Supplementary Materials: Adaptive Neural Trees

A. Training algorithm

Algorithm 1 ANT Optimisation

Initialise topology T and parameters @ > T is set to a root node with one solver
and one transformer
Optimise parameters in O via gradient descent on NLL > Learning root classifier
Set the root node “suboptimal”
while true do
Freeze all parameters O
Pick next “suboptimal” leaf node | € Meaf in the breadth-first order
Add (1) router to ! and train new parameters > Split data
Add (2) transformer to [ and train new parameters > Deepen transform
Add (1) or (2) to T if validation error decreases, otherwise set [ to “optimal”
Add any new modules to O
if no “suboptimal” leaves remain then
Break
Unfreeze and train all parameters in O

> Growth of T begins

> Global refinement with fixed T

B. Additional related work

Here we provide an expanded review of related works, pre-
cluded from the main text due to space limit. The tree-
structure of ANTSs naturally performs conditional computa-
tion. We can also view the proposed tree-building algorithm
as a form of neural architecture search. We provide surveys
of these areas and their relations to ANTSs.

Conditional computation: in NNs, computation of each
sample engages every parameter of the model. In contrast,
DTs route each sample to a single path, only activating
a small fraction of the model. Bengio (2013) advocated
for this notion of conditional computation to be integrated
into NNs, and this has become a topic of growing inter-
est. Rationales for using conditional computation ranges
from attaining better capacity-to-computation ratio (Ben-
gio et al., 2013; Davis & Arel, 2013; Bengio et al., 2015;
Shazeer et al., 2017) to adapting the required computation
to the difficulty of the input and task (Bengio et al., 2015;
Almabhairi et al., 2016; Teerapittayanon et al., 2016; Graves,
2016; Figurnov et al., 2017; Veit & Belongie, 2017). We
view the growth procedure of ANTs as having a similar
motivation with the latter—processing raw pixels is subop-
timal for computer vision tasks, but we have no reason to
believe that the hundreds of convolutional layers in current
state-of-the-art architectures (He et al., 2016; Huang et al.,
2017) are necessary either. Growing ANTSs adapts the archi-
tecture complexity to the dataset as a whole, with routers
determining the computation needed on a per-sample basis.

Neural architecture search: the ANT growing procedure
is related to the progressive growing of NNs (Fahlman &
Lebiere, 1990; Hinton et al., 2006; Xiao et al., 2014; Chen
et al., 2016; Srivastava et al., 2015; Lee et al., 2017; Cai

et al., 2018; 1rsoy & Alpaydin, 2018), or more broadly, the
field of neural architecture search (Zoph & Le, 2017; Brock
et al., 2017; Cortes et al., 2017). This approach, mainly via
greedy layerwise training, has historically been one solution
to optimising NNs (Fahlman & Lebiere, 1990; Hinton et al.,
2006). However, nowadays it is possible to train NNs in an
end-to-end fashion. One area which still uses progressive
growing is lifelong learning, in which a model needs to
adapt to new tasks while retaining performance on previous
ones (Xiao et al., 2014; Lee et al., 2017). In particular,
Xiao et al. (2014) introduced a method that grows a tree-
shaped network to accommodate new classes. However,
their method never transforms the data before passing it to
the children classifiers, and hence never benefit from the
parent’s representations.

Whilst we learn the architecture of an ANT in a greedy,
layerwise fashion, several other methods search globally.
Based on a variety of techniques, including evolutionary al-
gorithms (Stanley & Miikkulainen, 2002; Real et al., 2017),
reinforcement learning (Zoph & Le, 2017), sequential opti-
misation (Liu et al., 2017) and boosting (Cortes et al., 2017),
these methods find extremely high-performance yet complex
architectures. In our case, we constrain the search space to
simple tree-structured NNs, retaining desirable properties of
DTs such as data-dependent computation and interpretable
structures, while keeping the space and time requirement
of architecture search tractable thanks to the locality of our
growth procedure.

Cascaded trees and forests: another noteworthy strand
of work for feature learning with tree-structured models is
cascaded forests—stacks of RFs where the outputs of inter-
mediate models are fed into the subsequent ones (Montillo
et al., 2011; Kontschieder et al., 2013; Zhou & Feng, 2017).
It has been shown how a cascade of DTs can be mapped
to NNs with sparse connections (Sethi, 1990), and more
recently Richmond et al. (2015) extended this argument to
RFs. However, the features obtained in this approach are
the intermediate outputs of respective component models,
which are not optimised for the target task, and cannot be
learned end-to-end, thus limiting its representational qual-
ity. Recently, Feng et al. (2018) introduced a method to
jointly train a cascade of gradient boosted trees (GBTs) to
improve the limited representation learning ability of such
previous work. A variant of target propagation (Lee et al.,
2015) was designed to enable the end-to-end training of
cascaded GBTs, each of which is non-differentiable and
thus not amenable to back-propagation.
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C. Set-up details

Data: we perform our experiments on the SARCOS robot
inverse dynamics dataset', the MNIST digit classification
task (LeCun et al., 1998) and the CIFAR-10 object recog-
nition task (Krizhevsky & Hinton, 2009). The SARCOS
dataset consists of 44,484 training and 4,449 testing exam-
ples, where the goal is to map from the 21-dimensional input
space (7 joint positions, 7 joint velocities and 7 joint accel-
erations) to the corresponding 7 joint torques (Vijayakumar
& Schaal, 2000). No dataset preprocessing or augmentation
is used. The MNIST dataset consists of 60,000 training
and 10,000 testing examples, all of which are 28 x 28
grayscale images of digits from 0 to 9 (10 classes). The
dataset is preprocessed by subtracting the mean, but no data
augmentation is used. The CIFAR-10 dataset consists of
50, 000 training and 10, 000 testing examples, all of which
are 32 x 32 coloured natural images drawn from 10 classes.
We adopt an augmentation scheme widely used in the litera-
ture (Goodfellow et al., 2013; Lin et al., 2014; Springenberg
et al., 2015; He et al., 2016; Huang et al., 2017) where im-
ages are zero-padded with 4 pixels on each side, randomly
cropped and horizontally mirrored. For all three datasets,
we hold out 10% of training images as a validation set. The
best model is selected based on the validation accuracy over
the course of ANT training, spanning both the growth phase
and the refinement phase, and its test accuracy is reported.

Training: both the growth phase and the refinement phase
of ANTs are performed on a single Titan X GPU on all three
datasets. For all the experiments in this paper, we employ
the following training protocol: (1) optimise parameters
using Adam (Kingma & Ba, 2014) with initial learning rate
of 1073 and B = [0.9, 0.999], with minibatches of size 512;
(2) during the growth phase, employ early stopping with a
patience of 5, that is, training is stopped after 5 epochs of
no progress on the validation set; (3) during the refinement
phase, train for 300 epochs for SARCOS, 100 epochs for
MNIST and 200 epochs for CIFAR-10, decreasing the learn-
ing rate by a factor of 10 at every multiple of 50. Training
times are provided in Supp. Sec. D.

We observe that the patience level is an important hyper-
parameter which affects the quality of the growth phase;
very low or high patience levels result in new modules un-
derfitting or overfitting locally, thus preventing meaningful
further growth and limiting the accuracy of the resultant
models. We tuned this hyperparameter using the valida-
tion sets, and set the patience level to 5, which produced
consistently good performance on SARCOS, MNIST and
CIFAR-10 datasets across different specifications of prim-
itive modules. A quantitative evaluation on CIFAR-10 is
given in Supp. Sec. E.

'http://www.gaussianprocess.org/gpml/
data/

In the SARCOS experiments, all the non-NN-based meth-
ods were trained using scikit-learn (Pedregosa et al., 2011).
Hidden layers in the baseline MLPs are followed by tanh
non-linearities and contain 256 units to be consistent with
the complexity of transformer modules.

Primitive modules: we train ANTSs with a range of primi-
tive modules as shown in Tab. 2 in the main text. For simplic-
ity, we define the modules based on three types of NN lay-
ers: convolutional, global-average-pooling (GAP) and fully-
connected (FC). Solver modules are fixed as linear models
e.g. linear classifier and linear regression. Router modules
are binary classifiers with a sigmoid output. All convolu-
tional and FC layer are followed by ReLU or tanh non-
linearities, except in the last layers of solvers and routers.
For image classification experiments, we also apply 2 x 2
max-pooling to feature maps after every d transformer mod-
ules where d is the downsample frequency. For the SAR-
COS regression experiment, hidden layers in the routers
and transformers contain 256 units. We balance the number
of parameters in the router and transformer modules to be
of the same order of magnitude to avoid favouring either
partitioning the data or learning more expressive features.

D. Training times

Tab. 1 summarises the time taken on a single Titan X GPU
for the growth phase and refinement phase of various ANTs,
and compares against the training time of All-CNN (Sprin-
genberg et al., 2015). Local optimisation during the growth
phase means that the gradient computation is constrained
to the newly added component of the graph, allowing us to
grow a good candidate model under 3 hours on one GPU.

Table 1: Training time comparison. Time and number of
epochs taken for the growth and refinement phase are shown.
along with the time required to train the baseline, All-CNN
(Springenberg et al., 2015).

Growth Fine-tune
Model Time Epochs Time Epochs
All-CNN (baseline) - - 1.1 (hr) 200
ANT-CIFAR10-A 1.3 (hr) 236 1.5 (hr) 200
ANT-CIFAR10-B 0.8 (hr) 313 0.9 (hr) 200
ANT-CIFAR10-C 0.7 (hr) 285 0.8 (hr) 200

E. Effect of training steps in the growth phase
Fig. 1 compares the validation accuracies of the same ANT-
CIFAR-C model trained on the CIFAR-10 dataset with vary-
ing levels of patience during early stopping in the growth
phase. A higher patience level corresponds to more training
epochs for optimising new modules in the growth phase.
When the patience level is 1, the architecture growth termi-
nates prematurely and plateaus at low accuracy at 80%. On
the other hand, a patience level of 15 causes the model to
overfit locally with 87%. The patience level of 5 gives the
best results with 91% validation accuracy.


http://www.gaussianprocess.org/gpml/data/
http://www.gaussianprocess.org/gpml/data/
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Figure 1: Effect of patience level on the validation accuracy trajectory during training. Each curve shows the validation accuracy on

CIFAR-10 dataset.

F. Expert specialisation

We investigate if the learned routing strategy is meaningful
by comparing the classification accuracy of our default path-
wise inference against that of the predictions from the leaf
node with the smallest reaching probability. Tab. 2 shows
that using the least likely “expert” leads to a substantial
drop in classification accuracy, down to close to that of
random guess or even worse for large trees (ANT-MNIST-C
and ANT-CIFAR10-C). This demonstrates that features in
ANTSs become specialised to the subsets of the partitioned
input space at lower levels in the tree hierarchy.

Table 2: Comparison of classification performance between
the default single-path inference scheme and the prediction
based on the least likely expert. between the

Module Spec. Error % Error %
(Selected path) | (Least likely path)
ANT-MNIST-A 0.69 86.18
ANT-MNIST-B 0.73 81.98
ANT-MNIST-C 1.68 98.84
ANT-CIFAR10-A 8.32 74.28
ANT-CIFAR10-B 9.18 89.74
ANT-CIFAR10-C 9.34 97.52

G. Visualisation of discovered architectures

Fig. 2 shows ANT architectures discovered on the MNIST
(i-iii) and CIFAR-10 (iv-vi) datasets. We observe three no-
table trends. Firstly, a large proportion of the learned routers
separate examples based on their classes (red histograms)
with very high confidence (blue histograms). The ablation
study in Sec. 5. 1 (Tab. 4 in the main text) shows that such hi-
erarchical clustering benefits predictive performance, while
the conditional computation enables more lightweight infer-
ence (Tab. 3 in the main text). Secondly, most architectures
learn a few levels of features before resorting to primarily
splits. However, over half of the architectures (ii-v) still
learn further representations beyond the first split. Secondly,
all architectures are unbalanced. This reflects the fact that
some groups of samples may be easier to classify than oth-
ers. This property is reflected by traditional DT algorithms,
but not “neural” tree-structured models with pre-specified

architectures (Laptev & Buhmann, 2014; Frosst & Hinton,
2017; Kontschieder et al., 2015; Ioannou et al., 2016).

H. FLOPS

Tab.3 reports the floating point operations per second
(FLOPS) of ANT models for two inference schemes. The
results for ResNet110 and DenseNet were retrieved from
(Guan et al., 2017) and (Huang et al., 2018), respectively.
The FLOPs of all other models were computed using
TorchStat toolbox available at https://github.com/
SwallOw/torchstat. Using single-path inference re-
duces FLOPS in all ANT models to varying degrees.

Table 3: Comparison of FLOPs.

Model FLOPS FLOPS
(multi-path) | (single-path)

Linear Classifier 8K -

£ | LeNet-5 231K -

Z | ANT-MNIST-C 99K 83K

S | ANT-MNIST-B 346K 331K
ANT-MNIST-A 382K 380K
Net-in-Net 222M -

o | AII-CNN 245M -

= | ResNet-110 256M -

% | DenseNet-BC (k=24) |  9388M -

E | ANT-CIFAR10-C 66M 61M

© | ANT-CIFARI10-B 163M 149M
ANT-CIFAR10-A 254M 243M

I. Ensembling

As with traditional DTs (Breiman, 2001) and NNs (Hansen
& Salamon, 1990), ANTs can be ensembled to gain im-
proved performance. In Tab. 4 we show the results of en-
sembling 8 ANTSs (using the “-A” configurations for classi-
fication), each of which is trained with a randomly chosen
split between training and validation sets. We compare
against the single tree models, trained with the default split.
In all cases both the multi-path and single-path inference per-
formance is noticeably improved, and in MNIST we reach
close to state-of-the-art performance (0.29% versus 0.25%
(Sabour et al., 2017)) with significantly fewer parameters
(851k versus 8.2M).


https://github.com/Swall0w/torchstat
https://github.com/Swall0w/torchstat
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(i) X (iii)

Figure 2: Ilustration of discovered ANT architectures. (i) ANT-MNIST-A, (ii) ANT-MNIST-B, (iii) ANT-MNIST-C, (iv) ANT-CIFAR10-
A, (v) ANT-CIFAR10-B, (vi) ANT-CIFAR10-C. Histograms in red and blue show the class distributions and path probabilities at respective
nodes. Small black circles on the edges represent transformers, circles in white at the internal nodes represent routers, and circles in gray
are solvers. The small white circles on the edges denote specific cases where transformers are identity functions.

Table 4: Comparison of prediction errors of a single ANT versus an ensemble of 8, with predictions averaged over all ANTSs in the

ensemble.
[ MNIST (Class Error %) | CIFAR-10 (Class Error %) SARCOS (MSE)
Multi-path ~ Single-path | Multi-path ~ Single-path | Multi-path  Single-path
Single model 0.64 0.69 8.31 8.32 1.384 1.542
Ensemble 0.29 0.30 7.76 7.79 1.226 1.372

Table 5: Parameter counts for a single ANT versus an ensemble of 8.

MNIST (No. Params.)

CIFAR-10 (No. Params.) | SARCOS (No. Params.)

Multi-path ~ Single-path | Multi-path ~ Single-path | Multi-path ~ Single-path
Single model 100,596 84,935 1.4M 1.0M 103,823 61,640
Ensemble 850,775 655,449 8. 7M 7.4M 598,280 360,766
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