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Appendix
We analyze the geometric structure of VPNG to show its
insight. Then we provide more details for the experiments.

A. Analysis on the geometric structure of
VPNG

As discussed in Hoffman et al. (2013), the traditional nat-
ural gradient points to the steepest ascent direction of the
ELBO in the symmetric KL divergence space of the varia-
tional distribution q. Mathematically, for the ELBO function
as in Equation 1, the traditional natural gradient points to
the direction of the solution to the following optimization
problem, as ✏ ! 0:

argmax

��
L(�+��,✓)

s.t. KLsym(q(�)||q(�+��))  ✏.

In fact, denote ⌘ =

✓
�
✓

◆
, the reparameterization for z =

g(x, ";�) and p
x

0
(⌘) = p(x0 | z = g(x, ";�);✓) to be

the reparameterized predictive distribution, our VPNG (as
defined in Equation 14) shares similar geometric structures
and points to the direction of the solution to the following
optimization problem, as ✏ ! 0:

argmax

�⌘
L(⌘ +�⌘)

s.t. E" [KLsym(px0
(⌘)||p

x

0
(⌘ +�⌘))]  ✏.

(18)

Here the expectation on " takes with respect to the
parameter-free distribution s(") in the reparameterization.

Proof. The proof for the above fact is similar with the
proof for the traditional natural gradient as in Hoffman
et al. (2013). Ideally, we want to find a (possibly ap-
proximate) Riemannian metric G(⌘) to capture the geo-
metric structure of the expected symmetric KL divergence
E" [KLsym(px0

(⌘)||p
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0
(⌘ +�⌘))]:
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0
(⌘ +�⌘))] ⇡ �⌘>G(⌘)�⌘

+ o(k�⌘k2).

By making first-order Taylor approximation on p
x

0
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Figure 4. Bayesian Logistic regression test AUC-iteration learning
curve.

and log p
x
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(⌘ +�⌘), we get

E" [KLsym(px0
(⌘)||p

x

0
(⌘ +�⌘))]

=E"[

Z
(p

x

0
(⌘ +�⌘)� p

x

0
(⌘))

· (log p
x

0
(⌘ +�⌘)� log p

x

0
(⌘))dx0

]

=E"[

Z
(r⌘px0

(⌘)>�⌘) · (r⌘ log p
x

0
(⌘)>�⌘)dx0

+O(k�⌘k3)]

=E"[

Z
p
x

0
(⌘) · (r⌘ log p

x

0
(⌘)>�⌘)

· (r⌘ log p
x

0
(⌘)>�⌘)dx0

+O(k�⌘k3)]
=�⌘>Fr�⌘ +O(k�⌘k3).

The term O(k�⌘k3) is negligible compared to the first term
when ✏ ! 0. Hence, we could take G(⌘) to be just Fr,
the variational predictive Fisher information as defined in
Section 3.3. By Amari (1998)’s analysis on natural gradi-
ents, we know that the solution to Equation 18 points to the
direction of G(⌘)�1 ·r�,✓L = rVPNG

�,✓ L, when ✏ ! 0.

B. More details for the experiments
For the Bayesian Logistic regression experiment, we show
the test AUC-iteration curve as in Figure 4. It can be seen
that the VPNG behaves more stable compared to the baseline
methods.

For the VAE and the VMF experiments, we chose hyperpa-
rameters for all methods based on the training ELBO at the
end of the time budget.

For the traditional natural gradient and VPNG, we applied the
dampening factor µ. More precisely, we take VPNG updates
as ˆrVPNG

✓,� L = (

ˆFr +µI)�1 ·r✓,�L and traditional natural
gradient updates as ˆrNG

� L = (

ˆFq + µI)�1 ·r�L). This is
also applied in the Bayesian Logistic regression experiment
in Section 5.1.
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Figure 5. VAE learning curves on binarized MNIST, without expo-
nential moving averages

For the VAE and the VMF experiments, we applied the K-
FAC approximation (Martens & Grosse, 2015) to efficiently
approximate the Fisher information matrices, in the NG and
VPNG computations. For the VPNGs, we view the VAE model
as a 6-layer neural network and the VMF model as a 4-layer
neural network. For the traditional NGs, we view both the
VAE model and the VMF model as 3-layer neural networks.
We apply K-FAC on these models to efficiently approxi-
mate the Fisher information matrices with respect to the
model distributions, given the samples from the variational
distributions.

To apply the K-FAC approximation, we will need to com-
pute matrix multiplications and matrix inversions for some
non-diagonal large square matrices (i.e. the ¯A0,0 matrices
in the K-FAC paper (Martens & Grosse, 2015) and some
other matrices that are computed during the K-FAC approx-
imation process). In order to make the algorithms faster, we
applied low-rank approximations for some large matrices
of these forms by sparse eigenvalue decompositions. All
of these large matrices are positive semi-definite. For each
such large matrix M , we keep only the K · ln(dim(M))

dimensions of it with the largest eigenvalues and K is a
hyperparameter that can be tuned.

For NG and VPNG, we applied the exponential moving aver-
ages for all matrices ¯Ai,i and ¯Gi+1,i+1 (again, we use the
notations in the K-FAC paper (Martens & Grosse, 2015))
to make the learning process more stable. We found that,
by adding the exponential moving average technique, our
VPNG performs similarly to the case without this technique,
while the traditional natural gradient is much more stable
and efficient. If we do not apply the exponential moving
average technique, the traditional natural gradients will not
perform well. As an example, we show the performances of
all methods without the exponential moving average tech-
nique in the VAE experiment in Figure 5.

We found that NG and VPNG performed similarly with re-
spect to the dampening factor µ, the exponential moving
average decay parameter and the low-rank approximation
function parameter K. However, different step sizes are
needed to get the best performance from these two methods.
We grid searched the step sizes and report the best one.


