
Correlated Variational Auto-Encoders

Appendix
In the appendix, we first show the ELBOs for the CVAEs
under acyclic correlation graphs, as well as the derivation for
the ELBO of CVAEcorr (Eq. 8) for general correlation graphs.
Also we show the counter example mentioned in Section 3.1.
Then, we show the algorithm details for optimization with
the loss function in Eq. 9 and the proofs of Theorems 2 and
3. At the end, we provide more information related to the
models and inference settings.

A. ELBOs and Derivations
ELBO for CVAEind with acyclic graphs. CVAEind applies
a correlated prior pcorr

0 (z) as in Eq. 4. Therefore,

LCVAEind-acyclic
(�,✓)

=Eq�(z|x) [log p✓(x|z)]� KL(q
�

(z|x)||p0(z))

=

nX

i=1

⇣
Eq�(zi|xi) [log p✓(xi|zi)]� KL(q

�

(zi|xi)||p0(zi))
⌘

+

X

(vi,vj)2E

Eq�(zi|xi)q�(zj |xj) log
p0(zi, zj)

p0(zi)p0(zj)
.

(10)
This ELBO is a lower bound of the log probability p(x;✓)
under the correlated prior (as in Eq. 4). Optimizing this
ELBO helps the variational distributions to regularize ac-
cording to the correlation graph G.

ELBO for CVAEcorr with acyclic graphs. By changing q
to be the correlated distribution as in Eq. 5, the ELBO in
Eq. 10 becomes

LCVAEcorr-acyclic
(�,✓)

=

nX

i=1

⇣
Eq�(zi|xi) [log p✓(xi|zi)]� KL(q

�

(zi|xi)||p0(zi))
⌘

�
X

(vi,vj)2E

⇣
KL(q

�

(zi, zj |xi,xj)||p0(zi, zj))

� KL(q
�

(zi|xi)||p0(zi))� KL(q
�

(zj |xj)||p0(zj))
⌘
.

(11)

Derivation for Eq. 8. We derive the ELBO of CVAEcorr
(Eq. 8) for general correlation graphs here. Recall that Eq. 7
shows that

log p
✓

(x) � 1

|AG|
X

G02AG

⇣
EqG

0
� (z|x)[log p✓(x|z)]

� KL(qG
0

�

(z|x)||pG
0

0 (z))

⌘
.

By the definition of AG, the right hand side of the above
inequality equals the following sum

nX

i=1

⇣
Eq�(zi|xi) [log p✓(xi|zi)]� KL(q

�

(zi|xi)||p0(zi))
⌘

� 1

|AG|
X

G02AG

X

(vi,vj)2E0

⇣
KL(q

�

(zi, zj |xi,xj)||p0(zi, zj))

� KL(q
�

(zi|xi)||p0(zi))� KL(q
�

(zj |xj)||p0(zj))
⌘

The pairwise sum part of the above equation is an average
over a sum over all edges of all maximal acyclic subgraphs
of G. Therefore, for each edge e = (vi, vj) 2 E, the
number of times it appears in this pairwise sum part of the
above sum is just the number of maximal acyclic subgraphs
containing this edge. Therefore, this part can be viewed as a
weighed sum over all edges in E, where the weights come
from the fraction ratios in Definition 2. With this definition,
we can further write the above sum as

nX

i=1

⇣
Eq�(zi|xi) [log p✓(xi|zi)]� KL(q

�

(zi|xi)||p0(zi))
⌘

�
X

(vi,vj)2E

wMAS
G,(vi,vj)

⇣
KL(q

�

(zi, zj |xi,xj)||p0(zi, zj))

� KL(q
�

(zi|xi)||p0(zi))� KL(q
�

(zj |xj)||p0(zj))
⌘

= LCVAEcorr
(�,✓),

which is exactly Eq. 8.

B. Counter example for Section 3.1
In Section 3.1, we mentioned that directly applying the
ELBOs we derived (equations shown in Appendix A) will
fail partly due to that optimizing over these ELBOs may
lead the algorithm to learn useless parameters that lead the
loss goes to infinity due to that these two equations are
not guaranteed to be a lower bound of some log-likelihood
function for general graphs. Here we provide a simple
example to illustrate this.

Let us consider G = (V,E) is a K4 complete
graph with |V | = 4 vertices and

�|V |
2

�
= 6

edges. For simplicity, we consider the latent variables
z1, z2, z3, z4 2 R and the prior distribution p0(zi, zj) =

N
✓✓

zi
zj

◆
;µ = 02,⌃ =

✓
1 ⌧
⌧ 1

◆◆
for some ⌧ 2 (0, 1).

If we extend the CVAEind and for the variational distribution,
we set q(zi|xi) to be the normal distribution N(µi,�

2
i), by

Correlated Variational Auto-Encoders

simply apply Eq. 10, then the loss function becomes

L =

4X

i=1

⇣
Eq�(zi|xi) [log p✓(xi|zi)] + µ2

i �
1 + 2⌧2

2(1� ⌧2)
�2
i

+ ln(�i)

⌘
� 1

2(1� ⌧2)

X

1i<j4

(µ2
i + µ2

j � 2⌧µiµj).

If we maintain �i’s unchanged, set the model parameter ✓
in a way that makes p

✓

(xi|zi) unrelated to zi (e.g. set the
parameter that multiply with zi to be 0) and set µ1 = µ2 =

µ3 = µ4 = µ and let µ ! 1, then L will go to +1 if
⌧ > 1

2 . Therefore, directly applying Eq. 10 does not work.
Directly applying Eq. 11 (i.e. extending the CVAEcorr) will
make the result even worse since it always has an optimal
value at least as high as Eq. 10. In general, any general
graphs with K4 subgraph may suffer from the issue we just
mentioned. We can not obtain useful latent embeddings by
directly applying the Eqs. 10 and 11.

C. Algorithm details for optimization with the
loss LCVAEcorr-NS(�,✓)

We show the details of optimization with the loss
LCVAEcorr-NS

(�,✓) (Eq. 9) as in Algorithm 2.

Algorithm 2 Optimization with the loss LCVAEcorr-NS
(�,✓)

Input: undirected graph G = (V = {v1, . . . , vn}, E),
input data x1, . . . ,xn, the parameter � > 0.
Compute the edge weights wMAS

G,e using Algorithm 1.
Initialize the parameters �, ✓.
while Not converged do

Compute the gradient r
�,✓LCVAEcorr-NS

(�,✓).
Update the parameters � and ✓ using this gradient.

end while
Return The parameters �, ✓.

If we subsample the vertices in V for the singleton part of
this loss, subsample edges in E for the “positive” sample
pairwise mart of this loss and subsample edges of the com-
plete graph Kn for the “negative” sample pairwise part of
this loss, then we get the stochastic optimization version for
this algorithm.

D. Proofs
We prove the Theorems 2 and 3 here.

D.1. Proof of Theorem 2

Proof. Given the graph G = (V,E) and the edge (vi, vj) 2
E. Denote G’s Laplacian matrix as L. Also denote L�a,�b

as the sub-matrix of L after deleting the ath row and the

bth column. Denote L�ab,�cd as the sub-matrix of L after
deleting the ath, bth rows and the cth, the dth columns.

By Matrix Tree Theorem (Theorem 1 (Chaiken & Kleitman,
1978)), we know that the (i, i)-cofactor Ci,i = |L�i,�i| is
the number of spanning trees of G.

Construct a graph G0
= (V,E/{vi, vj}), i.e. the graph

G after removing the edge (vi, vj). Denote the Laplacian
matrix of G0 as L0. Then we will find that the matrix L0

�i,�i

is the same with L�i,�i except that they L�i,�i is 1 larger
than L0

�i,�i on the entry at (j, j). By Matrix Tree Theorem,
|L0

�i,�i| is the number of spanning trees of G0. Since G
differs from G0 by only having one more edge (vi, vj), we
know that |L�i,�i| � |L0

�i,�i| represents the number of
spanning trees in G that contains the edge (vi, vj).

Denote the entry at (j, k) of L�i,�i as L�i,�i;j,k. Since we
know that

8
><

>:

|L�i,�i| =

P
k 6=i

(�1)

j+kL�i,�i;j,k|L�ij,�ik|,

|L0
�i,�i| =

P
k 6=i

(�1)

j+kL0
�i,�i;j,k|L0

�ij,�ik|.

Subtract the second equation from the first one we get

|L�i,�i|� |L0
�i,�i| = (�1)

2j |L�ij,�ij |

which is just the complement of the Minor Mij,ij of L.
Hence, the number of spanning trees of G that contains the
edge (vi, vj) is Mij,ij , the determinant of the sub-matrix of
the Laplacian matrix L of G, after deleting the the ith, jth
rows and the ith, the jth columns.

D.2. Proof of Theorem 3

Proof. We borrow the notations from Appendix D.1. Given
the undirected connected graph G = (V,E) and an edge
(vi, vj) 2 E, we want to compute the ratio wMAS

G,(vi,vj)
. Since

G is connected, this ratio is just the fraction of G’s spanning
trees containing the edge (vi, vj). By Theorem 1 and 2, this
ratio is just |L�ij,�ij |

|L�i,�i| .

Since G is connected, it contains at least one spanning tree.
Hence |L�i,�i| > 0, which means L�i,�i is invertible.
Therefore, we know that |L�ij,�ij |

|L�i,�i| = L�1
�i,�i;j,j .

Consider the original Laplacian matrix L before deleting
any row and column. Denote |V | = n. Since L is always
symmetric and always have an eigenvector vn =

1p
n
1n

with corresponding eigenvalue �n = 0, we perform eigen-
value decomposition on L and write L as:

L =

nX

k=1

�ivkv
>
k =

n�1X

k=1

�ivkv
>
k .

Where �1, . . . ,�n�1,�n are L’s eigenvalues and
v1, . . . ,vn�1,vn are the corresponding orthogonal

Correlated Variational Auto-Encoders

unit eigenvectors (i.e. Qv =

�
v1 · · · vn�1 vn

�
is an

orthogonal matrix).

Denote va,b as the b-the coordinate of va and va,�b as the
sub-vector va after deleting the bth coordinate. Then

L�i,�i =

n�1X

k=1

�kvk,�iv
>
k,�i.

L�i,�i is invertible, which is of rank n� 1. While each of
the matrix vk,�iv

>
k,�i is of rank 1. Hence, we must have

�i 6= 0 for all i 2 {1, . . . , n� 1}.

Construct vectors u1, . . . ,un 2 Rn such that

uk,a =

(
vk,a � vk,i if a 6= i

vk,a if a = i.
(12)

Also, construct the matrix

U =

n�1X

k=1

��1
k uku

>
k .

Since we know that
�
v1 · · · vn�1 vn

�
forms an or-

thogonal basis and vn =

1p
n
1n, it is easy to see (after

simple calculations) that

uk,�i> · vk0,�i =

(
1 if k = k0

0 if k 6= k0.

Therefore, we will have

U�i,�iL�i,�i = In�1

which indicates that U�i,�i = L�1
�i,�i. Hence, the ratio we

want to find is just U�i,�i,j,j .

Recall the definition of u1, . . . ,un in Eq. 12, denote Qu =�
u1 · · · un�1 un

�
, we get Qu = PiQv , where

Pi =

0

BBBBBBBBBBBB@

1 �1

1 �1

. . .
...
1

�1 1

...
. . .

�1 1

�1 1

1

CCCCCCCCCCCCA

2 Rn⇥n

where the �1’s appear on the ith column. Hence, denote
D = diag(�1, . . . ,�n), we have

U = QuD
+Q>

u = PiQvD
+Q>

v P
>
i = PiL

+P>
i .

Therefore, the ratio wMAS
G,(vi,vj)

we want to find, which is
equal to U�i,�i;j,j , is just the (j, j)-entry of PiL

+P>
i ,

which is
L+
i,i � L+

i,j � L+
j,i + L+

j,j .

E. Additional experiment settings
We provide some additional information related to the mod-
els and inference settings here.

For all methods, we set the latent embeddings to have the
dimensionality d = 100.

For the standard VAEs, the CVAEind and the CVAEcorr , we
apply a two-layer feed-forward neural network for the gen-
erative model p

✓

(xi|zi) and a two-layer feed-forward neu-
ral network for the singleton variational approximations
q
�

(zi|xi). The model likelihood functions p
✓

(x|z)’s are
Multinomial distribution (for the user matching and link
prediction experiments) and Bernoulli distribution (for the
spectral clustering experiments). The singleton variational
approximations q

�

(zi|xi) are all diagonal normal distri-
butions. The singleton prior density function p0(·) is the
standard normal distribution.

For the CVAEs, we set the pairwise prior density function

p0(·) = N
✓
µ = 02d,⌃ =

✓
Id ⌧ · Id

⌧ · Id Id

◆◆
for ⌧ =

0.99. It can be seen that, the singleton prior density func-
tion p0(·) and the pairwise prior density function p0(·, ·)
satisfy the constraints in Eq. 2. For the CVAEcorr, we treat
q
�

(zi, zj |xi,xj) as a multivariate normal distributions such
that the covariance matrices Cov(zi, zi), Cov(zj , zj) and
Cov(zi, zj) are all diagonal matrices. Instead of only learn-
ing the singleton density function q

�

(·|·), the CVAEcorr also
learn a two-layer feedforward neural network that takes the
concatenation (xi,xj) as input and output the covariance
between zi and zj on each of these d dimensions. As a
result, q

�

(zi, zj |xi,xj) can be factorized as a product of d
bi-variate normal distributions, whose marginal distributions
on zi and zj are consistent with the singleton variational
approximations q

�

(zi|xi) and q
�

(zj |xj), respectively.

For GraphSAGE, we choose to use K = 2 aggregation
steps and use the mean aggregator function. We use Q = 20

negative samples to optimize the loss function.

For all methods, we apply stochastic gradient optimiza-
tions with a step size of 10�3. We use the Adam algorithm
(Kingma & Ba, 2015) to adjust the learning rates. All meth-
ods involve with stochastic batches with singleton terms.
For these terms, we use a batch size B1 = 64. For the
CVAEs, there are some pairwise terms of the sum involve
sampling edges from the graph G = (V,E) (i.e. the “posi-
tive sampling”) or sampling edges from the complete graph
Kn (i.e. the “negative sampling”). We use a batch size
B2 = 256 for sampling these pairwise terms.

