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Abstract

The generative adversarial network (GAN) has re-
ceived considerable attention recently as a model
for data synthesis, without an explicit specifica-
tion of a likelihood function. There has been
commensurate interest in leveraging likelihood
estimates to improve GAN training. To enrich
the understanding of this fast-growing yet almost
exclusively heuristic-driven subject, we elucidate
the theoretical roots of some of the empirical at-
tempts to stabilize and improve GAN training
with the introduction of likelihoods. We highlight
new insights from variational theory of diffusion
processes to derive a likelihood-based regular-
izing scheme for GAN training, and present a
novel approach to train GANs with an unnormal-
ized distribution instead of empirical samples. To
substantiate our claims, we provide experimental
evidence on how our theoretically-inspired new
algorithms improve upon current practice.

1. Introduction
Modern applications of data science necessitate more ex-
pressive, robust and efficient probabilistic models, to cap-
ture the rich structure in complex datasets. These models
generally fall into two major categories: likelihood-based
and likelihood-free. The former explicitly assigns a likeli-
hood function pG(x; θ) with parameters θ to describe the
data x, while the latter learns a model from which samples
from the desired distribution may be drawn (but does not
assign or learn a form for the distribution itself). Specifi-
cally, likelihood-free methods typically pass samples z from
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a pre-specified simple distribution q(z) through a determin-
istic mapping G(z; θ) : Z → X , commonly known as the
generator. These two paradigms intersect when G(z; θ) is
a diffeomorphism between Z and X (Dinh et al., 2017).

While being more restrictive by construction, likelihood-
based models have been widely studied within the statistics
literature. Most likelihood-based models either directly
minimize the Kullback-Leibler divergence KL(pd ‖ pG)
between the data and model distributions (e.g., maximal
likelihood estimation (MLE)), or a variational bound to it
(e.g., variational inference (VI)) (Blei et al., 2017; Tao et al.,
2018b). Recent advances on the scalability (Hoffman et al.,
2013), flexibility (Kingma et al., 2016) and automation of
inference procedures (Ranganath et al., 2014) have made
such models appealing for modern applications.

In the absence of a tractable likelihood, the development
of practical likelihood-free models has struggled (Diggle
& Gratton, 1984; Beaumont et al., 2002; Didelot et al.,
2011), for a lack of mathematical and computational tools.
The recent introduction of the generative adversarial net-
work (GAN) presented a simple and elegant solution to
this difficulty (Goodfellow et al., 2014), revolutionizing
the practice. The key idea behind GAN is the design of a
critic D(x;ω), parameterized by ω, and a variational func-
tional V (pd, pG;D) that depends on the critic. The varia-
tional functional is chosen such that: (i) V (pd, pG;D) can
be estimated using samples from the respective distribu-
tions, and (ii) solving for d(pd, pG) , maxD V (pd, pG;D)
establishes a proper discrepancy metric between distribu-
tions pd and pG (Li et al., 2015; Nowozin et al., 2016;
Mohamed & Lakshminarayanan, 2016; Arjovsky et al.,
2017; Tao et al., 2018a). GAN matches pG to pd by seek-
ing a Nash equilibrium of the adversarial minimax game
minG maxD V (pd, pG;D) between the critic and generator.

Both modeling approaches have their limitations. Like-
lihood models are prone to learn a model that produces
unrealistic samples (possibly because of a misspecification
of the model form pG(x; θ)), while the major criticisms of
adversarial models target their brittle training (Arjovsky &
Bottou, 2017) and mode-trapping behaviors (Salimans et al.,
2016). Considerable empirical efforts have been made to
combine these two approaches, in the hope of marrying the
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best of both. Adversarial strategies have been formulated
to construct non-parametric likelihoods (Yeh et al., 2016;
Rosca et al., 2017; 2018; Li et al., 2019), estimate the in-
tractable posterior (Mescheder et al., 2017), and ameliorate
the sample-coverage issue (Makhzani et al., 2015; Tolstikhin
et al., 2018) for likelihood-based learning. Similarly, like-
lihood estimates have also been used extensively to guide
or stabilize adversarial distribution matching (Wang & Liu,
2016; Warde-Farley & Bengio, 2017; Che et al., 2017b; Li &
Turner, 2018). While the exact workings of these methods
are sometimes not well understood beyond heuristics, they
have yielded promising results.

An alternative categorization of learning a generative sam-
pler is based on whether the supervision is enforced through
(a) empirical samples or (b) a (possibly unnormalized) dis-
tribution u(x). The latter naturally arises in many statistical
learning problems, for example Bayesian analysis (Welling
& Teh, 2011) and reinforcement learning (Nachum et al.,
2017). GANs have typically been trained under case (a),
using samples from the underlying true distribution, and
such models cannot directly leverage u(x) (assuming u(x)
is difficult to sample). Recent attempts have been made to
fill this gap: Stein variational gradient descent (SVGD) used
the kernel trick to analytically derive the functional gradient
of an implicitly defined critic based on u(x) (Liu, 2017),
while A-NICE-MC (Song et al., 2017) instead learned its
transition kernel and proposal distribution wrt u(x) through
a GAN-style objective.

In this work we reconsider the integration of likelihood-
based and likelihood-free approaches in generative model-
ing, and demonstrate how the re-introduction of likelihoods
may improve GAN training. We set out by (i) present-
ing theoretical insights connecting likelihood regularized
Kullback–Leibler GAN to the damped Langevin diffusion
process, which motivates (ii) a novel variational annealing
strategy to stabilize and facilitate general GAN training. In
addition, (iii) we couple GANs with normalizing flows to
train efficient neural samplers from unnormalized distribu-
tions u(x). Our theory unifies many heuristically-driven
practices in the literature, and the proposed algorithms rep-
resent a more principled attempt to address the challenges
in GAN training from a likelihood-based perspective.

Notation. In the following,∇,∇· and ∆ respectively denote
the gradient, divergence, and Laplacian operators wrt the
spatial variable x, and we use ∂t for the temporal derivative.
To simplify our discussions, we always assume all distribu-
tions are compactly supported on X ⊆ Rd, and use P to
denote all distributions defined on X . We interchangeably
use pd(x) or µ(x) for the data distribution, and pG(x) or
ρ(x) for the model distribution throughout the text.

2. Generative Adversarial Net, Annealing and
Likelihood Regularization

In this section we will develop theory to interpret enforcing
likelihood regularization as a way to amortize GAN train-
ing through annealing. In particular, we derive analytical
results for a particular case of GAN to motivate more gen-
eral algorithms proposed in subsequent sections. Detailed
derivations can be found in the Supplementary Material
(SM).

2.1. Reverse-KL GAN
Consider the family of f -divergences (Csiszár, 1963) de-
fined as Df (p ‖ q) ,

∫
f
(
p(x)
q(x)

)
q(x) dx, where p(x), q(x)

are probability densities and f(r) : R+ → R is a convex
function satisfying f(1) = 0. It can be readily verified from
the Jensen’s inequality that Df (p ‖ q) ≥ 0, the equality
holds when p a.s.= q. A natural choice of f -divergence is the
Kullback-Leibler (KL) divergence where f(t) = − log(t).
Hereafter we call KL(pG ‖ pd) as the reverse KL (RKL) to
distinguish it from the common forward form KL(pd ‖ pG)
implicitly used in MLE. Below we leverage RKL-GAN as a
case of particular interest, since an analytical result can be
derived in this case.

Direct optimization of an f -divergence objective typically
requires explicit access to the model likelihood pG(x),
which can be difficult. Fortunately, this can be recast as
a GAN training through its variational formulation

Df (p ‖ q) = max
D
{EX∼pd [D(X)]− EX′∼pG [f∗(D(X ′))]︸ ︷︷ ︸

Vf (pd,pG;D)

},

where f∗(r) , supu∈supp(f){ur−f(u)} is the Fenchel con-
jugate of f(u) (Nowozin et al., 2016). Using Vf (pd, pG;D)
as the variational objective for GAN training optimizes f -
divergence without explicitly evaluating pG(x). For RKL,
we have

VRKL(ρ, µ;D) = EX∼µ[D(X)] + EX′∼ρ[log(−D(X ′))].

It also turns out that the maximizing of D(x) can be re-
formulated as the estimation of the (log-) likelihood ratio
r(x) = log pG(x)

pd(x)
(Pu et al., 2018).

2.2. Sampling unnormalized distributions with
annealed RKL-GAN

We are interested in sampling from probability density µ(x)
described by µ(x) ∝ exp(−ψ(x)), where ψ(x) : X →
[0,∞) is a smooth function commonly known as the po-
tential. To sample from µ(x), one can construct a Markov
chain with µ(x) as its invariant measure. One standard
construction, which we will revisit in detail later, is the
Itô-Langevin diffusion, given by

dX(t) = −∇ψ(X(t)) dt+
√

2 dW (t), (1)
where W (t) is the standard Wiener process (Doob, 1953).
Samples are obtained via subsampling a particle trajectory
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Figure 1. Illustration of damped diffusion in 1-D (shifted horizon-
tally for ease in viewing). Green denotes proper approximation to
the target density (β ≈ 1), cool colors denote under-damped diffu-
sion (β < 1, mode covering) and warm colors denote over-damped
diffusion (β > 1, mode seeking).

{xt; t ∈ R+} evolved according to (1) following a proper
burn-in embargo.

Direct sampling from a Markov chain defining µ(x) can
be challenging (Liu, 2008), and simulated annealing (SA)
techniques have been developed to alleviate the difficul-
ties (Kirkpatrick et al., 1983; Neal, 2001). In particular,
SA introduces an inverse temperature parameter β to con-
struct intermediate distributions Q = {µβ}β∈[0,1], where
µβ(x) ∝ exp(−βψ(x)). Q continuously bridges a uniform
distribution (β = 0) to the target distribution (β = 1),
and one proceeds by evolving an ensemble of particles
through a sequence of Markov chains respectively designed
for {µβk

}Kk=1, where the {βk} are gradually annealed from
0 to 1.

We now consider optimizing a model distribution ρ towards
an annealed target µβ wrt the RKL objective KL(ρ ‖ µβ),
under the assumption µ(x) can be directly evaluated. It is
easy to show that

KL(ρ ‖ µβ) = Fµ(ρ;β) + Cβ , (2)

where Fµ(ρ;β) = KL(ρ ‖ µ) + (1 − β)EX∼ρ[logµ(X)]
and Cβ is a constant independent of ρ. This readily implies
that we can target a deformed distribution µβ assuming we
have a tractable µ and empirical samples from it, without ex-
plicit evaluations of the model likelihood ρ(x) via applying
the f -GAN technique described above to the RKL objective.
We will refer to this procedure as annealed RKL-GAN.

2.3. Likelihood-based annealing
We now consider the implications of annealed RKL-GAN
(see Figure 1). When β = 1, the likelihood term vanishes,
and minimizing Fµ(ρ;β) recovers the target distribution
µ(x). When β < 1, the stationary solution demonstrates
a mode-covering behavior, putting more mass at low den-
sity regions. In the asymptotic limit β → 0, the solution
maximizes the Shannon entropy, producing a uniform distri-
bution. Consequently, isolated modes will be joined under
a sufficiently small β, making it easier to train a generator
that properly distribute its mass. When β > 1, the solution
reverts to a mode-seeking behavior, putting extra mass at
more probable regions. In the asymptotic limit β →∞, the
solution degenerates to point masses on the modes of µ(x).

We synthesize the standard results for Langevin systems
in the theorem below to assist our development of theo-
ries, which reveal more fundamental connections between
Langevin diffusion and annealed RKL-GAN.
Theorem 2.1 (Damped Langevin diffusion, Fokker-Plank
equation and free energy minimization (Jordan et al.,
1998; Reichl, 2016)). Consider damped Langevin system
dX(t) = −∇ψ(X(t)) dt +

√
2β−1 dW (t) with damping

factor β > 0. Let ρ(x, t) be the density of an infinite ensem-
ble of particles governed by the damped Langevin dynamics
described above, then:
• the temporal evolution of ρ(x, t) is governed by the

Fokker-Plank equation
∂tρt = ∇ · (ρt∇ψ) + β−1∆ρt ; (3)

• the stationary distribution of the above Langevin sys-
tem is given by the Gibbs distribution ρs(x;β) ∝
exp(−βψ(x));

• the stationary distribution ρs(x;β) also solves the vari-
ational problem arg minρ∈P Fµ(ρ;β).

From an information-theoretic perspective, Fµ(ρ;β) =

βEµ(ρ) + S(ρ) is the free energy, where Eµ(ρ) ,∫
X ψ(x)ρ(x) dx and S(ρ) ,

∫
X ρ(x) log ρ(x) dx are re-

spectively known as the evidence and entropy functionals.
The evidence term tells how likely an observation will oc-
cur under the ground truth and the entropy quantifies the
diversity of a distribution. So intuitively, Fµ(ρ;β) seeks
a balance between: (i) synthesizing more likely samples
via minimizing the negative log-likelihood ψ(x), and (ii)
encouraging the diversity of synthesized samples via max-
imizing the entropy of ρ(x). This intuition has been re-
peatedly exploited by researchers to design regularization
schemes for generative modeling (Li & Turner, 2018; Che
et al., 2017a; Yamaguchi & Koyama, 2019).

Now let us rearrange the terms in the free energy functional
so that the RKL term appears explicitly:

Fµ(ρ;β) = KL(ρ ‖ µ) + (β − 1)Eµ(ρ) (4)
= β KL(ρ ‖ µ) + (1− β)S(ρ). (5)

Equation (4) rediscovers the annealed RKL-GAN objective.
The second terms in (4) and (5) respectively represent like-
lihood and entropy regularization used in the literature to
regularize GAN training (Warde-Farley & Bengio, 2017;
Li & Turner, 2018). This implies for RKL-GAN these two
regularization schemes are equivalent, and the solutions
actually converge to an annealed surrogate instead of the
target. Let

Lµ(ρ;λ) = KL(ρ ‖ µ) + λRµ(ρ) (6)

be the general form of loss used in regularized training of
RKL-GAN (which is essentially the annealed RKL-GAN),
where λ is the regularization parameter and Rµ(ρ) is the
choice of regularizer. The following Corollary characterizes
the target solutions for these two regularization schemes.
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Corollary 2.2. Likelihood and entropy regularized RKL-
GAN respectively converge to ρ∗lik(x) ∝ exp(−(λ +
1)ψ(x)) and ρ∗ent(x) ∝ exp(−(λ+ 1)−1ψ(x)).

2.4. Understanding annealed RKL-GAN in the
continuous-time limit

While Theorem 2.1 links the annealed RKL-GAN to the
damped Langevin system through their asymptotic solutions,
better understanding of their relations can be established
in the continuous-time limit. It suffices to look at the un-
annealed case, as generalization to the annealed case is
straightforward.

It is simpler to consider RKL-GAN as a particle-based sys-
tem. In the update of RKL-GAN, a particle x is propagated
through x+ ← x+ ε∇ log ρ(x)

µ(x) , where ε is considered as a
small time step. Now treat ε as an infinitesimal unit, then
∇ log ρ(x)

µ(x) is the velocity of the particle. Recalling the fact
the mass of ρ is conserved, we then have the continuity equa-
tion (see SM Sec.C) for the temporal evolution of model
density ρt as

∂tρt +∇ · (ρt∇ log
ρt
µ

) = 0. (7)

It can be readily recognized that this is the Fokker-Plank
equation of the Langevin system in (1). With this in mind,
we can derive the asymptotic convergence rate for the an-
nealed RKL-GAN.
Theorem 2.3 (Convergence rate of continuous-time an-
nealed RKL-GAN). If annealed RKL-GAN is solved exactly,
we have

KL(ρt ‖ µ) ≤ O(t−1) + δβ , (8)
where δβ = ‖ logµβ(x)− logµ(x)‖L∞(X ).

2.5. A gradient flow interpretation
It is helpful to further the understanding of the dynamics
from a gradient flow perspective (Ambrosio et al., 2008).
Let F (q) : P → R be a functional on the space of probabil-
ity measure, in our case, the anneal RKL. Let H be some
function space, then functional gradient ∇HF (q) ∈ H
is defined as the one satisfying F (q + f dt) = F (q) +
〈∇HF (q), f dt〉qH for all f ∈ H, 〈·, ·〉qH is a q-weighted
inner product and dt is taken to be infinitesimally small. For
RKL, closed-form expressions for ∇HF (q) are available
for particular choices ofH: fL2

(x) , ∇ log ρ(x)
µ(x) for L2(ρ)

and fκ(x) , EX′∼ρ[Aµ⊗κ(X ′, x)] for a RKHS generated
by kernel κ(x, x′), whereAµ is the Stein operator for target
measure µ, and ⊗ is the Kronecker product (Liu, 2017). In
practice, these functional gradients, also known as gradient
flows, are generally not computationally tractable. As such,
their stochastic estimates are used to update model ρ. In
Liu & Wang (2016), the authors leveraged the kernel trick
to derive a tractable empirical estimator for fκ(x); while
as in (annealed) RKL-GAN, fL2

(x) is estimated through a
function approximator (e.g., neural net) updated by stochas-
tic gradient descent (the critic updates). The quality of the

approximation affects the empirical convergence rate, as
the asymptotic convergence rate is an upper bound on the
improvement, and it only holds if the updates are exactly
aligned with functional gradients. So the maximizing step
can be understood as searching for the best descent direction
for the generator update. More discussions in SM Sec. F.

3. Variational Annealing
Inspired by the discussions above, we propose to anneal
general GAN training via imposing a controlled likelihood
regularization, and we refer to this procedure as variational
annealing (VA). More specifically, we reformulate the ad-
versarial game as 1

min
ρ
{max

D
{V (µ, ρ;D)} − λtEX′∼ρ[logµ(X ′)]}. (9)

To simplify the discussion, we assume that the training oper-
ates under the continuous-time limit, i.e., the maximization
step is solved accurately and instantly, and the evolution
of ρ follows the functional gradient of the regularized loss.
For RKL-GAN, in order for ρt → µ we must have λt → 0,
otherwise it will result in an over- (λ < 0) or under- (λ > 0)
dispersed sampler. Nevertheless, there are also situations for
which one may want to keep λ∞ nonzero, e.g., to promote
model robustness (λ < 0) or dismiss outliers (λ > 0). In
general, we would expect other annealed GANs to behave
qualitatively similar to annealed RKL-GAN.

From an implementation perspective, VA implicitly assumes
the availability of both: 1) empirical data samples for es-
timation of V (µ, ρ;D), and 2) a tractable (unnormalized)
distribution for computation of logµ(X ′). Unfortunately,
in practice we usually only have access to one of these two,
e.g., either a collection of data samples or a model likeli-
hood. In either case, solving VA directly as defined in (9) is
not possible. We now describe how to build surrogates to
implement VA.

3.1. Replacing likelihood with empirical score function
estimator

Generally speaking, density estimation is a challenging
task on its own. Fortunately for practical purposes, the
requirement of a tractable µ can be relaxed to its score
function, given as Sµ(x) = ∇x logµ(x). To see this,
let G(z; θ) be the parametrized generator, and via the
chain rule we have the gradient from the regularizer as
∇θ logµ(G(z; θ)) = ∇θG(z; θ)TSµ(G(z; θ)). For mod-
ern auto-differentiating learning platforms, we can use
Rµ(z) = G(z; θ)TStopGrad{Sµ(G(z; θ))} to replace the
logµ(G(z; θ)) term in the objective, where StopGrad(·) is
the platform-specific API that stops the gradients computa-
tion during back-propagation.

There are a number of ways to estimate the score function

1The regularizer can also be the entropy term, just flip the sign
of λ. For RKL-GAN, these two are equivalent.
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from data (Hyvärinen, 2005; Gutmann & Hyvärinen, 2010;
Li & Turner, 2018). Here we choose the denoising auto-
encoder (DAE) estimator proposed in (Alain & Bengio,
2014) due to its simple construction and robustness to com-
plex distributions. A mapping φσ(x) : X → X is called a
DAE if it minimizes the L2 reconstruction loss of samples
corrupted with i.i.d. Gaussian noise with intensity σ, i.e.,

φσ = arg minϕ EX∼µ,ξ∼N (0,σ2)[‖X−ϕ(X+ξ)‖22]. (10)

Theorem 1 from Alain & Bengio (2014) states that
∇ logµ = sσ(x) + o(1) as σ → 0, where sσ(x) =
(φσ(x) − x)/σ2 and we have dropped its dependence on
µ to simplify our notations. In our experiments, we train
a DAE modeled by a neural net optimized wrt (10) with a
sufficiently small σ, and then plug that into the score func-
tion estimator sσ(x). Since the generator update does not
involve back-propagation through the DAE, this scheme is
very efficient.

3.2. Addressing unnormalized distributions via
generative flows

When learning based on an unnormalized distribution u(x),
we can no longer implement the D-maximization step be-
cause of the lack of ground truth samples. However, for
f -GANs, it is still possible to do so through a bridging mea-
sure ν that is both easy to sample and evaluate. Recall that
for f -GANs theD-maximization is equivalent to the estima-
tion of density ratio r(x). We can estimate r1(x) = log ρ(x)

ν(x)

with the regular f -GAN D-maximization step through sam-
ples from both ρ and ν, and evaluate r2(x) = log ν(x)

µ(x) =

ψ(x)− γ(x) directly assuming ν(x) ∝ exp(−γ(x)). Since
r(x) = r1(x) + r2(x), we can now estimate D(x) subse-
quent updates in f -GANs. To distinguish it from regular
GANs which learn from empirical samples, we call it un-
normalized GAN (U-GAN).

In our implementation, we approached bridging measure ν
through generative flows, given in the form of

x = fK ◦ fK−1 · · · f2 ◦ f1(z), z ∼ q(z), (11)

where the {fk} are invertible mappings with easy-to-
compute Jacobians and q(z) is some simple noise distri-
bution. Denoting zk = fk(zk−1), x = zK+1 and z0 =
z, then we can back-track the likelihood as log ν(x) =

log q(z) −
∑K
k=1 log |det ∂fk

∂zk−1
|. Generally speaking, ν

should stay close to ρ to allow for more accurate estima-
tion for r1(x). Therefore, we optimize the MLE objective
EX′∼ρt [log νt(X

′)] wrt ν to track the evolving model dis-
tribution ρt.

We choose the masked auto-regressive flow (MAF) to build
our bridging measure ν (Papamakarios et al., 2017). MAF
is a special case of the backward shift-scale flow

zk+1 = t(zk+1) + s(zk+1)� zk, (12)

DAE-Score Sampler Error-Residual-Score Sampler

Figure 2. Comparison of different score function estimators. Solid
and dotted contours respectively represent model and ground-truth
densities.

where t(z), s(z) respects the causal dependency of an auto-
regressive flow so that Jacobians are triangular by design and
can be computed in parallel. The backward design renders
MAF fast to evaluate but slow to generate, because the
forward pass (e.g., z → x) resembles a Gaussian elimination
process. This feature is particularly suited for the VA f -
GAN framework, because we only need to backpropagate
the gradients for the (simpler) evaluation step: both in the
G-maximization step and MLE step. In practice, MAF
blocks are stacked and interleaved with permutation layers
to construct flexible flows (see SM Sec. H for more).

4. Related Work
We further discuss the proposed VA-GAN framework in the
context of existing literature. In particular, we highlight how
the VA procedure unifies popular regularization schemes,
and point out a few mis-practices from prior arts.

4.1. Likelihood and entropy regularization
Regularizing GAN training with likelihood or entropy
terms has been considered, with denoising feature matching
(DFM-GAN) (Warde-Farley & Bengio, 2017) and implicit
gradient regularizer (IGR-GAN) (Li & Turner, 2018) repre-
senting prominent examples from the respective categories.
These works are mostly heuristically driven, in the hope
that the imposed regularizer can stablize GAN training or
encourage sample diversity. We rigorously show the equiva-
lence of these two schemes under the annealed RKL-GAN
framework, e.g., positive entropy regularization is negative
likelihood regularization, and answered the question of what
distributions they are converging to. By appealing to the
idea of annealing, we present a more principled scheme for
regularized GAN training.

It is also worth noting that the misuse of likelihood esti-
mators is prevalent in the literature (e.g., amortized SVGD,
PPGN, etc.). For image models, in particular, the expo-
nentiated reconstruction loss of an auto-encoder (AE), e.g.,
µ̃ ∼ exp(−‖x− φ(x)‖22), has been widely used as a substi-
tute for the (unnormalized) likelihood (Wang & Liu, 2016).
We identify two major caveats: (i) the training objective of
the auto-encoder does not involve the normalizing constant
(only evidence, no entropy), so it is not a valid estimator
for µ(x); (ii), if φ is a DAE then (∇θx)T (x − φ(x)) is a
valid estimator for the parameter gradients, however taking
∇θ‖x − φ(x)‖22 unnecessarily back-propagates gradients
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through φ, which not only biases the gradients but also slows
computation. As such, we surmise the results from exist-
ing likelihood regularized models are subject to aggregated
mode collapsing and slower training. See Figure 2 for an
intuitive illustration with the toy “banana” distribution.

4.2. Explicit versus implicit noise annealing
The notation of annealing has also been explored previously
in the GAN literature. The most commonly adopted practice
is to inject instance noise to the data and the generated
samples, and gradually anneal the noise intensity to zero, so
that GAN training may be improved (Arjovsky & Bottou,
2017; Mehrjou et al., 2017). We refer to this strategy as
explicit annealing, and the model distribution ρ converges
to [µ ∗ ς](x), where ∗ is the convolution operator and ς
denotes the noise density. Note for the explicit scheme the
support of an annealed solution deviates from the ground
truth, especially when the data resides on a low-dimensional
submanifold. In contrast, the proposed variational annealing
provides an implicit scheme that does not explicitly invoke
the data corruption process 2 and always stays on the data
manifold.

4.3. Generative modeling as diffusion process
Diffusion-based constructions are the most popular ap-
proaches towards drawing complex samples from an (un-
normalized) distribution in the machine learning commu-
nity. This is done with standard Langevin schemes (e.g.,
PPGN, (Nguyen et al., 2017)), and more recently with de-
terministic schemes (e.g., SVGD, MMD-GAN, OT-GAN,
π-SGLD, (Chen et al., 2018)) and hybrid schemes (e.g.,
SPOS, (Zhang et al., 2018)). In particular, Stein variational
gradient descent (SVGD) also optimizes the RKL objective
KL(pG ‖ pd) (Liu & Wang, 2016). It computes the func-
tional gradient in a Reproducing Kernel Hilbert Space H,
which enjoys a tractable expression that only involves the
kernel, the score function of µ and sampling from ρ. Our
work unveils the connection between Langevin diffusion
and GAN optimization, and endows GAN models with the
ability to sample from unnormalized distributions.

4.4. Integrating generative flow with GANs
Attempts have been made to marry intractable GANs with
tractable generative flows. A brute-force solution is consid-
ered in Grover et al. (2017) by directly combining a GAN
loss with the MLE loss. It basically flips the likelihood and
sample terms in our VA framework, and falls victim to the
computational issues we discussed in Sec 3.2. Song et al.
(2017) proposed a NICE approach, using generative flows
as a proposal distribution and GAN training to learn a tran-
sition kernel to carry out Metropolis-Hasting sampling, i.e.,
one still needs to simulate a (costly) Markov chain to obtain
samples. The procedure we described can be considered

2Except when we train the DAE, but that is independent of the
GAN training and with fixed noise input.

as amortized training for generative flows, and contrastive
training for GANs (Gutmann & Hyvärinen, 2010).

5. Experiments
We consider a wide range of synthetic and real-world tasks
to validate our models experimentally, and benchmark them
against competing baselines. All experiments are imple-
mented with TensorFlow and run on a single NVIDIA
TITAN-X GPU. Detailed modeling specifications are pro-
vided in the Supplementary Material (SM). Code for our
experiments are available from https://github.com/
sdai654416/LGAN.

5.1. Variational annealing
Effect of likelihood regularization Our theory predicts
stronger likelihood regularization (larger λ) can lead to
mode collapse. This, unfortunately, might possibly encour-
age a better discrimination-based evaluation metrics such
as Inception Score (IS) (Salimans et al., 2016), but other
distribution-based metrics like Fréchet Inception Distance
(FID) (Heusel et al., 2017) will be worse. To examine
this hypothesis, we applied VA with fixed annealing, i.e.,
constant λ throughout training, to the RKL-GAN and other
popular GAN variants, namely the vanilla GAN (JSD-GAN)
and Wasserstein-GAN (W-GAN), on the Cifar10 dataset 3.
We vary the regularization parameter λ and in Table 1 report
the corresponding IS and FID scores for each model. Note
that our goal is to qualitatively verify our hypotheses, not
to necessarily achieve the state of the art. As expected, for
positive annealing (λ > 0) all models deteriorate when an
excessive likelihood penalty is enforced.

Positive & negative annealing While existing literature
converged on the stabilizing positive annealing (λ > 0),
our theory predicts the counter-intuitive negative annealing
(λ < 0) actually promotes sample diversity, as it encourages
exploration. To verify, we trained our model with negative
annealing and in Table 1 summarize the scores and training
dynamics wrt IS and FID using both annealing strategies.
We observe VA with proper negative annealing yields com-
petitive, if not better, results. We also present the trained
generator samples for both small-scale Cifar10 (32× 32 )
and large-scale CelebA (128× 128 ) datasets using negative
annealing in Figure 3 for visual inspection.

Dynamic annealing In order to match the target distribu-
tion, we should gradually anneal the regularization parame-
ter λ to 0 towards the end of training. We call this practice
dynamic annealing to distinguish it from the fixed anneal-
ing discussed above. In this experiment, we consider three
different dynamic annealing schemes: positive monotonic
annealing (PMA), negative monotonic annealing (NMA)
and oscillatory annealing (OA). We visualize these three

3
The DFM implementation from https://github.com/pfnet-research/

chainer-gan-lib is used as our codebase.

https://github.com/sdai654416/LGAN
https://github.com/sdai654416/LGAN
https://github.com/pfnet-research/chainer-gan-lib
https://github.com/pfnet-research/chainer-gan-lib
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Table 1. Quantative results for variational annealing on Cifar10.

Static Annealing Dynamic Annealing
λ −50 −10 −1 −0.1 −0.01 0 0.01 0.1 1 10 50 PMA NMA OA

Inception score (higher is considered better)
RKL-GAN 6.24 6.37 6.35 6.33 6.35 6.25 6.24 6.35 6.41 6.19 6.17 6.56 7.08 7.05
JSD-GAN 6.68 6.84 6.64 6.35 6.61 6.29 6.67 6.30 6.93 6.48 6.22 6.80 6.99 6.96
W-GAN 5.77 6.14 6.29 6.86 6.62 5.93 6.22 6.54 5.95 6.00 6.00 6.95 6.92 6.91

FID score (lower is considered better)
RKL-GAN 38.4 34.5 36.7 36.5 37.0 36.5 37.2 36.1 38.8 36.0 37.3 34.4 29.2 28.9
JSD-GAN 34.9 30.9 35.19 36.6 33.0 37.4 33.5 34.9 30.7 32.75 34.7 30.9 31.0 29.1
W-GAN 44.1 40.6 38.6 31.4 30.4 42.8 39.43 33.6 41.4 41.6 40.2 29.3 29.8 29.0

Figure 3. Cifar10 and CelebA generation results with negative static annealing.
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Figure 4. Different dynamic regularization schemes.
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Figure 5. Learning dynamics with dynamic annealing.
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Figure 6. Learning from an unnormalized density to sample the kidney distribution. Top left: target distribution; bottom left: model
distribution initialization; ‘w/’ with variational annealing; ‘w/o’ without annealing.

dynamic annealing schemes in Figure 4. PMA is appealing
when the model distribution is away from the data mani-
fold, as it attracts model distributions to the more plausible
regions. NMA is especially helpful when the target distri-
bution has isolated modes, as it disperses the samples to
make the transition to missed modes easier. OA combines
consolidation with exploration: using positive annealing to
consolidate the patterns learned, and using negative anneal-
ing to explore new patterns.

In Figure 5 we show the evolution of the FID score for the

above three annealing schemes using W-GAN; and the IS
and FID scores produced are summarized alongside those
from static annealing in Table 1. Additionally, we also di-
rectly estimate the likelihood using annealed importance
sampling (AIS) (Neal, 2001; Wu et al., 2017) and report the
results in Table 2. As observed, consistent with our hypoth-
esis, dynamically annealed training significantly improved
results. Armed with the strength from both positive and
negative annealing, OA enjoyed even better performance
evidenced by all three evaluation metrics considered here.
We remark that the FID dynamics for OA appeared to be
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Table 2. Likelihood evaluations on Cifar-10. (nats per dimension,
lower is better)

PMA NMA OA

RKL-GAN 2.41 2.55 2.38
JSD-GAN 2.27 2.43 2.26
W-GAN 2.96 2.58 2.37

Table 3. NLL results for Bayesian Logistic regression.

Model U-GAN SVGD SGLD MLE

heart .48 .45 .51 .43
bcancer .08 .08 .09 .09
german .52 .50 .53 .50
sonar .57 .55 .57 .52

ringnorm .52 .51 .54 .51
splice .39 .35 .40 .35

debiate .51 .50 .52 .50
twonorm .06 .06 .06 .06

more wiggly because of the exploration phases involved.
Training without annealing clearly gets stuck at a bad local
minimum and ceases to improve half-way thorough training.
We have also repeated this experiment several times and the
results are stable.

5.2. Sampling unnormalized distributions
Toy examples We applied the flow-augmented U-GAN
to toy distributions to demonstrate its ability to learn to
draw from unnormalized distributions, without empirical
samples. In Figure 6, we tested its performance on a kidney
distribution, a classic example with well-separated modes.
In this experiment, we trained our model both with and
without annealing the λ factor. Without the annealing, the
mass of the model distribution quickly collapsed into one
of the modes and trapped there. The annealed solution, as
expected, firstly dispersed the mass all over the domain
and then gradually condensed it towards the target. This
highlights the necessity of annealing when dealing with
multi-modal distributions. In Figure 7, we showed that U-
GAN framework enables the free-form generator to learn
more expressive distributions permitted by the generative
flow. We handicapped the generative flow by dropping all
its permutation layers, compromising its ability to capture
the bifurcation structure of the target density; however, the
U-GAN generator still correctly learned the target. More
examples can be found in the SM.

5.3. Bayes Regression
Bayesian regression We next consider using U-GAN for
Bayesian logistic regression. We assign a Gaussian prior
w ∼ N (0, α−1) for the regression weightsw, and a Gamma
prior α ∼ Γ(1, 10−2) for the precision parameter α. We
collectively denote θ = (w, logα). The mini-batch estima-

Target Gen. Flow U-GAN

Figure 7. U-GAN training with restricted flow.
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Figure 8. Soft-Q Learning results for the swimmer task.

tor log µ̂(θ|Dn) = log p0(θ)+ n
m

∑m
k=1 log p(xik , yik |θ) is

used for the posterior likelihood, whereDn = {(xi, yi)}ni=1

is a size n data and {ik}mk=1 is a size m mini-batch. The
MAP estimate to initialize our model distribution. We report
the test negative log likelihood (NLL) in Table 3. We note
that compared with SVGD, our UGAN results are more
consistent with the ground-truth SGLD results.

Energy-based deep reinforcement learning In our last
experiment we consider an application in reinforcement
learning (RL). It can be shown that, under the maximal
entropy heuristics, the optimal stochastic policy π(a|s) fol-
lows an unnormalized distribution given by exp(Q(a, s)/τ),
where (a, s) denotes the action and state pair and Q(a, s) is
known as the Q-function. To update the policy new actions
are drawn from π to get reward from environment. In soft
Q-learning, a sampling network is trained using amortized
SVGD to match the predicted optimal policy distribution
(Haarnoja et al., 2017). Here we replace SVGD with the
proposed U-GAN, and compare the performance on the Ope-
nAI gym tasks. Figure 8 shows a typical reward evolution
for U-GAN based training (details in SM Sec. J.3).

6. Conclusion
We have considered the problem of likelihood-based regu-
larization for generative adversarial nets. Via establishing
a direct link to the Langevin diffusion, we are able to de-
rive analytical results for the likelihood-regularized RKL-
GAN, which unifies the practice of likelihood and entropy
regularization. This also allows us to view dynamic like-
lihood regularization as implicit annealing for GANs, and
that counter-intuitive negative annealing actually promotes
the learning of multi-modal distributions. We also enhance
GANs with generative flows to enable flexible learning from
unnormalized distributions. We provide solid empirical evi-
dence to validate our claims. In future work, we intend to
further our study in this direction, investigating alternative
strategies for likelihood-assisted GAN learning.
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