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A Proof of Theorem 2.1

Proof.

The Fokker-Planck equation of Langevin diffusion.
Since the derivation is quite involved, we refer the
readers to the work of Garcia-Palacios (2007) for a
complete treatment.

The stationary solution of Langevin system. One can
easily verify that

∂tρs(x, t) = ∇ · ρs∇ψ + β−1∆ρs = 0. (S1)

The stationary solution solves the variational prob-
lem. Let ρ∗(x) be a minimum of functional Fµ(ρ;β),
and ε(x) is an arbitrary function that vanishes on
the boundary ∂X , then for any number s close to 0,
Fµ(ρ;β) ≤ Fµ(ρ + sε;β). The term sε is the varia-
tion of the function ρ. Substituting ρ + sε for y in
the functional Fµ(y;β), the result is a function of s,
Ψ(s) = Fµ(ρ + sε;β). Since the functional Fµ(ρ;β)
has a minimum for ρ = ρ∗, the function Ψ(s) has a
minimum at s = 0 and thus,

Ψ′(0) =
d

ds
Fµ(ρ∗ + sε;β)

∣∣∣∣
s=0

= 0

Differentiating under the integral sign, we find

d

ds
Fµ(ρ∗ + sε;β)

∣∣∣∣
s=0

=

∫
X

d

ds
{βψ(x) [ρ∗(x) + sε(x)]

+ [ρ(x) + sε(x)] log(ρ∗(x) + sε(x))}
∣∣∣∣
s=0

dx

=β

∫
X
ε(x)ψ(x)dx+

∫
X
ε(x) [log ρ∗(x) + 1] dx

=

∫
X
ε(x) [βψ(x) + log ρ∗(x) + 1] dx = 0

According to the multidimensional version of the fun-
damental lemma of calculus of variations (Gelfand
and Fomin (1963), pp.9 Lemma 1), f(x) = βψ(x) +
log ρ∗(x) + 1 ≡ 0. Hence, ρ∗(x) ∝ exp(−βψ(x)). �

B Derivation for Eqn (4-5)

Fµ(ρ;β) = KL(ρ ‖ µ) + (1− β)Eρ[logµ]

= βKL(ρ ‖ µ)

+(1− β)Eρ[log ρ− logµ]

+(1− β)Eρ[logµ]

= βKL(ρ ‖ µ) + (1− β)Eρ[log ρ]

= βKL(ρ ‖ µ) + (1− β)S(ρ)

C Proof of Corollary 2.2

Proof. We only need to βlik = 1+λ and βent = 1/(1+λ)
respectively for the two types of regularizations. For
the likelihood regularization, based on (4) we have

βlik(1− β−1lik ) = λ⇒ βlik = λ+ 1,

and similarly for entropy regularization we have

β−1ent − 1 = λ⇒ βent = 1/(1 + λ)

from (5). This concludes our proof. �

D Continuity Equation

In the following, we omit the dependency on space-
time to avoid notational clutter. By the divergence
theorem, a general continuity equation takes the fol-
lowing differential form:

∂tρ+∇ · j = σ, (S2)

where ρ is the quantity of substance per unit volume,
and j is the flux of the substance and σ is the gener-
ation/absorption rate per unit volume per unit time.
When v is a velocity field the describes the flow j, then
j = ρv. Since the mass of probability distribution is
conserved, we have σ(x, t) ≡ 0. Pluging these terms
into the continuity equation gives us

∂tρ+∇ · (ρv) = 0. (S3)
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E Proof of Theorem 2.3

Proof. Notice

KL(ρt ‖ µ)

= KL(ρt ‖ µβ) + EX′∼ρt [logµβ(X ′)− logµ(X ′)]

≤ KL(ρt ‖ µβ) + δβ .

To get the O(t−1) convergence rate for first term,
simply apply Theorem 4.5 from Liu (2017). This
result can be improved to exponential decay assum-
ing stronger regularity conditions on µ. For instance,
when KL(·||µ) is geodesically strongly convex (e.g.,
when the density of µ is strongly log-concave on X
(Villani (2008), Theorem 17.15)) on the 2-Wasserstein
space P2 (Villani (2008), Definition 6.4), the gradient
flow ρt of KL(·||µ) will converge exponentially (Villani
(2008), Theorem 23.25 & 24.7). �

F Further Notes on RKL-GAN as
Gradient Flow

It is helpful to further the understanding of the dy-
namics from a gradient flow perspective. Consider
minimizing F (q) : P → R be a function on the space
of probability measure P(X ), in our case, the anneal
RKL. At each step, we would like to find a proper per-
turbation ∂tqt for updating q. Formally, ∂tqt should
be an element in the tangent space of P(X ) at q.

To practically describe ∂tqt, people notice that a ∂tqt
is related to a bunch of velocity fields {vt} on X
through the continuity equation (6), and a one-to-
one relation can be established by choosing a partic-
ular vt with the minimal norm in the bunch, when a
proper norm is defined for velocity fields on X (e.g.,
when the norm is taken as the one of L2

q(X ;Rn), the
one-to-one relation (unique existance of vt) is guaran-
teed by e.g.,Villani (2008), Theorem 13.8; Ambrosio
et al. (2008), Theorem 8.3.1, Proposition 8.4.5.) Also
note that the description with vt automatically sat-
isfies the restriction on ∂tqt:

∫
X ∂tqt dx = −

∫
X ∇ ·

(qtvt) dx = −
∫
∂X qtvt · d

−→
S = 0, where

−→
S is the in-

finitesimal directed surface area on the boundary ∂X .
With this description, we can write the directional
derivative of the RKL F with respect to ∂tqt, or vt:
d
dsF (q + s∂tqt)|s=0 = Eq[−∇ · vt + Ψ · vt], as is shown
in Theorem 3.1 of Liu and Wang (2016).

There is more that the velocity field description could
provide. Let T be the set of all representative vt’s,
which is a linear space. With a proper inner prod-
uct so that T is a Hilbert space, TqP(X ) will be a
Hilbert space due to the one-to-one relationship (which
is now an isometric isomorphism), which (roughly)
means that P(X ) is a Riemannian manifold. With the

Riemannian structure, gradient of F on P(X ) can be
defined, which is characterized by d

dsF (q+s∂tqt)|s=0 =
〈gradF, ∂tqt〉TqP(X ), or

gradF = max · arg max
‖∂tqt‖TqP(X)=1

{
d

ds
F (q + s∂tqt)|s=0

}
.

(S4)

When T is taken as L2
q(X ;Rn) and P(X ) as 2-

Wasserstein space, we have gradF (q) = −Ψ−∇ log q
(Villani (2008), Theorem 23.18; Ambrosio et al.
(2008), Example 11.1.2), i.e., the tangent vector on
the gradient flow of F (q). Note that the Langevin
dynamics (1) is also known as the dynamics of the
gradient flow of F (q) on 2-Wasserstein space Jor-
dan et al. (1998), since it produces the same ∂tqt
through the Fokker-Planck equation as the dynamics
of gradF through the continuity equation (6). Since
the log qt term here is intractable, it is estimated in
(annealed) RKL-GAN through a function approxima-
tor (e.g. neural net) updated by stochastic gradient
descent (the critic updates).

The quality of the approximation affects the empiri-
cal convergence rate, as the asymptotic convergence
rate is an upper bound on the improvement, and it
only holds if the updates are exactly aligned with
functional gradients. So the maximizing step can be
understood as searching for the best descent direc-
tion for the generator update. Another choice of T
is Hn where H is the RKHS of a kernel k, as is
done in Liu and Wang (2016); Liu (2017). (Note
that in this case, T ⊂ TqP(X ), which means that
the existence of vt in T is not guaranteed for any
∂tqt ∈ TqP(X )! Moreover, P(X ) as a set is not de-
fined in this case!) The gradient in this case is then
gradF (q) = Eq(x)[−Ψ(x)k(x, ·) +∇xk(x, ·)], which is
the tangent vector to the gradient flow of F (q) on
P(X ) defined in Liu (2017). With the help of a kernel,
the gradient here is tractable.

G Score Function Estimator (Fig. 2)

We compare different score function estimators with
toy examples. We train a DAE with samples from the
banana distribution log u(x1, x2) = − 1

2 (x22/4 + (x1 −
x22/4)2). We set the noise level to σ = 0.2. In Fig-
ure 2 from main text, we compare the model sam-
ples drawn from the standard Langevin system using
the DAE-score estimator sσ(x) = σ−2(φσ(x)− x) and
the DAE-residual estimator srσ(x) = −∇‖φσ(x)−x‖22.
The residual estimator is unable to faithfully recover
the underlying distribution, for practical training se-
tups, often collapsing samples on modes that not even
necessarily align with the real data modes.
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Table S1: Network architectures used for Cifar10 experiments. BN: batch normalization, lReLU: Leaky ReLU.

Denoiser Generator Discriminator

Input feature f Input z Input x

MLP output 2048, lReLU, BN MLP output 2048, ReLU, BN 3× 3 conv. 32 lReLU, stride 1, BN
MLP output 2048, lReLU, BN 4× 4 conv. 64 lReLU, stride 2, BN
MLP output 2048, lReLU, BN 4× 4 deconv. 256 ReLU, stride 2, BN 4× 4 conv. 128 lReLU, stride 2, BN
MLP output 2048, lReLU, BN 4× 4 deconv. 128 ReLU, stride 2, BN 4× 4 conv. 256 lReLU, stride 2, BN
MLP output 2048, lReLU, BN 4× 4 deconv. 64 ReLU, stride 2, BN 4× 4 conv. 512 lReLU, stride 2, BN
MLP output 2048, lReLU, BN 3× 3 deconv. 3 ReLU, stride 1, BN Output feature f with shape 512× 2× 2

MLP output 2048, Reshape to 512× 2× 2 MLP output 1

Table S2: Network architectures used for CelebA experiments. BN: batch normalization, lReLU: Leaky ReLU.

Denoiser Generator Discriminator

Input feature f Input z Input x

MLP output 2048, lReLU, BN MLP output 2048, ReLU, BN 4× 4 conv. 16 lReLU, stride 2, BN
MLP output 2048, lReLU, BN 4× 4 conv. 32 lReLU, stride 2, BN
MLP output 2048, lReLU, BN 4× 4 deconv. 256 ReLU, stride 2, BN 4× 4 conv. 64 lReLU, stride 2, BN
MLP output 2048, lReLU, BN 4× 4 deconv. 128 ReLU, stride 2, BN 4× 4 conv. 128 lReLU, stride 2, BN
MLP output 2048, lReLU, BN 4× 4 deconv. 64 ReLU, stride 2, BN 4× 4 conv. 256 lReLU, stride 2, BN
MLP output 2048, lReLU, BN 4× 4 deconv. 32 ReLU, stride 2, BN 4× 4 conv. 512 lReLU, stride 2, BN
MLP output 2048, lReLU, BN 4× 4 deconv. 3 ReLU, stride 2, BN Output feature f with shape 512× 2× 2

MLP output 2048, Reshape to 512× 2× 2 MLP output 1

H More on generative flows

Typically, the shift-scale flow are given as

zk+1 = t(zk) + s(zk)� zk, (S5)

where t(z), s(z) respects the causal dependency of an
auto-regressive flow, i.e., [f(z)]d = fd([z]<d). This
ensures Jacobians are triangular by design. Equation
(S5) is a so-called forward flow which is fast in gen-
eration but slow in evaluation, because the backward
process (e.g., x → z) resembles a Gaussian elimina-
tion process. Such trade-offs are common in more ex-
pressive generative flows. MAF instead exploits the
backward flow described in the main text.

While it is tempting to train a flow ν directly to-
wards µ, there is one caveat. To optimize KL(ν ‖ µ),
one must sample from ν, evaluate the log-likelihood
log ν(x) and then back-propagate the gradient through
it. As discussed above, computational efficiency of
sampling and evaluation for popular choices of genera-
tive flows are generally at odds with each other. Cou-
pling the two will always invoke the back-propagation
of the more costly part. On the other hand, the scheme
we have developed avoids back-propagating the more
challenging part via amortizing it through a free-form
generator.

I Additional Remarks & Discussions

I.1 Comments on U-GAN

While the U-GAN can be much more flexible than the
paired generative flow, we found that more expressive
flow allows much quicker learning for U-GAN.

I.2 Discussion of The ”Stabilizing GAN
Training with Langevin Dynamics” Paper

During the paper review process, the work of Ramak-
ers et al. (2017) has brought to our attention by one of
the reviewers, which also leverages Langevin dynamics
in GAN training. However, this work used Langevin
dynamics to evolve the model parameter rather than
regularizing the GAN training objective. As such,
their development is orthogonal to the variational an-
nealing perspective discussed here.

I.3 Wasserstein GAN, Optimal Transport
and Likelihood

In our experiments we have showed that the proposed
VA improved GAN training across the board. While
for non-RKL GANs this observation is not understood
beyond heuristics, there is some theories relating opti-
mal transport and likelihood-based learning, see Zhang
et al. (2018) for details.
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J Detailed Experimental Setups and
Additional Results

J.1 Variational Annealing

In this experiment, we use the DFM implementa-
tion from https://github.com/pfnet-research/

chainer-gan-lib as our codebase. The original
model corresponds to the JSD-GAN results reported,
and we changed the objective function to derive the
RKL-GAN. For the W-GAN experiments, we adapted
the code of the WGAN-GP implementation from the
same repository, which uses gradient penalty to en-
force the Lipschitz constraint. We have used the
same hyper-parameter settings from the DFM repos-
itory, which potentially explained the fact that the
JSD-GAN delivered the best performance in our ex-
periments, as the released DFM code was fine-tuned
for this objective. The Adam optimizer with a learn-
ing rate of 10−4 was used, and all models are trained
for 150k iterations with batch-size 64. Detailed model
architecture for Cifar10 (32 × 32) is summarized in
Table S1. Similar architectures are used for high-res
CelebA (128 × 128), with additional deconvolutional
layers (Table S2). In Figure S2 we provide CelebA
samples trained with and without variational anneal-
ing.

Dynamic annealing schemes In the dynamic an-
nealing experiments, we found that the linear anneal-
ing

λt = sign(λ0) max{|λ0|(1− t/Tmax), 0}

worked better than the exponential annealing

λt = sign(λ0)|λ0| exp(−τt)

among monotonic schemes, where Tmax and τ are
hyper-parameters controlling the descent rate. Tmax

was set to be slightly smaller than the total number of
iterations to finalize the training, and τ was set chosen
so that at end of training λt → 0. As for the oscillatory
annealing, we evaluated stepwise (discontinuous) and
sinuous (continuous) designs, and the latter worked
much better. The performance also depends on |λ0|,
in our experiments, we have tested |λ0| ∈ {0.1, 1, 10}
and reported the best result. During the entire train-
ing, λt loops over for five cycles.

J.2 Unnormalized GAN

The toy model kidney distribution is given by

log ukid(x) =
1

2
s1(x)2 − log (s2(x) + s3(x)) ,

Table S3: Results for Bayesian Logistic regression.

Dataset Features Train Test

Cancer 32 285 284
Heart 13 135 135

German 20 500 500
Sonar 60 104 104

where s1(x) = ‖x‖−2
0.4 , s2(x) = exp(− 1

2 [x1−2
0.6 ]2) and

s3(x) = exp(− 1
2 [x1+2

0.6 ]2). In Figure S1 we also visu-
alize the training dynamics using the banana distri-
bution: p(x1, x2) ∝ exp(− 1

2 ((x1− (x2/2)2))2 + (x22/4))
using negative annealing, the sampler distributes mass
more evenly at a low temperature (stronger negative
annealing), then gradually consolidates to the target
distribution as the annealing strength diminishes.

J.2.1 MAF

We have used the tensorflow probability library to
implement MAF. More specifically, we stacked 8
shift and scale MAF blocks with [512, 512] hidden lay-
ers, each followed by an order flipping permutation
layer. We used the same annealing designs discussed
above.

J.2.2 Datasets

Table S3 summarizes the datasets used in our Bayesian
Logistic regression experiment.

J.3 Reinforcement Learning

In the RL experiment, we consider the swimmer prob-
lem from rllab. We used a three layer feed-forward net
as our policy net, both hidden layers has 128 units.
For the Q-net, we also used a three layer 128 hid-
den unit feedforward net. We applied a four block
shift and scale MAF as our proposal density, each has
two hidden layers with size 512. We set batch size
to 128, learning rate to 0.0004 and maintained a 106

replay buffer.
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Figure S1: Learning from an unnormalized density to sample the banana distribution.

Figure S2: Comparison of CelebA samples trained with and without variational annealing.

Liu, Q. (2017). Stein variational gradient descent as gra-
dient flow. In NIPS, pages 3118–3126.

Liu, Q. and Wang, D. (2016). Stein variational gradient de-
scent: A general purpose bayesian inference algorithm.
In NIPS.

Ramakers, J., Harmeling, S., and Kollmann, M.
(2017). Stabilizing generative adverserial networks us-
ing langevin dynamics. In NIPS Workshop.

Villani, C. (2008). Optimal transport: old and new, volume
338. Springer Science & Business Media.

Zhang, L., E, W., and Wang, L. (2018). Monge-
amp\ere flow for generative modeling. arXiv preprint
arXiv:1809.10188.


