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Abstract
In this paper, we study the theoretical properties
of clustering based on the kernel normalized cut.
Our first contribution is to derive a nonasymptotic
upper bound on the expected distortion rate of the
kernel normalized cut. From this result, we show
that the solution of the kernel normalized cut con-
verges to that of the population-level weighted
k-means clustering on a certain reproducing ker-
nel Hilbert space (RKHS). Our second contribu-
tion is the discover of the interesting fact that the
population-level weighted k-means clustering in
the RKHS is equivalent to the population-level
normalized cut. Combining these results, we can
see that the kernel normalized cut converges to
the population-level normalized cut. The crite-
rion of the population-level normalized cut can be
considered as an indivisibility of the population
distribution, and this criterion plays an important
role in the theoretical analysis of spectral clus-
tering in Schiebinger et al. (2015). We believe
that our results will provide deep insights into
the behavior of both normalized cut and spectral
clustering.

1. Introduction
Data clustering is one of the most important problems in
unsupervised learning and has many applications. Given a
set of data points, the purpose of clustering algorithms is
to discover groups (clusters) of data points based on some
sense of similarity. In the context of the clustering problem,
we do not have any information or training labels about these
groups and, therefore, the sense (or type of optimality) of the
obtained groups is very important. Usually, we assume that
the data points X1, . . . , Xn are independently drawn from
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an unknown underlying distribution, called the population
distribution. In this setting, as mentioned in von Luxburg
et al. (2008), it is important to check whether a clustering
algorithm satisfies the following requirements:

• When the sample size n goes to infinity, the cluster-
ings constructed by the clustering algorithm converge
to a certain clustering of the underlying data space
corresponding to the population distribution.

• If so, the limit clustering of the underlying space pro-
vides a partition of the underlying space that is optimal
in some sense for the population distribution.

For example, k-means clustering satisfies these require-
ments under very mild conditions (Pollard, 1981) and can
reach a fast rate of convergence under the margin condition
(Levrard, 2015). Even though classical clustering algorithms
such as k-means clustering have such nice properties, the
obtained partitions are too simple and sometime do not cap-
ture group structures that are reasonably intuitive. In recent
years, graph partitioning approaches represented by spectral
clustering have drawn much attention (Shi & Malik, 2000;
Ng et al., 2002; Rosasco et al., 2010; Cao & Chen, 2011;
Arias-Castro et al., 2012; Schiebinger et al., 2015; Gracía
Trillos et al., 2016; Davis & Sethuraman, 2016; Gracía Tril-
los & Slepčev, 2016). When we use graph partitioning
approaches to cluster multivariate data, we treat the similar-
ity matrix between the data points as an adjacency matrix of
a graph and then apply a graph cut algorithm to the similar-
ity matrix. Typically, the similarity measure depends on the
distances between data points and the connectivity length
scale parameter εn, which determines the length scale of the
edges.

Spectral clustering was introduced in the machine learning
community with applications to image segmentation and
clustering multivariate data (e.g., Shi & Malik, 2000; Ng
et al., 2002), and it has been successfully applied in vari-
ous fields. The input of graph-based clustering algorithms
such as spectral clustering is a similarity matrix between
the data points. Since spectral clustering is one of mod-
ern state-of-the-art clustering algorithms, there have been
several studies addressing its theoretical properties. For ex-
ample, von Luxburg et al. (2008), Rosasco et al. (2010)
and Cao & Chen (2011) established the consistency of



Kernel Normalized Cut

spectral clustering with a fixed connectivity length scale.
Recently, Schiebinger et al. (2015) discovered additional
detailed properties concerning the performance of spectral
clustering, from which we can see why spectral clustering
works so well. For the case where the connectivity length
scale εn goes to zero as the sample size goes to infinity,
Gracía Trillos & Slepčev (2016) established the consistency
of spectral clustering.

The roots of spectral clustering are spectral graph partition-
ing (Donath & Hoffman, 1973; Fideler, 1973) and spectral
clustering is a relaxation of the graph cut called the normal-
ized cut (Ncut for short; Shi & Malik, 2000). However, in
contrast to spectral clustering, Ncut has not received much
attention since the search for the best graph cut in the sense
of Ncut is an NP-hard problem. Fortunately, Dhillon et al.
(2007) found an efficient algorithm to obtain the local op-
timal solution of the normalized cut. Several theoretical
results of Ncut have been established. Under the case where
the connectivity length scale εn goes to zero, Arias-Castro
et al. (2012) show the consistency of restricted normalized
cut that is minimized over a particular family of subsets of
the data points. Moreover, Gracía Trillos et al. (2016) im-
proved these results of Ncut. Specifically, they established
the consistency of a non-restricted normalized cut that is
minimized over all possible partitions of the data points.

Even though using a small εn has an advantage from the
viewpoint of computational cost and could provide better
resolution, we also often use a fixed connectivity length
scale ε > 0 in practical situations. In this paper, we focus
on a setting with a fixed connectivity length scale ε > 0 as
in von Luxburg et al. (2008) and Schiebinger et al. (2015).
Ben-David et al. (2006) briefly described the stability of
Ncut in this setting. As our first contribution, we provide a
more detailed consistency result showing that the optimal
cut of the empirical normalized cut converges to the optimal
solution of the population-level weighted k-means cluster-
ing on a certain reproducing kernel Hilbert space (RKHS)
when we use a kernel function as a similarity measure. Note
that, in Dhillon et al. (2007) and Ben-David et al. (2006),
they did not deal with the corresponding RKHS. Moreover,
we derive a nonasymptotic upper bound on the expected
distortion rate of the kernel Ncut. We also show that, un-
der a specific condition for the population distribution, the
kernel Ncut with the true degree function can reach a fast
rate convergence. This result corresponds to an extension
of the k-means result in Levrard (2015) for the weighted
k-means. On the RKHS, we can obtain the clear optimality
of the partition of the clustering. However, the optimality of
the partition in the original data space is still not clear. Our
second contribution is to discover an interesting fact that the
weighted k-means clustering in the RKHS is equivalent to
the population-level Ncut over partitions of the data space.
Combining these results, we can conclude that the partition

by the empirical Ncut with a kernel function converges to
the optimal partition of the population-level Ncut as the
sample size goes to infinity. An overview of our study is
shown in Figure 1.

This paper is organized as follows. In Section 2, the notation
and some properties of Ncut are introduced. Section 3
establishes the consistency of the kernel Ncut and provides
a nonasymptotic upper bound on the expected distortion
rate of the kernel Ncut. In Section 4, it is shown that the
weighted k-means clustering in such RKHS is equivalent to
the population-level Ncut over partitions of the data space.
In Section 5, we will look at the difference between spectral
clustering and Ncut through the numerical experiments. The
last section concludes the paper with some discussion.

2. Preliminaries
Let X be a compact metric data space with the Borel σ-
algebra B, and let P be a probability measure on (X ,B).
Throughout this paper, we assume that X coincides with
the support of P without loss of generality. We will denote
by X1, . . . , Xn sample points independently drawn from
P and by Pn the empirical measure based on X1, . . . , Xn.
Write Xn = {X1, . . . , Xn}. Let k : X × X → R+ denote
a symmetric, continuous, positive definite kernel function.
We will denote by Hk the RKHS with reproducing kernel
k. Let 〈·, ?〉Hk

and ‖ · ‖Hk
denote the inner product and

the norm of Hk, respectively. For kernel function k, the
canonical feature map is defined by ψk : X → Hk by
ψk(x) := k(x, ·) (x ∈ X ).

We suppose that k is bounded away from zero and in-
finity, that is, ∃cL, cU > 0; ∀x, y ∈ X ; cL <
k(x, y) < cU . For sample points X1, . . . , Xn and
a fixed kernel function k as in the above general as-
sumption, we will write the kernel matrix as Kn =
(kij)n×n := (k(Xi, Xj))n×n. Let us denote by d̂n(·) :=∫
X k(·, x)Pn(dx) =

∑n
j=1 k(·, Xj)/n the empirical degree

function, and write Dn := diag(d̂n(X1), . . . , d̂n(Xn)).
When we consider the kernel matrix Kn as an adjacency
matrix of a weighted graph for which the vertices are data
points, we can use Ncut for clustering data points.

For a given M -partition PM := {W1, . . . ,WM} of data
set Xn := {X1, . . . , Xn}, the objective function of Ncut is
defined as

Ncut(PM | Pn) :=

M∑
m=1

Mcut(Wm,Xn \Wm)

vol(Wm)

= M −
M∑

m=1

Mcut(Wm,Wm)

vol(Wm)

where Mcut(A,B) :=
∑

i∈A
∑

j∈B kij is the objec-
tive function of the minimum cut and vol(A) :=
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Figure 1. Overview of our study with its related results.

∑
i∈A

∑n
j=1 kij . Using the membership matrix Un =

(uim)n×M := (1(i ∈ Wm))n×M , we can rewrite
Ncut(PM | Pn) as the following matrix formula:

Ncut(PM | Pn) = M − tr{ŨT
nD

−1/2
n KnD

−1/2
n Ũn}/n,

(1)

where Ũn := D
1/2
n Un(UT

nDnUn)−1/2. Since ŨT
n Ũn =

IM , we have the following relationship

Ncut(PM | Pn) = tr{ŨT
n (In −D−1/2

n (Kn/n)D−1/2
n )Ũn}

= tr{ŨT
n LnŨn},

where Ln := D
−1/2
n (Dn−Kn/n)D

−1/2
n is the normalized

graph Laplacian. When Ncut(PM | Pn) is considered as
the function of the membership matrix Un, we will denote
it by Ncut(Un | Pn). Since the minimization problem of
Ncut(PM | Pn) with respect to PM (or equivalently Un)
is NP-hard, we relax this problem to the following problem
in spectral clustering:

min
ŨT Ũ=IM

tr{ŨTLnŨ}.

For details about spectral clustering, we refer the reader to
von Luxburg (2007).

Now, we briefly explain the relationship, discovered by
Dhillon et al. (2007), between Ncut and the weighted kernel
k-means (WKKM). The objective function of the weighted
kernel k-means using the kernel function h is given by

WKKMh(µ | Pn)

:=
1

n

n∑
i=1

wi min
1≤m≤M

‖ψh(Xi)− µm‖2Hh
,

where µ = (µ1, . . . , µM ) is a codebook in HM
h , and wi

is the weight of the i-th data point. Let Un := (uim)n×M
be a binary membership matrix that specifies the cluster
membership for each data point. Without loss of generality,
we only consider a binary membership matrix Un such
that ∀m ∈ {1, . . . ,M}; ∃i ∈ {1, . . . , n}, uim = 1. If
uim = 0 for all i ∈ {1, . . . , n}, we remove them-th column

from Un. For a given Un, the optimal mean µm can be given
by

µ̂m :=

∑n
i=1 wiuimψh(Xi)∑n

i=1 wiuim
.

Using this fact and the reproducing property, we can rewrite
WKKM(µ | Pn) as a function of Un such that

WKKMh(Un | Pn)

:=
1

n

n∑
i=1

wihii −
1

n

M∑
m=1

n∑
i=1

n∑
j=1

uimujmwiwjhij/sm

=
1

n

[
tr
(
W 1/2

n HnW
1/2
n

)
− tr

(
ŨT
nW

1/2
n HnW

1/2
n Ũn

)]
,

(2)

where Hn := (hij)n×n := (h(Xi, Xj))n×n, Wn :=
diag(w1, . . . , wn), S := diag(s1, . . . , sM ) = UT

nWnUn,
and Ũn := W

1/2
n UnS

−1/2. The first term in the box brack-
ets is not related to Un and therefore can be ignored during
optimization. Therefore, from (2), we can see that Ncut
defined by (1) coincides with WKKM with Wn := Dn and
Hn := D−1

n KnD
−1
n . Let d̃n(x) :=

∑n
i=1 k(Xi, x) and

D̃n := diag(d̃n(X1), . . . , d̃n(Xn)). It is worth noting that,
in Dhillon et al. (2007), they discovered the above equiv-
alence with Hn := D̃−1

n KnD̃
−1
n and Wn := D̃n. In the

sense of the optimization problem, there is no difference
between these two representations. However, to consider
the asymptotic properties of the kernel Ncut, our modified
representation with Wn := Dn and Hn := D−1

n KnD
−1
n is

useful. Let ĥn : X × X → R be defined as

ĥn(x, y) =
k(x, y)

d̂n(x)d̂n(y)
(x, y ∈ X ).

Then, it follows that the empirical kernel Ncut is equivalent
to the weighted k-means on the RKHSHĥn

with kernel ĥn.
However, the kernel function ĥn depends on the data Xn,
and the corresponding RKHS Hĥn

changes with sample
size n and data Xn. Thus, it is difficult to consider the
asymptotic properties of WKKMĥn

(Un | Pn) directly.
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3. Consistency of the kernel normalized cut
The equivalence described in the previous section between
the kernel normalized cut and the weighted kernel k-means
is from the view point of optimization problem. Now,
through a theoretical analysis of the weighted kernel k-
means, we consider the large sample limit of the empirical
normalized cut.

3.1. Basic consistency results

We define the degree function d : X → R by d(·) :=∫
X k(·, x)P(dx). To develop the theoretical properties of

Ncut, we introduce a (non-random) kernel function h : X ×
X → R defined as

h(x, y) :=
k(x, y)

d(x)d(y)
(x, y ∈ X ).

The population level objective function of WKKM with
kernel h is defined by

WKKMh(µ | P)

:=

∫
d(x) min

1≤m≤M
‖ψh(x)− µm‖2Hh

P(dx).

The following lemma provides the fundamental connec-
tion between the Ncut algorithm proposed by Dhillon et al.
(2007) and the weighted kernel k-means WKKMh(Un |
Pn) with wi = d(Xi) on RKHS Hh, which does not de-
pend on n. In addition, we provide a non-asymptotic bound
for the uniform difference between the empirical and true
degree functions.

Lemma 1. Assume the general assumption described in
Section 2. Then, we have

max
Un

|WKKMĥn
(Un | Pn)−WKKMh(Un | P)|

≤ (2cU/c
2
L)‖d̂n − d‖∞,

where ‖d̂n − d‖∞ := supx∈X

∣∣∣d̂n(x)− d(x)
∣∣∣. Moreover,

for all δ ∈ (0, 1), with probability at least 1− δ, we have

‖d̂n − d‖∞ ≤ 2
c
3/2
U√
n

+ (cU − cL)

√
log(2/δ)

2n
.

Proof. See Section A.1 in the supplementary material.

Let Ûn = (ûim)n×M be the estimated membership ma-
trix by the empirical Ncut Ncut(· | Pn) with the ker-
nel matrix Kn, and define the corresponding codebook
µ̃n = (µ̃

(n)
1 , . . . , µ̃

(n)
M ) by

µ̃(n)
m =

∑n
i=1 ûimd̂n(Xi)ψĥn

(Xi)∑n
i=1 d̂n(Xi)ûim

∈ Hĥn
.

We expect that µ̃n will perform close to optimal for the
population distribution P, that is, WKKMh(µ̃n | P) ≈
minµ∈Hh

WKKMh(µ | P). However, since µ̃(n)
m is not an

element of Hh in general, we cannot evaluate the distor-
tion WKKMh(· | P) at µ̃n. To overcome this difficulty,
we define the following codebook µ̂n = (µ̂

(n)
1 , . . . , µ̂

(n)
M )

associated with Ûn as

µ̂(n)
m =

∑n
i=1 ûimd(Xi)ψh(Xi)∑n

i=1 d(Xi)ûim
∈ Hh.

The following lemma provides a uniform upper bound of
the difference between µ̃n and µ̂n.

Lemma 2. For any Ûn and all m ∈ {1, . . . ,M},

‖µ̃(n)
m − µ̂(n)

m ‖∞ ≤
c2U
c2L
‖d̂n − d‖∞ +

cU
cL
‖d̂n − d‖∞.

The proof of this lemma is nearly the same as that of
Lemma 1.

From Lemma 1 and Borel-Cantelli lemma, we have ‖d̂n −
d‖∞ → 0 a.s. as n → ∞. Therefore, the difference be-
tween µ̃n and µ̂n converges to zero almost surely. Accord-
ingly, we primarily focus on the behavior of the codebook
µ̂n instead of µ̃n.

For simplicity of notation, we introduce the following func-
tion:

ζ =

{
HM

h ×X → R,
(µ, x) 7→ d(x) min1≤m≤M ‖ψh(x)− µm‖2Hh

.

Here, the norm ‖ · ‖ of any element µ ∈ HM
h is de-

fined as ‖µ‖ =
√∑M

m=1 ‖µm‖2Hh
. For a distribution Q,

WKKMh(µ | Q) can take the form WKKMh(µ | Q) =
EQ[ζ(µ, X)], where X ∼ Q and EQ[·] is the expectation
with respect to Q. It is assumed that the support of P has
more than M points. For c ∈ Hh and r > 0, we will
denote by B(c, r) the closed ball with center c and radius
r, that is, B(c, r) := {f ∈ Hh | ‖f − c‖Hh

≤ r}. Let
D :=

√
cU/cL. By the assumption on the kernel func-

tion k, we have ‖ψh(x)‖Hh
≤ D for all x ∈ X . From

Proposition 5 described later, there are minimizers µ∗ of
WKKMh(· | P) on B(0, D)M ⊂ HM

h . We will denote by
M the set of minimizers of the risk WKKMh(· | P). The
loss `(µ̂n,µ

∗) is defined as

`(µ̂n,µ
∗) := WKKMh(µ̂n | P)−WKKMh(µ∗ | P)

≥ 0.

The following proposition provides a nonasymptotic bound
for the loss `(µ̂n,µ

∗).

Proposition 3. Assume the general assumption described
in Section 2. Suppose that the number of elements in the



Kernel Normalized Cut

support of P is greater than the given number of clusters,
that is, #(supp(P)) ≥ M . Then, for all δ ∈ (0, 1), with
probability at least 1− 2δ, we have

`(µ̂n,µ
∗) = WKKMh(µ̂n | P)−WKKMh(µ∗ | P)

≤
4
√
cUD{

√
cUMD + 2(M +DcU )}√

n

+ 4D2(2cU − cL)

√
log(2/δ)

2n
.

Proof. See Section A.2 in the supplementary material.

Therefore, along with the fact described in Section 2, we can
see that the empirical Ncut with the kernel function k con-
verges to the population-level weighted k-means clustering
on the RKHSHh.

Theorem 4. Assume the general assumption described in
Section 2. Suppose that the number of elements in the sup-
port of P is greater than the given number of clusters, that
is, #(supp(P)) ≥M . Then, we have

lim
n→∞

‖µ̂n − µ∗(µ̂n)‖ = 0 a.s.,

where µ∗(µ) ∈ arg minµ∗∈M ‖µ− µ∗‖.

Proof sketch. From Proposition 3, we have that, for any
ε > 0,

P(`(µ̂n,µ
∗) > ε) ≤ exp(−nε2/Const.),

where Const. is a constant depending on cL, cU , and
M . According to the Borel-Cantelli lemma, we can ob-
tain almost sure convergence `(µ̂n,µ

∗) → 0 a.s. as
n → ∞. Combining this and the continuity of the risk
WKKMh(· | P), we can prove the claim in much the same
way as the proof of Pollard (1981).

Combining this with Lemma 2, we also have

‖µ̃n − µ∗(µ̂n)‖∞ := max
1≤m≤M

‖µ̃(n)
m − µ∗m‖∞ → 0

almost surely as n → ∞. On the basis of this fact, we
can apply the useful tuning parameter selection algorithm
proposed by Wang (2010) even for the kernel normalized
cut.

3.2. Fast rate of convergence of the normalized cut with
true degree d

In Levrard (2015), it has been shown that, under a certain
condition on the population distribution, called the margin
condition, the k-means clustering in a Hilbert space can at-
tain a rate of convergence of O(1/n). Thus, we may expect
that, under similar conditions on the population distribution,
the Ncut can also achieve a fast rate of convergence. Here,

we show the corresponding result that the kernel Ncut with
the true degree function d achieves a fast rate of conver-
gence.

As in Levrard (2015), we first introduce some nota-
tions. Write [1,M ] = {1, . . . ,M}. For any µ∗ =
(µ∗1, . . . , µ

∗
M ) ∈M and any bijection Π : [1,M ]→ [1,M ],

its permutation vector µ′ = (µ∗Π(1), . . . , µ
∗
Π(M)) is also an

optimal codebook. Thus, we define a minimum set M̄ of the
optimal codebook as a subset ofM satisfying the following
conditions:

• For all µ∗ ∈ M, there exists µ̄ ∈ M̄ such that
{µ∗1, . . . , µ∗M} = {µ̄1, . . . , µ̄M}, and

• For all µ̄1, µ̄2 ∈ M̄ with µ̄1 6= µ̄2,
{µ̄(1)

1 , . . . , µ̄
(1)
M } 6= {µ̄

(2)
1 , . . . , µ̄

(2)
M }.

Here, although M̄ is not uniquely determined, the cardinal-
ity of M̄ is the same. For a codebook µ = (µ1, . . . , µM ),
the Voronoi cell generated by µm is defined as

Vm(µ) = {x ∈ X | ∀j 6= m; ‖ψh(x)− µm‖Hh

≤ ‖ψh(x)− µj‖Hh
}.

Moreover, a Voronoi partition generated by µ is defined
as a sequence (W1(µ), . . . ,WM (µ)) such that X =⋃M

m=1Wm(µ) and W̄m(µ) = Vm(µ) for all m =
1, . . . ,M , where W̄m(µ) is the closure of Wm(µ).

Before stating the main theorem, we give some fundamental
properties of the kernel Ncut with the true degree function
d. To do so, we extend the basic properties of the k-means
described in Graf & Luschgy (2000), Graf et al. (2007) and
Levrard (2015) for the weighted k-means.

Proposition 5. Suppose that the number of elements in the
support of P is greater than the given number of clusters,
that is, #(supp(P)) ≥M . Then,

(i) for any µ∗ ∈M, we have

∀1 ≤ m ≤M ; P(Vm(µ∗)) > 0.

(ii) Accordingly, any optimal codebook µ∗ =
(µ∗1, . . . , µ

∗
M ) satisfies the centroid condition de-

fined as follows:

µ∗m =
E[d(X)ψh(X)1Wm(µ∗)(X)]

E[d(X)1Wm(µ∗)(X)]
∈ Hh,

for m = 1, . . . ,M .

(iii) Moreover, for any µ∗ ∈M and for all j 6= m,

P (Vm(µ∗) ∩ Vj(µ∗)) = 0.
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Proof. See Section B.1 in the supplementary material.

From claim (iii) in the above proposition, we have that, for
any µ∗ ∈M and any Voronoi partition Wm(µ∗) with µ∗,

P(Wm(µ∗)) = P(Vm(µ∗)), and
Pn(Wm(µ∗)) = Pn(Vm(µ∗)) a.s.

Let us introduce the following key quantities:

B = inf
µ∗∈M,m 6=j

‖µ∗m − µ∗j‖Hh
, and

dmin = inf
µ∗∈M,1≤m≤M

E[d(X)1Vm(µ∗)].

According to the general assumption, both B and dmin are
strictly positive (see Proposition B.2 in the supplementary
material.)

For any µ∗ ∈M, we define the following set:

Nµ∗ =

M⋃
m=1

⋃
j 6=m

Vm(µ∗) ∩ Vj(µ∗).

For a subset A ⊆ Hh, let B(A,D) =
⋃

a∈A B(a,D). The
maximal weight of the t-neighborhoods of these regions
Nµ∗ overM is defined as

q(t) = sup
µ∗∈M

E
[
d(X)1B(Nµ∗ ,t)(X)

]
,

where X ∼ P.

In analogy with Levrard (2015), we define the following
margin condition with radius r0 > 0: for all 0 ≤ t ≤ r0,

q(t) ≤ Bdmin

128D2
t. (3)

If the weight function d(x) = 1 for all x ∈ X , this condition
is equivalent to the margin condition for k-means introduced
in Levrard (2015). Under the margin condition, we can show
identifiability, that is, there exists ε > 0 such that

inf
µ∈M̃∩Mc

`(µ,µ∗) = ε > 0,

where M̃ is the set of local minimizers of WKKMh(· | P).
A distribution P is called ε-separated if the above equation
holds with some ε. The proof of this claim can be founded
in the supplementary material.

The kernel Ncut with the true degree function d is equivalent
to the weighted kernel k-means with the true degree function
d, whose risk function is defined by WKKMh(· | Pn).
Based on this fact and the similar approach to that of Levrard
(2015), we can obtain the fast rate of convergence of the
kernel Ncut with the true degree function d.

Theorem 6. Suppose that M ≥ 2, and that P satisfies the
margin condition (3) with radius r0. Let κ0 be given by

κ0 = 4MD2

(
1

ε
∨ 64D2

dminB2r2
0

)
.

Let µ̄n be a minimizer of the empirical risk WKKMh(· |
Pn). Then, with probability at least 1− exp(−x),

`(µ̄n,µ
∗) ≤ C0σ

2κ0

D2{M + log(
∣∣M̄∣∣)}

n

+ (9cUκ0 + 4)
16D2cU

n
x,

where µ∗ ∈ M, C0 is an universal constant, and σ2 =
E[d2(X)]. Similarly, for µ̂n described in Section 3.1, with
probability at least 1− exp(−x),

`(µ̂n,µ
∗) ≤ C0σ

2κ0

D2{M + log(
∣∣M̄∣∣)}

n

+ (9cUκ0 + 4)
16D2cU

n
x+ 4D2‖d̂n − d‖∞.

Proof. See Section C in the supplementary material.

From the last part of the above theorem, owing to the esti-
mation error ‖d̂n − d‖∞ of the degree function, it seems to
be difficult to obtain a fast rate of convergence for the fully
empirical Ncut.

4. Population-level relationship between Ncut
and the weighted kernel k-means

From the results in the previous section, we know that the
empirical kernelized Ncut converges to the population-level
weighted k-means clustering on a certain RKHS. However,
it is difficult to understand the meaning of this weighted k-
means clustering onHh from the viewpoint of the original
data space X or the population distribution P on X . Here,
we provide an interpretable meaning for the limit of the
empirical Ncut. For a partition PM = {W1, . . . ,WM} of
the data space X , let

WKKMh(µ |PM ,P)

:=

M∑
m=1

∫
Wm

d(x)‖ψh(x)− µm‖2Hh
P(dx).

If P(Wm) > 0, the optimal codebook µ(PM ) =
(µ1(W1), . . . , µM (WM )) of WKKMh(µ|PM ,P) is given
by

µm(Wm) =

∫
Wm

d(y)ψh(y)P(dy)∫
Wm

d(y)P(dy)
.

For P(Wm) = 0, we choose an element µm(Wm) ∈ Wm.
According to the Riesz representation theorem, we can eas-
ily see that µm(Wm) ∈ Hh for m = 1, . . . ,M . Therefore,
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Figure 2. Convergence behavior of spectral clustering and normalized cut with the same tuning parameter.

we can redefine the weighted kernel k-means as the follow-
ing optimization problem for a partition PM of the data
space X :

WKKMh(PM | P)

:=

M∑
m=1

∫
Wm

d(x)‖ψh(x)− µm(Wm)‖2Hh
P(dx).

Thus, in the weighted kernel k-means, obtaining an optimal
codebook is the same as obtaining an optimal partition of
X .

The following theorem shows the equivalence between
the population-level weighted kernel k-means and the
population-level Ncut.

Theorem 7. The minimization of the population-level
weighted kernel k-means WKKMh(PM | P) is equiva-
lent to the minimization of the population-level Ncut defined
as

Ncut(PM | P)

:=

M∑
m=1

1

d(Wm)

∫
Wm

∫
X\Wm

k(x, y)P(dx)P(dy). (4)

Proof. See Section D in the supplementary material.

From Theorem 4 and 7, the estimated partition of the em-
pirical normalized cut Ncut(PM | Pn) converges to the
optimal partition of the population-level normalized cut

Ncut(PM | P). Moreover, this equivalence may be help-
ful in obtaining the detailed properties of Ncut. In fact,
Schiebinger et al. (2015) provided a detailed analysis for
kernelized spectral clustering in which the indivisibility of
P is defined as

Γ(P) := inf
S

d(X )
∫
S

∫
Sc k(x, y)P(dx)P(dy)

d(S)d(Sc)
,

where the infimum is taken over all measurable subset
S ⊆ X and d(A) =

∫
A
d(x)P(dx) for A ⊂ X . This

criterion measures how difficult it is to split the population
distribution P into two parts. In addition, the infimum of
indivisibility can be interpreted as Cheeger’s isoperimetric
constant introduced in Lawler & Sokal (1988), which plays
a key role in the convergence analysis of Markov chain.
This is equivalent to the optimal value of the normalized cut
Ncut(P2 | P) with M = 2.

5. Numerical experiments
From von Luxburg et al. (2008) and the results in the previ-
ous sections, both spectral clustering and the normalized cut
converge to the corresponding limits. The limit of nor-
malized cut is the optimal partition in the sense of the
population-level normalized cut. Conversely, there is no
corresponding objective function for spectral clustering and
the optimality of the spectral clustering is not clear. In gen-
eral, these limits are not the same. Through the numerical
experiments, we show the essential difference between the
spectral clustering and the kernel normalized cut.
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Original image Spectral clustering Normalized cut

Figure 3. The image segmentation results of spectral clustering
and normalized cut.

First, we consider the binary clustering problem for a two-
moon data. For a given sample size n of each cluster, we gen-
erate two dimensional data (X

(1)
1 , Y

(1)
1 ), . . . , (X

(1)
n , Y

(1)
n )

and (X
(2)
1 , Y

(2)
1 ), . . . , (X

(2)
n , Y

(2)
n ) as follows:

X
(1)
i ∼i.i.d. U(π/n, π), Y

(1)
i = sin(X

(1)
i ) + 0.05 + ε

(1)
i

X
(2)
i ∼i.i.d. U(π(1/n+ 1/2), π(1 + 1/2)), and

Y
(2)
i = cos(X

(2)
i ) + ε

(2)
i ,

where U(a, b) is the uniform distribution on the closed in-
terval [a, b], and ε(j)

i is independently generated from the
normal distribution with mean 0 and standard deviation 0.3,
that is, ε(j)

i ∼i.i.d. N(0, 0.32) (i = 1, . . . , n; j = 1, 2).
Here, we use the Gaussian kernel k(x, y) = exp(−‖x −
y‖2/(2σ2)) with σ2 = 1/10 as the kernel function in both
spectral clustering and Ncut.

For several sample sizes n = 200, 400, 800, 1000, we apply
both spectral clustering and Ncut with M = 2. Figure 2
shows the convergence behavior of these methods with the
same tuning parameter. In the results of spectral clustering,
the color shows the estimated value of the second smallest
eigenfunction of the limit of the normalized graph Lapla-
cian. In the results of Ncut, the color shows the value of
‖ψĥn

(x)− µ̃2‖Hĥn
−‖ψĥn

(x)− µ̃1‖Hĥn
. From the above

consistency results and this figure, it seems that these meth-
ods converge to the different limits, respectively, with in-
creasing n. In Section E of the supplementary material, we
describe more detailed comparisons related to the optimality
in the sense of Ncut(PM | P).

Next, we consider image segmentation via spectral cluster-
ing and the normalized cut. From Li & Chen (2015) and
the Berkeley Segmentation Data Set and Benchmarks 500
(BSDS500) in Arbelaez et al. (2011), we selected the two
natural images shown in Figure 3. Since the number of pix-
els of each image is greater than 150, 000, we employed the
fast approximation method proposed by Yan et al. (2009)
to reduce the computational cost. More precisely, we first

partitioned the image into a few hundred superpixels by Li
& Chen (2015). For the representative points of the obtained
superpixels, we applied both spectral clustering (Ng et al.,
2002) and the normalized cut with the Gaussian kernel and
the same tuning parameter σ. From the clustering result of
the superpixels, we obtained the segmentation of the original
image.

Figure 3 shows the segmentations of spectral clustering and
the normalized cut. Even though we use the same kernel
function and the same tuning parameter in both methods, we
can see the clear difference between the results of these two
methods. For the Gaussian kernel k(x, y) = exp(−‖x −
y‖2/(2σ2)), the tuning parameter σ is related to the strength
of the nonlinearity. In both methods, a small value of σ
induces a complicated partition, and a large value of σ
induces a result similar to k-means clustering. Empirically,
in spectral clustering, we need to set a smaller value of σ to
obtain a similar partition to that of the Ncut. More detailed
comparisons are provided in Section E of the supplementary
material.

6. Conclusions
In this paper, we provided detailed theoretical properties of
the kernel normalized cut. Whereas Dhillon et al. (2007)
discovered that Ncut and the ratio cut are equivalent to the
weighted kernel k-means methods in the sense of the opti-
mization problem, they did not introduce a certain RKHS on
which we perform the weighted kernel k-means. First, we
showed that, under very general conditions, the codebook
estimated by the empirical Ncut with the kernel function
k converges to the optimal solution of the population-level
weighted k-means clustering on the RKHSHh with kernel
h(x, y) = k(x, y)/(d(x)d(y)) as the sample size goes to
infinity. It is worth noting that, for the ratio cut, there is no
corresponding RKHS in the large sample limit. Thus, we
cannot get a similar consistency result for the ratio cut using
the same framework. This difference may be related to the
superiority of normalized spectral clustering compared to
the unnormalized spectral clustering, which is shown in von
Luxburg et al. (2008). Moreover, we proved that, under a
mild condition on the population distribution, the empirical
Ncut with the true degree has a fast rate of convergence.
As a second contribution, we proved the equivalence be-
tween the population-level weighted kernel k-means and
the population-level Ncut. The minimum value of the objec-
tive function of the population-level Ncut is the indivisibility
of P, introduced in Schiebinger et al. (2015). In the future
work, based on these facts, we will study the performance
of the Ncut in recovering the hidden cluster labels, which is
parallel with the results in Schiebinger et al. (2015).
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