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Abstract

In this supplementary material, we provide the proofs of the theoretical results in the main paper, some fundamental
properties, and the additional experiments.

At first, we remark the following: since Jey, cr, > 0; Vo,y € X; ¢ < k(z,y) < cy,

lon (@5, = Ih(z, )3, = h(z,z) =

cu

< —= .

<2 (Vo e X)

Let D = ,/cy/cr, and then the image measure of P by ¢y, : X — H,, is D-bounded, that is, supp(P) C B(0, D).

A. Proofs of the results in Section 3.1

A.1. Proof of Lemma 1

Proof. For any binary membership matrix U,
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Next, we derive the nonasymptotic upper bound for ||d,, — d|oo. Let Z := {k(z,-) | # € X'}. We will denote by Ry, (¥)
the empirical Rademacher complexity of 4 C {f : X — R}, that is,

Ry () :=E,

3|

n
9c% i=1

where €1, ..., €, is a sequence of independent random variables taking the values +1 or —1 with the same probability 1/2
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and E.[-] is the expectation with respect to €1, . . ., €,,. By the reproducing property and Jensen’s inequality, we have

n

N 1 & 1
Rx,(Z) =E. |sup — eik(z, X;)| < —E. |sup Zeik(x, Xi)
zex n zeX ]

1 " 1 -
< —Ec [sup ( k(x,"), Y k(X ) < —Ec |sup [[k(z,)|a, ||D eik(Xi,-)
n rEX i—1 He n reX i1 e
1/2
n o n 03/2
S Zzeiejk(XhXj) S %

i=1 j=1

Thus, using McDiarmid’s concentration inequality and symmetrization, for all § € (0, 1), with probability at least 1 — 4, we
have

32
ilelg dp(z) — d(z) <2\Uf + (cv —c1) @.

A.2. Proof of Proposition 3

Proof. Let 7 := {d()l[vn(-) = ull3, | llull3, < D? and p € Hp}and T = {mini<menr d()[¢n() = pmly, |
Vl<m< M, ||um|\§_[’ < D? and p,y, € My, }. From the basic properties of Ry, (Bartlett & Mendelson, 2002), we have

?ﬁxn(ﬂM) < Mf%xn(ﬁ)

From the reproducing property, we obtain

n

1
- ZEZ )l (Xs) — N”?Hh = n ZGid(Xi) {h(Xiin) + HN”%—Lh - QN(Xi)} .
i=1
Hence, we have
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ped 1 =1
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i=1 HEA | =1

where write .# := {u(-) | |ull3,, < D?*} C Hn. Here, we have
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and
1 - 1 =
—Ec | sup > ed(Xa) (Wn (@), ), | | = ~Ec | sup > ed(Xi)n (), p
ned |3 ned |\ Hy
1 - D -
< —Ec | sup ”NHHh Zeid(Xi)wh(xZ) < —E €id(Xi)hn (x4)
o nedt i=1 o, " i=1 )
n 2 1/2 " 1/2
D D ,
< = QB || ed(Xi)vn (i) =— {Z d(Xi) h(Xz,Xz)}
" i=1 Hy [
D |G " p D./cu
Cu
- X, X; <Z _
n {;k( i z)} = ncy \/ﬁ

Thus, using McDiarmid’s concentration inequality and symmetrization (cf. Bartlett & Mendelson (2002) and Theorem 3.1
of Mohri et al. (2012)), for all 6 € (0, 1), with probability at least 1 — §, we have

2M D D+2 log(2/§
sup  [WKKM (s | P) — WKKM, (s | P)| < 2MV/euDVeuD + >+2CUD2\/W.
nEB(0,D)M Vn 2n

Finally, for any pu* € M,

fn, 1*) = WKKMj, (f1, | P) — WKKM,, (" | P)
= WKKMh(ﬂn ‘ P) - WKKM}L([:"TL | Pn) + WKKMh(ﬂn | ]P)n) - WKKMh(:u'* ‘ Pn)
+ WKKMy (p" | Py) — WKKM, (1" | P)

<2 sup  [WKKMy(p | Py) — WKKMy (| P)| + WKKM (fr, | P) — WKKMy, (i | Py).
weB(0,D)M

Let U = (wim)nxm denote the following membership matrix:
w1 if 10n(Xi) =t lle, < 19n(Xa) — 15|13, for all j # m,
e 0 otherwise.
Since Ncut(U, | P,) — Neut(U | B,,) < 0, it follows that
WKKM}, (fin | Pp) — WKKMy, (11" | P)
= WKKMy, (f, | P,) — Neut(U,, | P,) 4+ Neut(U, | P,) — Neut(U; | P,,) + Neut(U | P,) — WKKM;, (u* | P,,)
< WKKM,, (f1, | Pn) — Neut(U,, | Py) + Neut(Ur | P,) — WKKM,, (p* | P) < 4D?||dy — d . (A1)

When we have that [|¢5(X;) — pi5, 113, = [[¥r(Xi) — p} |3, for some i, there exists the set A C {1,..., M} of indexes
such that uj,, = 1 form € A. To get the crisp result, we set 1 only for u,, where m; = min A. Combining these results,
we obtain

Ufin, p*) <2 sup  [WKKMy(p | Pp) — WKKM, (1 | P)| + 4D?||dy, — d| o
pEB(0,D)M

Therefore, with probability at least 1 — 20,

.. _4M./cgD(\/cuD +2) , [log(2/6) A2 ) log(2/3)
< 2 —
U fun, p*) < n +4ey D ™ + 8D N +4D*(cy —cr) -
4 D MD +2(M + D
_ 4w {Veo \F-i- (M + Dcy)} - AD?(2ey — 1) 10g§2/5).
n n
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B. Some fundamental properties about the weighted %-means

Note that the norm || - |3, of RKHS #, is strictly convex and smooth. For f : X — R, let V., f(x,y) denote the one-sided
directional derivative of f at z € R in direction y € R%:

o fletty) - f(=)
Vit (@ y) = t1—1>r(])ﬂ+ t '

For a distribution P on RKHS #,,, the center of IP is defined as a point ;. € Hj, such that
E[|X — ul3,] = inf E[|X —nl7,]
(1 = w3, ] = inf EIX =3, ]

Let C(P) denote the set of all centers of IP.

The following properties of the weighted k-means on RKHS H, are parallel with the results of the k-means in Graf &
Luschgy (2000), Graf et al. (2007) and Levrard (2015). We can prove these results in much the same way as Graf & Luschgy
(2000), Graf et al. (2007) and Levrard (2015). For the sake of completeness, we provide the proofs for all results.

Lemma B.1. For u € Hy, we have p € C(P) if and only if

/d(x)\\wh(ff) = 1tllae, Vel (= ¥n(2), n)P(dx) > 0 forall n € Hy.

More precisely , since ||||y, is smooth,
[ @)= vt pan) =0
Yn(@)Fp

Proof. Let () := E[d(x)||vn(X) — pl[3,,]. First, we will show the convexity of 1. Note that

[E{eon (X) = i} + (1 = ) {wn(X) = n}ll3,,
< Elln(X) = w3y, + @ =02 [0n(X) = nll3,, + 260 = t)llvn(X) = s, 190 (X) =0l
< tlvn(X) = ull3y, + @ = Bllva(X) —nll,

For ¢ € [0, 1],
Y(tu+ (1= t)n) = Eld(@) [ t{vn(X) = p} + (1 = ){en(X) = n}3,] < t(u) + (1 = )9 (n).

Thus, we have
peCP) = Viv(u,n) = 0.

We consider the function g : R — R defined by g(u) = d(z)||u + un — ¢n ()3, . We have

w('u + tn) — w(‘u) _ /d(aj) ||M +tn — %(@H%h B Hﬂ' - ¢h(x)H%'ih ]P’(da:)

t 4
_ [9(t) = g(0)
—/f]}”(dx).
Fort € [0, 1],

g(tu+ (1 —t)v)

d(@)||p + {tu+ (1 = t)okn — Ya ()3,

< td(@)||p 4 un — n(@)|F, + (1 = t)d(@)l|p +vn — D (@)|l3,
tg(u) + (1 —t)g(v).

Since g is convex, Theorem 5.1.1 of Webster (1994) gives

g(t) — 9(0)
t

g9(0) —g(—-1) < < g(1) — g(0) forall t € (0,1].



Supplementary Material for Kernel Normalized Cut

Thus, by Lebesgue’s dominated convergence theorem,

i Lt tn) — (p) :/

t—0+ t

+tn — 2 _ _ 2
d(z) lim e+t — (@13, — Nl — ¥n (@), b,
t—0+ t

(dz)
— [ @)l n(@) o V-l 1 = (o), ()

Since

[[E1]] 945,
— = Il

Vil (03) = Jim 0

we have

(@) = n(@) 1o, V[l (1 = Pn (), n)P(de)

—

d(@) |l = Yn (@) |13, Vo (0 = n (), n)P(dz)
Y (@) #p

+ / d(@)lle = ¥n (@) 3, Ve llllae, (0 = Yn(2), n)P(dz)
Y (z)=p

- </ d(@){p — ¥n(z) }P(d), 77>
Yn(x)F#p

Hn

B.1. Proof of Proposition 5

Proof. Note that the claim (ii) follows immediately from the claim (i) and Lemma B.1. First, we prove the claim (i). The
proof is similar as the proof of Theorem 4.1 in Graf & Luschgy (2000). Write U* := {V,,,(p*) | P(V;n(p*)) > 0}. To
obtain a contradiction, suppose #(U*) < M. Here, note that {* is also optimal. From #(supp(P)) > M, there exists
Vo € U* such that P(V,% \ {1, }) > 0, where iy, is the center of the Voronoi set V;, . Since &' is separable and k is
continuous, Hy, is separable by Lemma 4.33 of Steinwart & Christmann (2008). Thus, the induced probability measure on
‘Hp, is tight and
P(A) =sup{P(K) | K C A, K : compact}
for any Borel set A. Hence, for all 0 satisfying P(V,» '\ {5, }) > 0 > 0, there exists a compact set X C A such that
P(K) > 6. Let H(a,b) :={x € Hp | ||z — a|ln, < ||z — bl||lx,} and then H(a,b) is open set. Since K is compact, there
exists a finite set B C K such that
K c | H(up,, 0)"-
beB
It follows that there exists b € K such that

B(H (115, b)° N V) > 0.

Since

d(2)[[¥n () = i, 13, Pdz) < d(x)|[¥n(z) = bll3, P(dx),
Vi NH (1, ,b) Vi OH (1, 1)

mQ mg

we have

[ @) min onta) = il Bda) > [ dla) min 1o (o) - [, B,

B €M
which contradicts the optimality of M3, and () is proved.

We next prove the claim (iii). Choose a Voronoi partition {Wj(u*), ..., Was(p*)} such that V;(u*) © W;(u*) C
Vi(p*) ( =1,...,M). We abbreviate W;(u*) and V;(p*) to W, and V}, respectively. Then,

pj € CB(- [ W5) N C(P(- | V).
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From Lemma B.1, we obtain
[ d@) - on@)en) =0 and [ ) n) () = 0
Wi\{u} Vi\{u}
Thus, we have
/ d(z) i — ¥n(z) }P(dz) = 0.
vinv;

Since V; N V; € Sl piy) = {a € X | () = pillse, = [0n(x) = psllm, }. we have ji; € C(B(- | Vi (V). This
contradicts with Theorem 2.4 in Graf & Luschgy (2000). [

As with Levrard (2015), let pmin := infrepmt, 1<m< s P(Vin (05)).
Proposition B.2. Suppose P is D-bounded. Then, both B and d,;,, are positive.

Proof. The proof of the strictly positiveness of B is given in Section 4.1 in Levrard (2015). Since dyin > CLPmin, let us
prove that pi, > 0. Form € N, let R}, = inf »q,, WKKM,,(M; | P). Since the support of PP contains more than M
points, we have R}, | < R,. Suppose that ppin, = infe g, P(Vin(p)) = 0, thatis, Ve > 0; Ipu € Myy,; P(Vi(p)) < e
For all € > 0, we have

M
Riy = > E [d(X) (X, ) = u0 1, Ly, () (X)]
m=1
M
M
> E (a0 10X, ) = 15" 1By, Tva o (X)] + 30 B [dCOIRX, ) = 5303, v, ) (X)
m=2
—E [d(X)IA(X, ) = 18 130, v ()]
> Ry, 1—4CU
L
This contradicts with R, ,; < Ry . Therefore, we obtain prin > 0. O]

Lemma B.3. Under the general assumption in Section 2, we have

(i) B(0, R)M is weakly compact, for every R > 0,
(@ii) p— WKKMy,(p | P) is weakly lower semi-continuous,
(iii) M is weakly compact.

Proof. The claims (i, iii) are same as (i, iii) of Lemma 4.1 in Levrard (2015). Let {,,} be a sequence in B(0, D)™ such
that p,, converges weakly to p € B(0, D)™ . From the proof of Lemma 4.1 in Levrard (2015), for a fixed f € Hy,,

i < (n)
i1 o, < mint in (17— [,

(n)

where p, = (1; (T

cey b Thus, for given z € &,

i n)
min d(@)[h(a,) = o}, < liminf | min @)z, ) - o),

From Fatou’s lemma, we obtain
WKKMy (p | P) < lim inf WKKMp, (g, | P).
n— 00

Proposition B.4. Suppose that P satisfies a margin condition with radius ry described in Section 3.2. Then



Supplementary Material for Kernel Normalized Cut

(i) Forevery p* in M and p in B(0, D)M, if |u — w*|| < Bro/(4v/2D), then

U, w”) = == ="
(i) M is finite.
(iii) There exists € > 0 such that P is e-separated.
(iv) Forall p € B(0, D)™
1 . 2 2
o Var (400 min 16400) = By, — ) i, 19060 = i )1

<l = p* ()P < rol(p, p*),

where 0 = E[d*(X)], ko = 4M D? (e 7* V 64D? /(dynin B*r})), and p* (p) € argmin,«caq || — p*||.

Proof. For p € B(0,D)M, (Wy (), ..., War(w)) be a Voronoi partition of p. For u* € M,

M
WKKM, (1| P) = > B [d(X)[¢n(X) = 13, T, ) (X)]
m=1
M M
= > E[dX)[n(X) = tim 3, Ly, oy (] + D B[O NWR(X) = 30, {Lw,, ) (X) = Ty, ) (X)}] -
m=1 m=1
Since

E [d(X) b (X) Ly, ) (X)]
E [d(X)Ly,, (u)(X)]

* pr—
,Um -
we have

E [d(X)(Wn(X) = pims o = tn) 34 1, () (X) ] = E [{d(X) {00 (X) = pi v, ur) (X)) i, = b )2, ]
= (B [d(X){vn(X) =t v, (o) (X)] = pm) 30, = 0.

‘We obtain

E [d(X)[¢n(X) = b3y, Lvi ey (X)] = E [dXO)19n(X) = s, Lv ey (X)) + Nt = 113, B [d(X) Ly, () (X)]

and thus
M
WKKM, (1 | P) = WKKM (1 [ P) + > ||, = s 130, E [d(X) Ly, () (X)]
m=1
M
+ ) B [dX)[9n(X) = 3o, {Tw,, () (X) = Ly, 0y (X)}] -
m=1
Note that

+1 e € Win(p) N Vi),

Tw,, () (2) = Ty, oy () = 0 if 2 € {Why (1) O Vi () } 0 {Won (1) 0 Vi (7)°},
=1 ifax € Wy () NV (p*).
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l;fom Win (1) O Vi () = Vi (07) N {Uj;ém Wi ()} and W, () N Vi (17) = Win () 0 {Uj7ém Vi(p™)}, it follows
that

M
Z A(X)9on(X) = s 130, {Tw,, () (X) = Dy, () (X)}
=1
M M
= Z > dX) (X)) = i3, Lw, (v () (X) = DD dX)[0n(X) = 34, 1w ()i () (X)
=1j#m m=1j#m
M

=03 dOLER(X) = m5ll30, = 19n(X) = pnl30, w, () Vi ) (X)-
jEm

m=1

Hence, we have
M
= > Mg = pmll30, B [d(X) Ly, (o) (X)]
m=1

+> Z]E X){n(X) = 151130, = 19n(X) = 130, Yw, (wynvin (ue) (X)] -
From (i) of Lemma 4.2 in Levrard (2015),
X 2 X) = il =2 x) - HtEm\ g D,
1 (X) = pnllye, = 19n(X) = mjll3g, =2 1y = pom, Y0 (X) = == < 8V2DIuj — pm |7, -
Hn

Using (ii) of Lemma 4.2 in Levrard (2015), we obtain

{lvn(X) = 3, — 1900 (X) = 15130, 30w, (u)nvim () (X)
< 8V2D ||k — 1w, (v ) e (4vED e 1 3) (K-

~—

Thus,

M
> dCONR ) = sl (L ) (X) = Ly, gum) (X))}

m=1
M
= Z Z d(X){Nlvon (X) = 131130, — 1n(X) = 32, Fw, ()i () (X)
=1j#m
> —8V2D|pu — p*|| Z Z Ly () Vi ()N - (V2D pa—pa [/ B) (X)

m=1 j#m
> —8V2D||p — |y . (43D 3y (-

Since PP satisfies the margin condition,

d (D22 ) < Dl WDy g
S 19802 = Tgap MM
Therefore, we obtain
* * * \[dmin *
gt 1) 2 it — 17| — VDt — | Voo

o dmin %112
= Sy 2
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Next, we prove the claim (ii). Conversely, suppose that M is not finite. From Lemma 4.1, there exists a sequence {t, } of
optimal codebooks and an optimal codebook p* such that p,, # p* and p,, converges weakly to pu* as n — oo. If there

exists m € {1,..., M} such that liminf,, Hﬂ(n)”?{h > |l |15y, » liminf, || f — Nm)HHh > ||f — i ll3,, for arbitrary
f € Hp. Forx € Vm( *)and j # m,

liminf s (x) — 1 13y, = (@) = 5115, > Ion () = 53,
Thus, for every x € X,

min d(@)n() w2, > min (@) [vn(@) = il

Because of P(V;, (*)) > 0, it follows that

liminf E | min d(m)||wh(x)—ﬂfg)||%h} >E |:111’I111’1f min d()|[vn(z) — (n)“Hh]

n—00 1<m<M n—oo 1<m<

* |12
S || iy o) lona) — il |
This is impossible, and thus we have lim inf,, ||z ”Hh [ |I3,, - We can take a subsequence {ft,} of {g,} such
that lim,, oo Hﬂm) 12, = ek, ||n, for every m € {1,..., M}. From the uniform convexity of Hilbert spaces and the

Radon-Riesz property, it follows that (i, — p* asn — co. For a large enough n, we have 0 < ||f1,, — p*|| < Bro/(4v/2M)
and thus

i — 1|,

a contradiction. Therefore, M is finite.

We now turn to the claim (iii). Let £ be a local (not global) minimizer of WKKM, (u | P). If P(V,,,(ft)) = 0 for some
m € {1,..., M}, then WKKM,;, (@2 | P) > R},_, > R}, and the claim (iii) is proved. Suppose that P(V,,(f)) > 0 for
everym € {1,..., M}. From Lemma B.5, we have ||t — pu*|| > Br/(4v/2D) for all u* € M. Thus, by Lemma B.6, there
exists u € B(0, D + Br/(4v2D))M \ B°(M, Br/(4v/2D)) such that WKKMj, (@2 | P) > WKKM,(p | P) > R3,.

Finally, we prove the claim (iv). For all x € X,

L min o (X) - umuih  JninJon(X) = g, ()7,
= 1<m13M {1 (X) = i (130, + N — i (F, + 2000 (X) = i, (B, 1 (1) — b3, }
= amin Jlvn(X) =, (W,
= min {00 (X) = g () 3y, + 00 (X) = s 0 (X0) = i (1) 150 () = im0, }
= Join e (X) = g5 () s,
< i, {100 (X) = 65, 8) By, + 4Dl () = sl } = | amin n(X) = i, (1),
< 4D max Al — w0,

Similarly, we have

1o (X) = umly, — min () =l ()3, > 4D max Non = 15 (2) e,

1< <]W 1< <IM
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Hence,

oz Var (400 min 190(3) = oy, = dX) im0 = ), )

1< <M 1<m<M

2
1
< 2 - _ 2 ok 2
Ep— [d(X) {KI}%M J60X) = el gmin, 1) = 0 | ]
1
16D202
<l = p* ().

From the claim (i), if || — p*(u)||?> < Bro/(4v2D), then (g, u*) > dpin|le — p*(@)||?/2. Suppose that | —
w*(u)||?> > Bro/(4v/2D). From Lemma B.6, there exists g’ such that £(u, u*) > £(u', u*). Since p' ¢ M or
[ — p*(w)||* = Bro/(4V2D), we have

< E[d(X)*]16D? max || — 1, (10)|[30,

Op, ™) > L' 7)) > € A

dmin BQT% > (e A Bzr(%dmin H/"'_IJ'*(H’)HQ
2 32D2 — 64D2 4M D? ’

Here, we note that

B2T(2) dmin 1 4D2D2 dmin 1 dmin 1 dmin dmin
e A < = < < i
64.D2 4M D? 64D2 M D2 16 M 16 2

The claim (iv) is proved. O

This lemma is a straightforward extension of Lemma 4.3 in Levrard (2015) for the weighted k-means.
Lemma B.5. Let pu be a element in B(M, Bro/(4v/2M)). If p satisfies the centroid condition, that is, form = 1,..., M,

E [d(X)vn (X)L, ) (X)]
E [d(X)Lw,, () (X)]

then p should be a element of M.

Proof. Let fi be a local minimum codebook in B(M, Bro/(4v/2M)) N M¢€. Then, there exists u* € M such that
i — p*|| < Bro/(4/3M). Form =1,..., M,

E[ ( )wh(X)]lV (u)( )] [d(X)wh(X)ﬂ%n,(u*)(X)]
= E [d(X)¢n(X){1v,, () (X) = Ly, (u)(X)}]
= E [d(X)¢n(X){1Lv,, @)V () (X) = Ly, ayerivim (o) (X) }]

E [d
D B [dX)vn(X) v, (v () (X) = Ty (v (ue) (X)) -
i

From the centroid condition of i and p*, we have

M
3 B Ly, ) (X)) — E[A(X) Ly, (e (X))

m=1

=D [E[A(X)en(X) v, ) (X)] = E [d(X)Yn(X) Ty, ) ()] [,

M
<> 3 {IE X)) v, @ev; 6 (] e, + 1B [08 ) v, iy ey (O] L,

<2D Y Y E[dX) Ly, o) (X)] -
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From (ii) of Lemma 4.2 in Levrard (2015) and the margin condition of P, we have

M
> D EX) Ly @, wn (X)] <E [d(X)]le((4ﬂD/B)Hﬂ—M*H)(X)}

m=1j#m
mm 4fD ~ * dmin ~ *
< Qill = [ — p.
128D B 16v/2D
This gives
M
S B Ly, () (X))o — ELA(X) s, ey (X115 “}n i ]|
By the triangle inequality,
[BLA(X) Ly, ) (X)) fm — BLAX) Ly, oy ()15,
= [[BIA(X) Ly, ey (X G = p5) = i E [AX){ D oy (X) = Ly O]y,

> Eld(X) Ly, () (X)] || fom — Mm”’Hh = 120, [E [d(X){Ty,, () (X) = T, () (X)H] |

If rg > 2D, then

Bdmin 4D2dmin 1
Eld(X)] = ¢(2D) < 2D < = —dpi
[A(X)] = a@D) = 155552D < Tepz — 3

which is impossible. Hence, we have ry < 2D. Since B < 2D and rg < 2D, we have

~ * ~ * * ~ * BTO
N2, < [l llae, + im — o lla, < i llae, + 18— o) < 272D <2D.

Moreover,

M
=2 Z Z E [d(X)]lVJ(ﬂ)me(u*)(X)]

m=1j#m

mln 4\[D *” o mm

Thus, we obtain
> B Ly, ) )iim — ElA(X) Ly, ey ()]t |,

M
> Y X)Ly, oy (O] i — 330, — Z IIE [d(X){Lv,, 2 (X) = v, sy (X)}] |

m=1 m=1

dmin ~m* :n —-2D mm ~*
mZZIIIu tollag, saplf =l

1 8v/2—2
>(1-—= dmin (L — pt|| = - = dmin (L — p*|.
( 4\/5) la— p* ( Wi ) o —

This contradicts the upper bound.
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Lemma B.6. For any r > 0, there exists . € B(0, D + )M \ B°(M,r) such that

inf WKKM,, (e | P) = WKKM,, (1, | P).
pEHM\Bo(M,r)

Proof. Choose a codebook p such that p,,, ¢ B(0, D + r) for some m. Let s : H;, — Hj, denote the projection onto the
closed convex set (0, D + r). Let ft = (fi1, ..., iar) be given by fiy, = fim if i, € B(0, D + 1) and fiy, = s(pbr,) if
tm ¢ B(0, D + 7). From Theorem 5.2 in Brezis (2011), it follows that, for any f € B(0, D + r),

I = w3, = 1 = s(um) 30, + 118(ttm) — prml3, -
By the D-boundedness of P, we have

WKKMy, (/1 | P) < WKKMy, (s | P).

This gives
inf WKKM;,(p | P) = inf WKKMy (p | P).
HM\Be(M,T) B(0,D+r)M\B°(M,r)
From the weakly compactness of B(0, D + ) \ B°(M, r), there exists p, that achieves the above infimum. O
C. Proofs of Theorem 6

Proof. Assume that P’ satisfies a margin condition with 7y > 0, and we will denote by e the separation constant of P.

Let ¢(p, z) = d(z) mini<m<ar [[¥n(x) = fim 3, - and let

F={¢(m,) = C(p* (w),) | € BO,D)M}.

Since sup, ¢y d(x) < cy and

min Ayn(X) = g3, = min Jn(X) = g, ()13,

*
1<m<M 1<m<M < 4D  max H/j’m - :um(l'l’)HHha

1<m<M

it follows that, for all f € F,

[flloc < 8cyD?, Var(f) <16D%0°||p — p* (w)lI* =: w(f).

Let us denote by Pf and P, f the integration of the function f with respect to I and PP,,, respectively. Let, if it exists, ®(r)
be an sub-root function such that

E| sup |[(P—P)fl

w(f)<r

<®(r) (vr>D0).

From Theorem 4.1 in Levrard (2015), we see that, for all z > 0, with probability larger than 1 — exp(—zx),

9K? + 16K su IS
n Prer ||fH r

Pf-Puf < {w(f) e o

} (VfeF),

where K > 0 is a constant, and 7* be the unique solution of ®(r) = r/(24K).
By Proposition C.1, let

4v/TM + \/21og(|M])
B vz

and for some positive constant /{ > 0, let us denote by §* the solution of the equation ®(J) = ¢/(24K). The solution §*
can be written by

0 Vo,

n n n

2 2 2 Y 2=
5 _ STOK <4 v Fong)) < M Flog(M)} | K22
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where C' = 184327 and £ = C{M +log(|]M|)}. Combining Theorem 4.1 in Levrard (2015) with this fact, with probability

larger than 1 — exp(—x),
. _ . KE 9K + 128¢cyD?
(P = Pa)(C(p:) = G () < K716D%0% i = (w)||* + —= + = .

Here, we remark that xof(p, p*) > || — p* (p)]|?. Choosing K = 32D?0? k¢, with probability larger than 1 — exp(—z)
D?02%9kg + 4cy D?
2 T

32D2%02kK0E
9 0“Ro +3

K _’I’L7 * S
(Bns ") - o
D2{M + log(|M 16D?
< Cho’ky { og(‘ |)} + (9cyko + 4)76[].’17,
n n
O

which proves the theorem. For fi, by the inequality (A.1), we can immediately get the last statement.

Proposition C.1. Forall § > 0,

4VmM + /2log(| M|) /i

prEM [|p—p*|2<5/(16D%02)

E pP-P, <
ferwin<o : ] vn
Proof. Note that
E sup (P = Po)(C(p, ) — S (), )
l—p* ()][2<6/(16D202)
<E [ sup sup ‘(P - Pn)(C(llw ) - C(N*7 ))‘

For pu* € M, write
lp—p*||2<6/(16D202)

We can see that
E [ sup Yu*] =E [ sup (Y- —E[Y,-] —HE[Y,L*})} <E { sup (Y- —E[Ym])] + sup E[Y,-].
premM pr*emM premM premM

Here, for p* € M, when ||p — p*(p)||? < §/(16D%0?),

\/S<\/E.

) — - <4D —pt|| <4D
16 = (oo < ADevl — p1*|| < ADev 7 <

Note that Y),- depends on X1, ..., X,,, and we write it n(X1,..., X,). Forall (z1,...,25), (y1,...,yn) € X" and all

ie{l,...,n},
(1, Tiy ooy ) = X1y ey Yiy e ey Tn)| < 2nﬁ
Thus, from the bounded difference inequality (Theorem 5.1 in Massart (2007)), it follows that, for all A > 0,
26

log (E [exp{A(Yyr —E[Yy-])}]) < 5

Hence, for all u* € M and all z > 0,

and
P(E[Y,] - Yo > ) < exp (— i
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From the discussion in Section 6.1.1 of Massart (2007), we obtain

2log(|M|)d

E [ sup (Yl‘* — ]E[YIA*D n

preM

Thus, from Lemma C.2,

2loe(| M6 \/21og(| M) + 4v/7M
E| sup Y- M—&- sup E[Y,-] < } | \[(5,
preM n prEM vn
which completes the proof. ]

Lemma C.2. For a fixed p* € M,

. 4NTMAG
E sup |(P = Pp)(C(p, ) = C(w™, )| € ——F=——
l—p~ 2<6/(16D202) vn
Proof. Fix u* € M and let ey, ..., ¢, be independent Rademacher sequence. By the symmetrization principle,
E sup (P = Po)(C(ks ) = C(1"50))]
lp—p*|?<6/(16D2c2)
é QEX,E Z /Jﬂ C(u’*le)} .
llpp—p |I2<5/(16D202) i=1
Let g1, ..., g, be independent standard Gaussian variables. From Lemma 4.5 in Ledoux & Talagrand (1991), we have
E ! Zn: —C(p7, Xi)}
X, e - /J/v oA
(T |\2<6/<16D202 [

Zgz{C (ks Xi) = (1", X))}

™
< \/>EX,g
2 [ H2<6/ 16D202) [N

™
= 7EX7 bup — gL C ’J/’ ,Xl .
\/; ’ [Iu o [2<6/(16D202), s=+1 T Z { — (X))

From Slepian’s lemma (see, e.g., Theorem 3.14 in Massart (2007)), for fixed X1, ..., X,, and for fixed optimal codebook
p*, we consider the following Gaussian process Z, :

Zps =5y gi{Cm. Xi) = ((w*, X3)}, p € V(8) = B(u*,V3/(4Do)), s€{-1,+1}.
i=1

Fori € {1,...,n}and u, ' € V(9), it follows that

{Clm, Xi) = C(w', X0)}? < d(X)* max {[[Un(Xy) = pmlFy, — 10n(X3) = w3, 12

1<m<M

2
<d(X)? max (2 (luml3e, = i 30,)” + 8(m = ts o0 (XD, | -
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and, for M > 2,

{Cp X5) + C(1/, X3) — 2¢ (w7, X)) 2
P amin [0 060) — s, — X))+ amim (10 X0) = 3, — I (60) = 1 1}

. " « 2
<d(X,)? | min {9n(X0) = ol — 198 (X0) = 5l + 16 (X) = s B, — 0 (X) — il }

1<m<M

M
* * 2 * * 2
2 {5, = lelle, = 2(m — 1 on(Xi))30) ™ + (lmalle, = 130, — 200 — th ¥ (Xi))20,) "}
m=1

M

* 2 * * 2 *
Xl Y A2 (e, = gal3e,) ™ + 8ttm = pms on (X)) 5e, +2 (lrml3a, = N30, )™ + 80k =t ¥n
m=1

Let &m (i =1,...,

consider the Gaussian process X, s defined as follows:

X;L,s =S 2[2 d - M;knvwh(Xz»'thlm +

M

Fors,s' € {—1,+1},

g g {s[z?_lgi{cm,xn — (' X)) if s’ = +1,
T s [ g X)) = C(pt Xa) + G X)) — (T X)) ifss = 1

Here, we note that, if ss’ =1,

Var(

and that, if ss’ =

Var(Z,,s — Z,

Zp,,s - Zp,’,s’) = Var (Z gi{C(lJ’a Xi) - C(Nla X >
i=1

<2d cmax (2 (e, = iinl3,)” + 8(mm = b 0 (X0, |

S S ax, [ (rom s, = Nial3,)* + 80t = by (XD, |

i=1 m=1

= Var(X,LVS — Xu’,s’),

-1,

') = Var <Z gz{g(u’vxl) - C(IJ‘*aXl) + C(ulaXl) - C(u*7 Xz)}>

n M
<> d(X0)? Y A2 (I 30, — lelBe, ) + 8t — i vn(X0))34,
=1

m=1

* 2 *
2 (lmalFe, = NemallFe,)™ 84t — s Y0 (X0))3, } = Var(Xy

Therefore, by Slepian’s lemma, it follows that

Eq

sup Zys| < 2E¢ ¢ sup Xps
pneV(d), s=£1 pneV(4), s==+1
n M
< 4V2E; l sup s Y Y d(Xi){pm — 3y, wh(Xnmsz—m}
HEV(S), s=£1 =7 )

M
+2 QZd Q]Ef'l sup 5 Y (i3, — limll3,)

pneEV(S), s==£1

m=1

Zgz{c 1, Xi) = C(n X)}]

]

nym=1,...,M)and &, (m = 1,..., M) be independent standard Gaussian variables. We will

n M
23 d(X? Y (il = Ml ) €
i=1 m=1

s = Xus)-
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By Cauchy-Schwarz inequality and Jensen’s inequality, the first term is bounded as follows:

n M
E¢ [ sup sy Y d(X) (pn — urn,wxi»mgim]

HEV(S), s=£1 ;T

M n
SE& Sup ZHIU’TI’L sz”’Hh Zd gun SEE sup ||iu' /’l’*H Z Z ( )gzm
HeV(s ), eV () m=1 || i=1 )
2
E im d(X D2
< h Z : Xon| - v Z 2 lon(XI,
h i=1

Jensen’s inequality gives

Bx |2 d(Xi)? (X0l | < ZEX[ 2 [en(X)I%, | < vaDo.

Since

M ) M M

* * * * \2
Z (”/Lm”?-[;, - ”l‘mH%—th) = (H.Um - l‘m”?—[h + 2(ptm — :um’:um 7'lh Z Hm, = P,y o, + .um>Hh
m=1 m=1 m=1
M 5
<l = w3 i + 1134, < 4D || — p*||* < ypr
m=1
the second term can be bounded by
M M ) M

Eer sup (N3, = e l3e,) (s€1,) | < Eer sup (e ll3g, = lsl3,) (s&.)?

peEV(s), s=+1 ;:1 ’ " HEV(S), s=1 mzzl " " mzzl

< Vg | S| < VAT
=25 ¢ — m - 20
Note that
Ex || > d(X:)?| < ZEX | < v/no.
i=1
Combining these, we obtain
vnMé vnMé
Exq sup Zys| < 41/2 i +2v/2 i = 2V2nM V5§
HeEV(S), s=%1 4 2

and thus

E sup [(P = Pa) (S, ) — C(17, )]

lp—p*|?<6/(16D?02)

< i2\/§2\/2nM\/5 = 47”/%\/5.
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D. Proof of Theorem 7
Proof. For a partition &y = {W1,..., Wy} of the data space X' such that P(W,,,) >0 (m =1,..., M), let

WKKMy, (| Par, P) Z/ 2)[[n(z) — b 13, B(d2).

The optimal solution p(Ppy) := {p1 (W), ..., par War) } of WKKMp (i | s, P) is given by

S, d(y)n (y)P(dy) :
Jw,, d(y)P(dy)

By the Riesz representation theorem, we can easily see that p.,,,(W,,) € Hy, form = 1,..., M. Using the reproducing
property, we have

oy, (W) 1= m=1,...,M).

(@) = g (Won) 130,

B <JZ§Z?>’ T >H i </W 0 gt | 7 ) g P<dz>>
= vy (i o, it T,

= (s as ) i fo o 406 (G i) BPas
~aw® [, (a0 a0 ), P

d@)d@) AW S S, k(y, 2)P(dy)P(dz) — d(ﬂ2/m) /Wm kc(lf;f)’)wdy).

k(z,x) 1
Thus, we obtain

8

M
WKKM, (P | P) = /X d(m))P(dx) - Z d(thm) / 7 k(z,y)P(dz)P(dy). (D.1)

Here, we note that

AWy = /W /X (e, y)P(dx)P(dy)

_ /Wm /Wm k(s y)P(dz)P(dy) + /Wm /X o, Moy PP ().

Therefore, we obtain

s

WKKM, (€ | P) = /X k;‘z;)”)mdz) i d(ml/m { / /X - (z,y) dx)IP’(dy)}

m=1

B k(z,x) B M 1 (@ N
- | Stes) R i /X Ky Ppa)
= Const. + Ncut(Zy | P),

where Const. does not depend on Z2j;. From this, we can conclude that the weighted kernel k-means WKKMy, (2, | P)
is equivalent to the normalized cut Ncut(Zy, | P). O
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Figure 1. Convergence of Ncut(,@M | IP) for both NSC and Ncut at each sample size. Each point is the mean of 20 replicates + 2 times
standard error.

E. Additional numerical experiments

In this section, we provide more detailed numerical experiments related to the essential difference between normalized
spectral clustering (NSC) and normalized cut (Ncut). First, we consider the two moon data example in Section 5 of the main
paper. Here, we employed the same setting in Section 5. For each sample size, we generated independently 40 datasets and
applied normalized spectral clustering and normalized cut. We approximately evaluated the loss of the population level Ncut
for each estimated partitioning using the Monte-Carlo simulation as follows:

Neut(2y | P) =

k(x,y)P(dz)P(dy) ~ NQZ Z Zk‘

X W
\ X*eWm X gWo,

where P, = {Wl, .. WM} be an estimated partition of X = R? from data Xy, X% = (XT,...,X5) and X;, =
(x1,...,x1) are two 1ndependently generated i.i.d. sample from P, and dy (W,,) = doxrew, Z (Xi*,XJT)/NQ.

m

Here, we set N = 10%, and we used 10* random initial values to avoid local minima in each method. From the consistency
results, the values of Ncut(&? | P) converge to the corresponding limit in both spectral clustering and normalized cut.
Figure 1 shows the means of 40 loss values with £25/ V40 at each sample size, where & is a standard deviation of 40 loss
values for both NSC and Ncut. From this figure, we can see that values of Ncut(@ | P) for NSC and Ncut converge to
around 0.08 and 0.06, respectively. Thus, it seems that NSC does not provide the optimal partition of Ncut(<? | P) even in
the large sample limit in this setting. Here, we remark that we used the same tuning parameter for both NSC and Ncut.

Next, we provide more detail results of the image segmentation example in Section 5 of the main paper. There are two major
spectral clustering algorithms (see von Luxburg (2007)). Here, we refer these algorithms proposed by Shi & Malik (2000) and
Ng et al. (2002) as NSC-SM and NSC-NJW, respectively. We also use the Gaussian kernel k(x,y) = exp(— |z —y||?/(202))
to compute similarities among the representing points in this application. For each image, we applied NSC-NJW, NSC-SM,
and Ncut with several values of o2 in the same way as Section 5. Figure 2 and Figure 3 show the image segmentation results
of the first and second images at several values of o2, respectively. From these results, we can see that, at the same values of
o2, spectral clustering provides a different segmentation from Ncut. Moreover, it seems that spectral clustering requires a
smaller value of o2 to provide a similar result to that of Ncut.
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NSC (SM) | NSC (NJW)

Ncut

Figure 2. The image segmentation results of the first image at several values of the tuning parameter o>

02 =005 o2 =0.1 o2 =0.17 o2 =03

NSC (SM) INSC (NJW)

Ncut

Figure 3. The image segmentation results of the second image at several values of the tuning parameter o2.



Supplementary Material for Kernel Normalized Cut

References

Bartlett, P. and Mendelson, S. Rademacher and gaussian complexities: Risk bounds and structural results. Journal of Machine Learning
Research, 3:463-482, 2002.

Brezis, H. Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer-Verlag, New York, 2011.
Graf, S. and Luschgy, H. Foundations of Quantization for Probability Distributions. Springer-Verlag, 2000.

Graf, S., Luschgy, H., and Pages, G. Optimal quantizers for radon random vectors in a banach space. Journal of Approximation Theory,
144:27-53, 2007.

Ledoux, M. and Talagrand, M. Probability in Banach Spaces. Springer-Verlag, 1991.

Levrard, C. Nonasymptotic bounds for vector quantization in hilbert spaces. Annals of Statistics, 43:592-619, 2015.
Massart, P. Concentration Inequalities and Model Selection. Springer-Verlag, 2007.

Mohri, M., Rostamizadeh, A., and Talwalkar, A. Foundations of Machine Learning. MIT press, 2012.

Ng, A., Jordan, M., and Weiss, Y. On spectral clustering: analysis and an algorithm. In Proceedings of Advances in Neural Information
Processing Systems 14, pp. 849-856, 2002.

Shi, J. and Malik, J. Normalized cuts and image segmentation. /[EEE Transactions on Pattern Analysis and Machine Intelligence, 22:
888-905, 2000.

Steinwart, I. and Christmann, A. (eds.). Support Vector Machines. Springer-Verlag, 2008.
von Luxburg, U. A tutorial on spectral clustering. Statistics and Computing, 17:395-416, 2007.

Webster, R. Comvexity. Oxford University Press, 1994.



