, number of steps per epoch.

Observe initial state s°
t<0
for e = 0, nb_epochs do
for j = 1,nb_steps do
ak — 7.(.explore(8k7 I/k>.
Perform a* and observe (rF+1 @ktl sk+1),
Store (s¥,ak, rk+1 @+l k1) in D,
k—k+1
end for
for £ = 0,nb_learn do
Sample a batch of N random transitions from D
Qi+ (1— di)vmgmew/(s’i, a)
a

N . ~ . . .
Ay 5 (Qz - QZ> 95Q(s', ')
Update ¢ with optg, At and learning rate a®.
PP+ (L-1)
end for
end for

14

parameters are set with a reference &y = le — 2. For instance, for
all &t’s, the reward perceived is 7 * dty, and similarily for learning
rates, a®? = a9y, a™ = a9tg. These scalings don’t depend on the
discretization, but perform decently at least for the highest discretiza-
tion.

2.1 Global hyperparameters

The following hyperparameters are maintained constant throughout all our
experiments,

e All networks used are of the form

Sequential (
Linear(nb_inputs, 256),
LayerNorm(256) ,

ReLUQ),

Linear (256, 256),
LayerNorm(256),

ReLUQ),

Linear (256, nb_outputs)

Policy networks have an additional tanh layer to constraint action
range. On certain environments, network inputs are normalized by
applying a mean-std normalization, with mean and standard devia-
tions computed on each individual input features, on all previously
encountered samples.

e D is a cyclic buffer of size 1000000.

e nb_steps is set to 10, and 256 environments are run in parallel to
accelerate the training procedure, totalling 2560 environment interac-
tions between learning steps.

e nb_learn is set to 50.

e The physical 7 is set to 0.8. It is always scaled as v* (even for unscaled
DQN and DDPG).

e N, the batch size is set to 256.

15

RMSprop is used as an optimizer without momentum, and with o =
1 =4t (or 1 — &ty for unscaled DDPG and DQN).

Exploration is always performed as described in the main text. The
OU process used as parameters kK = 7.5, o = 1.5.

v

Unless otherwise stated, a; := a9 = a¥ = a? = 0.1, ap := &" =

o™ = 0.03.

e 7=20.9

2.2 Environment dependent hyperparameters

We hereby list the hyperparameters used for each environment. Continuous
actions environments are marked with a (C), discrete actions environments

with a (D).

e Ant (C): State normalization is used. Discretization range: [0.05,0.02,0.01,0.005,0.002].

Cheetah (C): State normalization is used. Discretization range:
[0.05,0.02,0.01,0.005,0.002]

Bipedal Walker (C)?: State normalization is used, g = 0.02. Dis-
cretization range: [0.01,0.005,0.002,0.001].

Cartpole (D): ap = 0.02, 7 = 0. Discretization range: [0.01,0.005,0.002,0.001, 0.0005].

Pendulum (C): ap = 0.02, 7 = 0. Discretization range: [0.01,0.005,0.002,0.001, 0.0005].

3 Additional results

Additional results mentionned in the text are presented in this section.

2The reward for Bipedal Walker is modified not to scale with . This does not introduce
any change for the default setup.

16

ot

P
L
£

0.005

0.002

NEE
MERXKEN
KK
KEKKX
KKKKX

), .
LT ¥xx¥rc

Physical time (minutes) Physical time (minutes)

0.001

\
-~

0.0005

NKX XK
MKKXK
KEKKKX :

LLadqi

#
—

Figure 1: Policies obtained by DDPG (unscaled version) and AU at different
instants in physical time of training on the pendulum swing-up environment.
Each image represents the policy learnt by the policy network, with x-axis
representing angle, and y-axis angular velocity. The lighter the pixel, the
closer to 1 the action, the darker, the closer to —1.

ot

0.01

0.005

X
24,11
KREKKX

v
Y

0.002

PASK

0.001

8 12 16 20 4 12 16 20
>

Physical time (minutes) Physical time (minutes)

’

0.0005

LYo CE
KEKKKX :
KKKKKX
X RKKN

0] 3 Ball ¢
wy
-t b
b

‘MBE RN

Figure 2: Policies obtained by DDPG (scaled version) and AU at different
instants in physical time of training on the pendulum swing-up environment.
Each image represents the policy learnt by the policy network, with x-axis
representing angle, and y-axis angular velocity. The lighter the pixel, the
closer to 1 the action, the darker, the closer to —1.

8t DDPG DAU

- W i i VA A

- PP VAP Wl VAV A

- PN VA VAV

-~ RYME VAAVALDE

-~ IEEEER
4 8 12 16 20 4 8 12 16 20

Physical time (minutes) Physical time (minutes)

Figure 3: Value functions obtained by DDPG (scaled version) and AU at
different instants in physical time of training on the pendulum swing-up
environment. Each image represents the value function learnt, with x-axis
representing angle, and y-axis angular velocity. The lighter the pixel, the
higher the value.

Pendulum Bipedal Walker Cartpole

0-
=250 -

~500 -

750 -

Scaled return

—1000 - Jf
—1250

~1500 -

-1750- . A — —— . |
00 02 04 06 08 10 12 14 16 0 2 4 6 8 10 12 14 16 0o 05
Physical time (hours) Physical time (hours)

10 15 20 25 30 35
Physical time (hours)

Ant Cheetah

6000 -

Scaled return

coes

5.008-04 500602

—2000 -
ov

o 20 40 60 80 100 120 140 o 20 40 60 80 100 120 140 300803 e discretization (log scale) e

Physical time (hours) Physical time (hours)

Figure 4: Learning curves for DAU and DDPG (scaled) on classic control
benchmarks for various time discretization &: Scaled return as a function
of the physical time spent in the environment.

18

