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Abstract
Variational autoencoders (VAEs) have received
considerable attention, since they allow us to learn
expressive neural density estimators effectively
and efficiently. However, learning and inference
in VAEs is still problematic due to the sensitive
interplay between the generative model and the
inference network. Since these problems become
generally more severe in high dimensions, we
propose a novel hierarchical mixture model over
low-dimensional VAE experts. Our model de-
composes the overall learning problem into many
smaller problems, which are coordinated by the hi-
erarchical mixture, represented by a sum-product
network. In experiments we show that our models
outperform classical VAEs on almost all of our ex-
perimental benchmarks. Moreover, we show that
our model is highly data efficient and degrades
very gracefully in extremely low data regimes.

1. Introduction
Accurately estimating the probability distribution of high-
dimensional data is a central and long standing goal in un-
supervised learning. Given an accurate joint model over the
random variables of interest allows us to answer – in princi-
ple – any statistical question we might have about our data,
such as inferring (conditional) marginal distributions, com-
puting expectations, imputing missing data, and sampling
new data instances.

Variational Autoencoders (VAEs) (Kingma & Welling,
2014) provide a particularly flexible approach to den-
sity estimation. The VAE model defines an infinite mix-
ture

∫
p(x | f(z; θ)) p(z) dz, where prior p(z) is typically

isotropic Gaussian, f is a neural network parametrized by
θ, and p(x | f(z; θ)) is some “simple” distribution, e.g. in-
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Figure 1. Our proposed hierarchical decompositional mixture over
variational autoencoders, a divide-and-conquer scheme which ame-
liorates learning and inference in comparison to classical VAEs.
The overall variable scope x is split into L sub-scopes x1, . . .xL,
following the structure of a sum-product network (SPN). Each
sub-scope is modeled by an expert, represented by a variational
autoencoder (VAE), which constitute the leaves of the SPN. In
the generative process (depicted with solid lines), the SPN proba-
bilistically selects a combination of VAE experts, each of which
generates its part of the scope. The inference process (depicted
with dashed lines) utilizes local inference networks for each VAE,
yielding local estimates for the evidence-lower-bound (ELBO).
The local estimates are fed into the SPN, yielding an ELBO esti-
mate for the entire model (Theorem 2). See supplementary for an
extended version of this figure.

dependent Gaussian, Bernoulli, etc. Classically, this model
has been known as density network (MacKay, 1995), and in-
ference was performed using Monte Carlo methods, which
do not scale well to large datasets. Kingma & Welling
(2014) improved the applicability of this model by using an
inference network to amortize the inference effort over data
instances (Gershman & Goodman, 2014), applying stochas-
tic variational inference (SVI) for optimizing the evidence
lower bound (ELBO) (Paisley et al., 2012; Hoffman et al.,
2013), and employing the re-parametrization trick (Titsias
& Gredilla-Lázaro, 2014; Rezende et al., 2014) to reduce
the variance in gradient estimates of the ELBO.

However, inference and learning in VAEs are still problem-
atic. For the one, the additional approximation introduced
by amortization is generally compensated by the generative
model, leading to deteriorated learning (Cremer et al., 2018).
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On the other hand, improving inference quality, e.g. by us-
ing more samples in importance weighted autoencoders
(IWAEs) (Burda et al., 2016), might impair the learning sig-
nal for the inference network (Rainforth et al., 2018). These
problems with learning VAEs can be expected to become
harder for data of higher dimensionality.

Therefore, in this paper, we propose a natural divide-and-
conquer approach and propose a novel structured density
estimator, formulated as a hierarchical decompositional mix-
ture over VAEs. The hierarchical mixture part of our model
is represented by a sum-product network (SPN) (Poon
& Domingos, 2011). SPNs naturally implement the de-
sired divide-and-conquer approach, by using mixtures (sum
nodes) and factorization (product nodes) in a recursive and
nested structure, captured by a directed computational graph.
The inputs (leaves) to this graph are distribution functions
over a (typically small) sub-set of the model variables. A
major advantage of SPNs is, that they permit a large variety
of tractable inference routines. For example, evaluating the
represented density or any of its sub-marginals can be done
exactly and efficiently, provided that the leaf distributions
allow the corresponding operations.

The key observation used in this paper is that SPNs allow
arbitrary representations for the leaves – also intractable
ones like VAE distributions. The idea of this hybrid model
class, which we denote as sum-product VAE (SPVAE), is
to combine the best of both worlds: On the one hand, it
extends the model capabilities of SPNs by using flexible
VAEs as leaves; one the other hand, it applies the above
mentioned divide-and-conquer approach to VAEs, which
can be expected to lead to an easier learning problem. Since
SPNs can be interpreted as structured latent variable mod-
els (Zhao et al., 2015; Peharz et al., 2017), the generative
process of SPVAEs can be depicted as in Fig. 1 (solid lines).

While defining an SPVAE distribution imposes no theoret-
ical problem, it is not immediately clear how to perform
inference and learning in these models. Fortunately, as
shown in this paper, SPNs and VAEs play very well to-
gether: In Theorem 1 we show that SPN inputs – normally
required to be probabilities – can be replaced with local
ELBOs (i.e. over the variable scope captured by the leaf),
yielding an ELBO of the overall SPVAE model at the out-
put. Furthermore, in Theorem 2, we show that the exact
local ELBOs can be replaced with Monte Carlo estimates
obtained from leaf-local inference networks, allowing us to
perform stochastic variational inference in SPVAEs. Thus,
the inference process in SPVAEs decomposes in the same
way as the generative process, as depicted in Fig. 1 (dashed
lines). Please see also the supplementary for a more detailed
version of Fig. 1.

We compare SPVAEs with classical VAEs on the MNIST,
CIFAR-10, and SVHN image datasets. For each dataset,

we consider two versions: i) interpreting images as con-
tinuous signals and using Gaussians for the VAE outputs,
and ii) interpreting images as discrete data on 0 . . . 255 and
using Binomial distributions as VAE outputs. On all of
these 6 benchmarks, SPVAEs clearly outperform classi-
cal VAEs in terms of test likelihood (estimated with 5000
importance-weighted samples). At the same time, due to
their decompositional nature, SPVAE models are almost
an order of magnitude smaller than VAEs. Moreover, we
show that SPVAEs are more data efficient than VAEs: on all
benchmarks we can reduce the amount of training data down
to ≈ 10%, without significantly deteriorating the test per-
formance. Even for extremely low data regimes, SPVAEs
degrade much more gracefully than VAEs.

The paper is organized as follows. In Section 2 we discuss
the required background and related work. In Section 3
we introduce our hybrid model and discuss learning and
inference. Section 4 presents our experiments and Section 5
concludes the paper. Proofs are deferred to Section 6.

2. Background and Related Work
Let x = (x1, . . . , xD) be a collection of random variables.
Our goal is to estimate the density p(x) (subsuming proba-
bility mass functions w.r.t. to some counting measure) of x
using a dataset of samples drawn i.i.d. from the underlying
distribution. In the following we discuss several approaches
relevant for this paper.

Density Networks A density network (DN) (MacKay,
1995) offers a flexible blackbox density estimator for high
dimensional data. In a DN, we postulate a K-dimensional
latent vector (code) z with isotropic Gaussian prior z ∼
N (0, I). The latent code is passed through a neural net-
work fθ parameterized by θ. The outputs of the neural
network parametrize some “simple” distribution (e.g. in-
dependent Normal, Bernoulli, etc) over the data x, i.e. θ
specifies a conditional distribution pθ(x | z) = p(x | fθ(z)).
Consequently, the modeled data distribution is p(x) =∫
p(x | fθ(z)) p(z) dz. When fθ is replaced with a linear

function, we recover traditional latent factor analysis. Thus,
DNs with a generic non-linear neural network yield a form
of non-linear latent factor analysis. Posterior inference and
learning in DNs is notoriously hard, and the Monte Carlo
inference methods proposed in (MacKay, 1995) do not scale
well to high-dimensional data.

Variational Autoencoders DNs have been re-discovered
in (Kingma & Welling, 2014), but were referred to as prob-
abilistic decoder. Kingma & Welling introduced several
techniques in order to make inference practical: i) they
introduced a second DN parametrized by φ, called the in-
ference network or probabilistic encoder, representing an
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approximate posterior qφ(z |x); ii) they train encoder and
decoder simultaneously by optimizing the evidence-lower-
bound (ELBO)

L = Eqφ [log pθ(x, z)− log qφ(z |x)] , (1)

using stochastic optimization (Paisley et al., 2012; Hoff-
man et al., 2013); iii) since gradient estimates of (1) have a
large variance, they re-parametrize z according to z = g(ε),
where g is differentiable and ε is a helper random variable
with some fixed distribution. This is commonly known as
the re-parametrization trick (Rezende et al., 2014; Titsias
& Gredilla-Lázaro, 2014; Schulman et al., 2015). The com-
bination of decoder (i.e. the generative DN) and encoder
(i.e. the inference network) is called variational autoen-
coder (VAE). Since a VAE is actually a combination of two
networks, also its application is typically twofold in practice:
On the one hand, the encoder can be used to embed the data
x into a latent space, while on the other hand, we might use
VAEs for density estimation (i.e. the decoder). This paper
puts emphasis on the latter. Thus, for the remainder of the
paper, we will refer to both DNs and VAEs simply as VAEs,
if a distinction does not matter.

Importance Weighted VAEs Burda et al. (2016) pointed
out that the common assumption of a completely factorized
posterior approximation imposes a strong assumption on
VAE learning. As a remedy, they propose an importance
weighted ELBO estimator

L̂k = log
1

k

k∑
i=1

pθ(x, zi)

qφ(zi |x)
, (2)

where zi are independent draws from the inference network.
For k′′ > k′ we have E[L̂k′′ ] ≥ E[L̂k′ ], i.e. the importance
weighted ELBO becomes increasingly tighter with larger k,
and for k → ∞, L̂k converges to the exact log-likelihood
log p(x). VAEs trained with (2) are usually denoted as
importance weighted VAEs (IWAEs).

Sum-Product Networks Sum-product networks (SPNs)
(Poon & Domingos, 2011) are a deep generalization of mix-
ture models. They model a high-dimensional distribution
using a recursive definition, utilizing the building blocks of
i) mixtures, i.e. convex combinations of distributions (i.e. a
non-negative linear combination with weights summing to
one), and ii) factorization. The structure of this recursive
arrangement is captured by an acyclic directed graph G,
whose internal nodes represent the sum and product opera-
tions, each taken over the children in the graph. We assume
in this paper that G is connected and has a single root, which
represents the distribution over x modeled by the SPN.

The SPN structure G must obey two rules, namely complete-
ness, meaning that mixtures are taken only over distributions

with the same variable scope,1 and decomposability, mean-
ing that products are taken only over distributions with non-
overlapping scope. Consequently, product nodes effectively
split larger scopes into non-overlapping sub-scopes, i.e. they
implement a divide-and-conquer scheme. The basis of this
recursive scheme are user-provided distributions (over cer-
tain sub-scopes), which are represented by the leaves of
the SPN. Commonly used leaf distributions are parametric
forms such as Gaussian, Poisson, categorical, etc (Molina
et al., 2017; Vergari et al., 2019).

Since the sum nodes represent mixture models, SPNs can be
naturally interpreted as hierarchical latent variable models
(Zhao et al., 2015; Peharz et al., 2017). In particular, the
generative process in SPNs can be described as a hierarchi-
cal decision process, governed by the joint state of all sum
nodes. This process selects a set of leaves, whose scope is
a partitioning of the overall scope x. An exact sample is
then produced by simply concatenating samples from the
selected leaves.

Further Related Work In (Mocanu & Mocanu, 2018),
so-called mixtures of VAEs have been considered, which
are, however, no proper mixtures in a probabilistic sense
(which our model subsume). This work also does not dis-
cuss density estimation but rather considers an ensemble of
VAEs for classification tasks and one-shot learning. Goyal
et al. (2017) propose non-parametric VAEs for hierarchi-
cal representation learning. The hierarchical organization,
however, is restricted to the prior over latent code z, while
still a standard VAE decoder is used. This does not yield a
model with ameliorated inference, as in our case. Similarly,
both (Tomczak & Welling, 2018) and (Dilokthanakul et al.,
2016) introduce mixture priors to VAEs, but do not apply
a divide-and-conquer modeling approach, as in our case.
Ranganath et al. (2016) consider structured variational fam-
ilies, with the aim to increase expressivity of the variational
distribution and to structure the computational aspect of in-
ference. This approach is only very coarsely related to ours,
as we propose a novel hybrid model combining a tractable
model (SPNs) with an intractable one (VAEs). Ladder VAEs
(Sønderby et al., 2016) have as goal, similar as our paper, to
improve the density estimation of VAEs. To this end, they
propose a modified inference procedure, which is, however,
tailored to multiple stochastic layers, and requires dataset
dependent tuning of the variational objective. Ladder VAEs
could also be incorporated in our approach, but for simplic-
ity and generality we employ IWAEs in this paper. Johnson
et al. (2016) combined graphical models and VAEs; their
focus, however, lies on incorporating domain knowledge
into structured models, rather than improving density es-
timation. Recently, Stelzner et al. (2019) also proposed
a hybrid system combining SPNs and VAE-like inference

1In SPN jargon, scope denotes a subset of x.
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networks. Their approach, however, is diametrical to ours,
as they use SPNs within an intractable model, while we use
SPN over intractable models.

Furthermore, SPNs have been equipped with other expres-
sive models. The approach most similar in spirit to ours is
perhaps (Trapp et al., 2018), which uses an SPN structure
to combine Gaussian process experts. This model, how-
ever, puts into focus conditional models rather than density
estimation, and still uses tractable models as SPN leaves.
Our approach, however, is the first which uses expressive
intractable models as SPN leaves, which arguably extends
the model capabilities of SPN-based models.

3. Sum-Product Variational Autoencoders
In this section, we introduce our hybrid model combining
SPNs and VAEs. We start with a description of the genera-
tive process of our model.

3.1. Generative Model

In order to define SPVAEs, recall that SPNs are in fact
a “glue language” for specifying probability distributions.
Assume any given structure G of an SPN, where internal
nodes are either sums or products, and leaves are distribution
functions over some sub-scope of the overall collection of
random variables x. Furthermore, assume that the scope
sc(n) ⊆ x has been assigned to all nodes n ∈ G, and that G
satisfies the completeness and decomposability conditions,
cf. (Poon & Domingos, 2011) and Section 2.

Let LG be set of all leaves in G. Then the formalism of
SPNs guarantees that any choice of distribution functions pl,
where l ∈ LG , leads to a proper distribution function over
the whole scope x. In this paper, we opt for VAEs (in fact
DNs) as SPN leaf distributions, i.e. each leaf distribution is
of the form

pl(xl) =

∫
pθl(xl | zl) p(zl) dzl, (3)

where xl is shorthand for sc(l), and zl and θl are private
latent VAE codes and VAE decoder parameters for leaf l.

We can analyze the overall SPVAE distribution as follows.
Recall, that every sum node n in an SPN computes a convex
combination of its children:

pn(xn) =
∑

c∈ch(n)

wnc pc(xc), (4)

where ch(n) denotes the children of n, and wnc are the
sum-weights, satisfying

∑
c∈ch(n) wnc = 1, wnc ≥ 0, ∀c ∈

ch(n). As discussed in (Zhao et al., 2015; Peharz et al.,
2017), each sum node n is naturally associated with a latent
variable yn, whose states correspond to the sum’s children,

and which selects a state with probability wnc. Let y be
the collection of all yn for all sum nodes n ∈ G. Each
assignment for y selects a sub-structure of G, a so-called
induced tree T (Zhao et al., 2016). In particular, an induced
tree T is obtained from G by removing, for each sum node
n, all children which do not correspond to the state yn,
i.e. only the child corresponding to yn is kept. Furthermore,
all nodes and edges which cannot be reached from the root,
are deleted.

As shown in (Zhao et al., 2016), the SPN distribution can
always be written as

p(x) =
∑
T ∼G

∏
(n,c)∈T

wnc
∏
l∈LT

pl(xl), (5)

where the sum in (5) runs over all possible induced trees
obtainable from G. Note that

∏
(n,c)∈T wnc is the selection

probability for tree T . Moreover, one can show that the
scopes of the leaves LT always are a proper partition of x,
thus (5) is a proper mixture distribution over x. The number
of represented components is the number of induced trees,
which grows exponentially in the depth of the SPN.

Plugging the VAE leaves (3) into (5), we yield a compact
expression for the overall SPVAE distribution:

pSP (x) =
∑
T ∼G

∏
(n,c)∈T

wnc
∏
l∈LT

∫
pθl(xl | zl) p(zl) dzl.

(6)
Expression (6) highlights that SPVAEs combine two very
distinct types of mixture models in a hierarchical way: The
latent SPN variables y select a set of VAE leaves (via the
induced tree), which subsequently produce a sample over
their local scope via their generative process zl → xl. The
overall generative process of an SPVAE is illustrated in
Fig. 1 (solid lines) and in the supplementary.

3.2. Inference and Learning

If we could evaluate the integrals in (6) exactly, feeding them
into the SPN would yield an exact evaluation of the SPVAE
distribution at the SPN’s root. By taking gradients of this
evaluation we could perform maximum-likelihood learning
w.r.t. to the SPVAEs parameters, i.e. all sum-weights and the
parameters of leaf VAEs. Unfortunately, SPVAEs clearly
inherit the intractability of VAEs, i.e. marginalizing the zl’s
is hard and needs to be approximated.

A natural approach to perform inference in SPVAEs is to
follow the compositional structure of the generative pro-
cess also for inference. Consequently, we define for each
VAE leaf (3) a corresponding private inference network
qφl(zl |xl). Using this collection of inference networks, we
can replace each leaf distribution (3) with a lower bound,
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and define

LSP (x) = log

∑
T ∼G

∏
(n,c)∈T

wnc
∏
l∈LT

eLl(xl)

 , where

(7)

Ll(xl) = Eqφl [log pθl(xl, zl)− log qφl(zl |xl)]. (8)

Note that (7) is the log of the SPN’s output, when each VAE
leaf has been replaced by its corresponding exponentiated
local ELBO, restricted the the leaf’s scope. It turns out, that
LSP (x) is an ELBO for SPVAEs.
Theorem 1. Let an SPVAE with SPN structure G, sum-
weights w, and VAE leaves with decoder and encoder pa-
rameters θl, φl, for l ∈ LG be given. Then LSP (x) ≤
log pSP (x).

The proof is provided in Section 6. In some sense, Theo-
rem 1 states that “an SPN over leaf ELBOs is an ELBO
for the SPVAE distribution” (being slightly imprecise with
log and exp). Consequently, we could learn SPVAEs by
optimizing (7) jointly over sum-weights and all VAE param-
eters. Since the leaf-ELBOs Ll(xl) are hard to compute, we
would replace them with Monte Carlo estimates, as e.g. (2),
and apply stochastic optimization (Hoffman et al., 2013).

However, it is not immediately clear, whether using esti-
mates for the leaf-ELBOs is a valid approach, since (7) is a
non-linear function, and a non-linear function of unbiased
estimators is generally biased. Moreover, since (7) is ac-
tually a large logsumexp operation over leaf-ELBOs, we
would introduce a positive bias, since logsumexp is convex.
Thus, optimizing a lower bound with an unknown positive
bias is not well justified.

Fortunately, it turns out that SPNs are benign in this regard,
and play well together with the IWAE ELBO.
Theorem 2. Let an SPVAE with SPN structure G, sum-
weights w, and VAE leaves with decoder and encoder pa-
rameters θl, φl, for l ∈ LG be given, and define

L̂SP,k(x) = log

∑
T ∼G

∏
(n,c)∈T

wnc
∏
l∈LT

eL̂l,k(xl)

 , (9)

where L̂l,k(xl) is the k-sample IWAE estimator for leaf l,
cf. (2). Then L̂SP,k(x) is an unbiased estimator for some
lower bound of log pSP (x).

The proof is provided in Section 6. Theorem 2 gives us
license for a simple implementation of variational learning,
illustrated in Algorithm 1.

3.3. SPVAE Structure

While Algorithm 1 allows us to learn the model param-
eters w, θ1:L and the inference parameters φ1:L simulta-

Algorithm 1 Stochastic Variational EM for SPVAE

input SPN structure G with L = |LG | leaves
initialize sum weights w
initalize VAE parameters θ1:L, φ1:L
while stopping criterion is false do
L̂ ← 0
for x in minibatch do

for l ∈ LG do
draw k samples zl,1 . . . zl,k from qφl(zl |xl)
L̂l ← log 1

k

∑k
i=1

pθl (xl,zl,i)

qφl (zl,i |xl)
end for
L̂SP,k ← SPN evaluation with eL̂l instead of pl(xl)
L̂ ← L̂+ L̂SP,k

end for
gradient ascent step with∇w,θ1:L,φ1:L

L̂ (autodiff)
end while

output w, θ1:L, φ1:L

neously and end-to-end, we were assuming that the SPN
structure G and scope assignments sc(n) for each node n are
already given. Structure learning is an actively researched
field in SPNs, and various strategies have been proposed
to obtain G in a data-driven way, as for example top-down
co-clustering (Dennis & Ventura, 2012; Gens & Domin-
gos, 2013; Rooshenas & Lowd, 2014; Vergari et al., 2015;
Molina et al., 2018), bottom up learning based on the in-
formation bottleneck (Peharz et al., 2013), hard EM (Kalra
et al., 2018), and graph partitioning (Jaini et al., 2018). Also,
using random SPN structures has been recently considered
in (Peharz et al., 2018). Each of these algorithms can be
used, possibly with some adaption, to provide an SPN struc-
ture for Algorithm 1.

In this paper, we focus on image datasets, and leverage
an SPN structure tailored to images, as proposed in Poon
& Domingos (2011). This algorithm starts with a D ×D
image, and recursively considers all possible axis-aligned
splits with a certain step-size ∆. This recursive splitting
process stops when the dimensions of an obtained sub-image
falls below ∆×∆. We denote the rectangles which are not
split further as leaf regions, and the other rectangles as
internal regions. Each leaf region is equipped with Kleaf
VAEs and each internal region with Ksum sum nodes – the
corresponding region for each of these nodes represents
their scope in the final SPVAE. The root region, the original
D×D image, is equipped with only 1 sum, which represents
the SPVAE’s output. Finally, for each possible axis-aligned
split, we take all cross-products of distributions contained
in the sub-rectangles, and connect them as children of the
sums in the parent rectangle. This construction scheme is
guaranteed to deliver a complete and decomposable SPN
(Poon & Domingos, 2011). Note that for larger ∆, the
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SPN part becomes larger and the scope modeled by the
VAE leaves smaller. Thus, in our experiments we select a
reasonable choice for ∆, in order to balance the SPN and
VAE parts. Please see the supplementary for a small but
complete example of the employed structure.

4. Experiments
We performed experiments on three common visual
datasets,2 namely MNIST (LeCun et al.), containing 28×28
images of hand-written images, Street View House Numbers
(SVHN) (Netzer et al., 2011), containing 32× 32 images of
house numbers, and CIFAR-10 (Krizhevsky, 2009), contain-
ing 32× 32 images of natural objects. For our experiments,
SVHN and CIFAR-10 were converted to 8-bit gray images.
For each dataset, we considered two modeling approaches,
namely i) interpreting pixels as continuous values on the
interval [0, 1], and ii) interpreting pixels as discrete values
in {0, . . . , 255}.

The following setting was applied to all VAEs, both for clas-
sical VAEs and SPVAE leaves. When interpreting pixels as
continuous, all VAE decoders return pixel-wise means and
standard deviations, parameterizing Gaussian distributions.
When interpreting pixels as discrete, all VAE decoders re-
turned a success probability for each pixel, parameterizing
Binomials with N = 255. All decoders and encoders were
implemented using multilayer perceptions (MLP) with soft-
plus activation. During training, we consistently used 5
importance weighted samples for ELBO estimates (2).

The SPN part of our models was constructed by applying
the Poon-Domingos structure (Poon & Domingos, 2011),
see also Section 3.3, where we used ∆ = 7 for MNIST and
∆ = 8 for SVHN and CIFAR-10. That is, for all datasets,
the SPN dictates a recursive split of the overall image into
a 4× 4 array of super-pixels, where the super-pixel size is
7× 7 for MNIST and 8× 8 for SVHN and CIFAR-10.

For simplicity and in oder to demonstrate the efficacy of the
SPVAE approach, we usedKsum = 2 sum nodes per internal
region and Kleaf = 2 VAEs per leaf region (super-pixel).
Thus, in total we have 32 VAEs which are governed by the
SPN. In particular, since the SPN must essentially select
one VAE per super-pixel, this instance of SPVAEs can be
understood as a mixture of 216 = 65536 components, each
component being a product of 16 VAE distributions. For
numerical stability, all SPN operations were transformed
into the log-domain, i.e. the inputs were regular ELBO
estimates (rather than exponentiated ones), products were
replaced with sums, and sums with log-sum-exp operations.
Sum parameters were also represented in the log-domain
and their normalization was ensured by subtracting their log-

2Code available under https://github.com/
cambridge-mlg/SPVAE.

Table 1. Performance on test set, 5000-sample IWAE ELBO

Continuous Discrete

mnist svhn cifar mnist svhn cifar

SPVAE 2819 1936 1283 -1532 -3891 -5543
VAE 2598 1442 896 -2351 -4965 -7200

Conv-SPVAE 2702 2101 1397 -927 -3666 -4562
Conv-VAE 2907 1896 1191 -2099 -4115 -6752

Table 2. Model size (in thousands of parameter) of best performing
VAEs and SP-VAEs

model Continuous Discrete

mnist svhn cifar mnist svhn cifar

SPVAE 413 511 511 310 461 353
VAE 1545 1713 1653 1158 3108 3288

Conv-SPVAE 1259 1604 1028 1257 1603 1026
Conv-VAE 894 1219 1219 894 1436 1219

sum-exp. We implemented all models in Tensorflow (Abadi
M. et al., 2015) and used Adam (Kingma & Ba, 2015) with
its default parameters for optimizing the respective ELBOs.
We used a batch size of 128 throughout all our experiments.

The quality of density estimation in VAEs and SPVAEs de-
pends both on the model size and the dimensionality of the
latent codes. Thus, we treated the number of hidden units
H per neural network layer and the dimensionality nz of
latent VAE codes as hyper-parameters, and cross-validated
them on a validation set. For MNIST, we randomly selected
10k images from the training set for the validation set; for
CIFAR-10, the 60k images were randomly divided into sets
of sizes 40k / 10k / 10k, which were used as training, vali-
dation, and test sets. For SVHN, we used the first 26032 im-
ages from the extra set as validation set (i.e. of the same size
as the test set). The sameH was used for each layer (decoder
and encoder), and in the case of SPVAEs, for each VAE leaf.
In order to keep the sizes of the overall models comparable,
we used ranges nz ∈ {1, 2, 5, 25, 50, 100, 150, 200}, H ∈
{30, 100, 300, 600} for VAEs, and nz ∈ {1, 2, 5, 25, 50},
H ∈ {8, 16, 32} for SPVAEs.

No regularization was applied, but we used early stopping
in order to prevent overfitting. In particular, we evaluated
the training progress on the validation set every 128 batches
and stop training if the performance on the validation set
decreased five times consecutively. After early stopping, we
restore the model to the point of best performance on the
validation set and report the log-likelihood on the test set,
estimated using a 5000-sample IWAE ELBO.

Results are presented in Table 1. We see that SPVAEs clearly
outperform classical VAEs on all 6 benchmarks, often by
a considerable margin. Moreover, as shown in Table 2, the
model sizes for SPVAEs are almost an order of magnitude
smaller than for VAEs. This stems from the fact, that rather
small MLPs were used in the SPVAE leaves, and that the

https://github.com/cambridge-mlg/SPVAE
https://github.com/cambridge-mlg/SPVAE
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Figure 2. Degradation of test ELBO as training set size is reduced. Dashed lines are for SPVAEs, solid lines are for VAEs. Left: results
for continuous models (conditional Gaussian). Right: results for discrete models (conditional Binomial).

weigth matrices grow quadratically in the number of hidden
units. In order to make sure, that the better performance
of SPVAEs does not stem from using a “deeper” model,
we also trained VAEs with 3 hidden layers. This, how-
ever, yielded worse results than for 2-layer VAEs. These
results speak clearly in favor for SPVAEs, and the divide-
and-conquer approach to density estimation they implement.

A potential caveat might be that the used SPN structures im-
plement a convolution-like operation, and that the improved
performance stems from this additional structure. There-
fore, we repeated our experiments, but where all VAEs
were replaced with convolutional VAEs (Conv-VAEs). Ad-
ditionally, since also our models can be equipped with
ConvNets, we also tried SPVAEs equipped with convo-
lutional VAE leaves (Conv-SPVAEs). For Conv-VAEs,
we used two 3 × 3 convolutional layers with 32 and 64
filters, respectively, applying stride 2 × 2, followed by
a fully connected layer. We cross-validated the number
of units in the fully connected layer in {32, 64, 128} and
nz ∈ {1, 2, 5, 25, 50, 100, 150, 200}. For Conv-SPVAEs,
we used two 3× 3 convolutional layers with 4 and 8 filters,
respectively, applying stride 1× 1 (due to the small scopes
of VAE leaves), and also followed by a fully connected
layer. We cross-validated the number of units in the fully
connected layer in {8, 32, 64} and nz ∈ {1, 2, 5, 25, 50},
for each leaf.

The results for the convolutional variants are shown in the
lower segments of Tables 1 and 2. We see, that convolutional
structures help both Conv-VAEs and Conv-SPVAEs. Gen-
erally, our hybrid models still improve over regular Conv-
VAEs, except on continuous mnist, where Conv-SPVAEs
are even worse than SPVAEs. This outlier result might stem
from an unfortunate parameter intialization.

4.1. Low Data Regime

Furthermore, we investigated data efficiency in learning SP-
VAEs and VAEs. Reliably estimating a density in many
dimensions becomes significantly harder compared to low
dimensional problems, a problem frequently coined as the
“curse of dimensionality”. Since SPVAEs decompose an
overall density estimation problem into smaller “orches-
trated” ones, we could also expect that they learn in a more
data efficient way. To this end, we artificially reduce the
amount of data in the training set, and compare the SPVAE
and VAE performances. We randomly downsampled the
training set, reducing its size first linearly in steps of 10%
from 100% to 10% and then exponentially from 10% to
0.5% in 3 steps. Both SPVAE and VAE were trained on the
same reduced training sets. The hyperparameters and latent
dimensions for each model were cross-validated, as in the
experiments over the whole datasets.

In Figure 2, we see that SPVAEs are indeed dramatically
more data efficient than VAEs. As the training set is reduced,
we see that VAE’s performance on the test set remains rela-
tively stable until some point, beyond which its performance
decreases at an accelerating rate. The same phenomenon
happens for SPVAEs, except that they consistently outper-
form standard VAEs, remain stable for a greater reduction
in training set size (until ≈ 10%). Furthermore, at the most
extreme reduction of dataset size, they degrade by a smaller
amount from their peak performance.

4.2. Latent Space of SPVAEs

Finally, VAEs allow to retrieve a latent embedding of the
modeled data via their inference network. SPVAEs can
be used in a similar way, by retrieving latent embeddings
for both the leaf VAEs and the SPN, by interpreting the
latent variable semantic in SPNs as probabilistic encoder,
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(a) ’Left’ VAE (b) ’Right’ VAE

Figure 3. Latent space of the 32 SPVAE leaves trained on con-
tinuous MNIST. Each image in the 4 × 4 array is a latent space
representation, akin to (Kingma & Welling, 2014). The 4 × 4
array is arranged in the same way as the super-pixels in our SPN
structure. The assignment ’Left’ and ’Right’ VAE is arbitrary.

as explored in (Vergari et al., 2018). To give some insights
into the learned latent space of SPVAEs, we illustrate a
2-dimensional representation for each VAE leaf trained on
MNIST (continuous) in Fig. 3. This embedding was re-
trieved as in (Kingma & Welling, 2014), but for each VAE
leaf individually. We see that each VAE leaf learns a rea-
sonable latent embedding, which is distinct for the two
alternative VAEs in each leaf. Each of the VAEs specializes
to a certain sub-cluster of features occurring its assigned
super-pixel.

5. Conclusion
We presented SPVAEs, a novel structured model which com-
bines a tractable model (SPNs) and an intractable model
(VAEs) in a natural way. As shown in our experiments, this
leads to i) better density estimates, ii) smaller models, and
iii) improved data efficiency when compared to classical
VAEs. Future work includes more extensive experiments
with SPN structures and VAE variants. Furthermore, the
decompositional structure of SPVAEs naturally lends itself
towards distributed model learning and inference. We also
observed in our experiments that SPVAEs allowed larger
learning rates than VAEs (up to 0.1) during training. In-
vestigating this effect is also subject for future research.
A current downside is that the decomposed nature of SP-
VAEs cause run-times approximately a factor 5 slower than
for VAEs. However, the execution time SPVAEs could be
reduced by more elaborate designs, facilitating a higher de-
gree of parallelism, for example using vectorization and
distributed learning.

More generally, and in some sense complementary to the
results in (Stelzner et al., 2019), this paper demonstrates
that combining tractable probabilistic models and expressive
intractable models is a promising avenue for future research.

6. Proofs
Proof for Theorem 1. Each term Ll(xl) in (7) is the stan-
dard ELBO for leaf l. Thus eLl(xl) ≤ pl(xl), where pl(xl)
is the leaf distribution defined in (3). Due to non-negativity
of eLl(xl), it holds that

∏
l∈LT

eLl(xl) ≤
∏
l∈LT

pl(xl),
and moreover∑
T ∼G

∏
(n,c)∈T

wnc
∏
l∈LT

eLl(xl) ≤
∑
T ∼G

∏
(n,c)∈T

wnc
∏
l∈LT

pl(xl),

where the right hand side is the SPVAE distribution
(5), (6). The inequality holds since the mixture∑
T ∼G

∏
(n,c)∈T wnc . . . , applied to both sides, is a non-

negative combination. Taking the log completes the
proof.

Proof for Theorem 2. Recall that the k-
sample IWAE estimator for leaf l is given
as L̂l,k(xl) = log 1

k

∑k
i=1

pθ(xl,zl,i)
qφ(zl,i |xl) , where

zl = (zl,1, . . . , zl,k) are i.i.d. samples from qφl . Let
L = |LG | be the number of leaves in the SPN and z1:L
contain the zl’s for all leaves. The randomness of L̂SP,k(x)
stems entirely from z1:L, i.e. its expectation is given as
Ez1:L

[
log

[∑
T ∼G

∏
(n,c)∈T wnc

∏
l∈LT

eL̂l,k(xl)
]]

. Now,
we have

E[L̂SP,k] ≤ log

Ez1:L

∑
T ∼G

∏
(n,c)∈T

wnc
∏
l∈LT

eL̂l,k(xl)


(10)

= log

∑
T ∼G

∏
(n,c)∈T

wnc
∏
l∈LT

Ezl

[
eL̂l,k(xl)

]
(11)

= log

∑
T ∼G

∏
(n,c)∈T

wnc
∏
l∈LT

pl(xl)

 (12)

= log pSP (x). (13)

In (10) we apply Jensen’s inequality. In (11) the expectation
Ez1:L

is distributed over leaves. To see why this is a valid op-
eration, first note that Ez1:L

clearly commutes with the sum
over T and the product over wnc, as they do not depend on
z1:L. Furthermore, note that all zl are drawn independently
from each other, such that Ez1:L

can be written as nested
expectations, each over one zl. Since each factor in the in-
nermost product depends on exactly one zl, we an distribute
the expectations. In (12), we have Ezl

[
eL̂l,k(xl)

]
= pl(xl),

since eL̂l,k(xl) = 1
k

∑k
i=1

pθ(xl,zl,i)
qφ(zl,i |xl) , which is an unbiased

estimator for pl(xl). Finally, (13) holds by definition (3)
and (6), which completes the proof.
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