
A. Discounted Markov Games
A.1. Preliminaries

We define the framework of discounted, two-player zero-sum Markov Games (MG) with finite state space and continuous
action space. A MG is determined by the 5-tuple (S,A,B, P,R, γ) (Patek, 1997). Here S is a finite state space, A and B
are compact subsets of RA, which represent the agent and adversary, respectively. For any (s, a, b) ∈ S × A× B let the
dynamics P = P (· | s, a, b) be a probability measure on S , and let the reward function r(s, a, b) be a bounded measureable
function on A× B for any s ∈ S. Consider a strategy of the players µ, ν, where both are probability measures over Borel
sets of A,B, respectively. Let rµ,ν ∈ R|S| where rµ,ν(s)

def
= Ea∼µ,b∼ν [r(s, µ, ν)], and the dynamics Pµ,ν ∈ R|S|×|S|,

where Pµ,νi,j
def
= Ea∼µ,b∼ν [P (sj | si, µ, πB)] and is a stochastic matrix. Following notation from Maitra & Parthasarathy

(1970), we denote PA and PB as the set of probability measures on the Borel sets of A and B, respectively.

Definition 1. The value of fixed strategy µ, ν is given by vµ,ν =
∑∞
t=0 γ

t(Pµ,ν)trµ,ν . Given a fixed ν ∈ PB the value
of the optimal counter strategy of player A is vν = supµ∈PA v

µ,ν . Accordingly, for a fixed µ ∈ PA the value of the
optimal counter strategy of player B is vµ = infν∈PB v

µ,ν . Furthermore, if the sup and inf are attainable, we refer to
arg minν∈PB v

µ,ν and arg maxµ∈PA v
µ,ν as optimal counter strategies to µ and ν, respectively.

We make the following assumptions on the dynamics and reward functions.

Assumption 1.

• Both A,B are compact metric spaces.

• For any s ∈ S the reward r is continuous and bounded function on A× B.

• For any s ∈ S , whenever (an, bn)→ (a, b), where (an, bn), (a, b) ∈ A× B, then P (· | s, an, bn) converges weakly to
P (· | s, a, b).

In the rest of the section we follow (Patek, 1997)[Section 2-3] that analyzed zero-sum MG for stochastic shortest paths,
while performing minor modifications for the discounted and continuous action-space setup.

Define the following Bellman operators.

Definition 2. Let PA and PB be the set of all probability measures on the Borel Sets of A and B, respectively, µ ∈ PA, ν ∈
PB , and let v ∈ R|S|. The Bellman operator, and Fixed-Policy Bellman operators are according to the following.

Tµ,νv = rµ,ν + γPµ,νv,

Tµv = min
ν∈PB

(rµ,ν + γPµ,νv) , T̄ νv = max
µ∈PA

(rµ,ν + γPµ,νv)

Tv = max
µ∈PA

min
ν∈PB

(rµ,ν + γPµ,νv) , T̄ v = min
ν∈PB

max
µ∈PA

(rµ,ν + γPµ,νv) ,

where equality holds component-wise.

Notice that the max and min are attainable since PA, PB are compact sets. Furthermore, by Maitra & Parthasarathy
(1970)[Lemma 2.2] and under Assumption 1, both the max and min are continuous and bounded. Thus, we can replace
sup inf and inf sup by corresponding max and min.

We have the following important lemma.

Lemma 1. For any bounded v ∈ R|S|, Tv = T̄ v.

Proof. Following similar arguments as in Maitra & Parthasarathy (1970), Equation 2, and using Sion’s minimax theorem
(Sion et al., 1958)[Theorem 3.4], for any s ∈ S we have that,

sup
µ∈PA

inf
ν∈PB

rµ,ν(s) + Pµ,νv(s) = inf
ν∈PB

sup
µ∈PA

rµ,ν(s) + Pµ,νv(s).

Since PA, PB are compact and rµ,ν + Pµ,νv is bounded and continuous on A × B for any s ∈ S, the sup, inf can be
replaced by min,max (e.g., by Maitra & Parthasarathy (1970)[Lemma 2.2]).



The analysis in Patek (1997) is based on assumption R, which results in Tv = T̄ v. Since we allow the agents to use
mixed-strategies, according to Lemma 1, we obtain Tv = T̄ v in our setup as well. Furthermore, since we use discounted
MG, assumption SSP in Patek (1997) is also satisfied. Every strategy (µ, ν) is proper; it terminates with probability one, as
the discount factor (γ) is smaller than 1.

Lemma 2. Tµ,ν , Tµ, T̄ ν , T are γ contractions in the sup-norm.

Proof. We follow similar technique as in Patek (1997), adjusted to our setup. Let v1, v2 ∈ R|S|. Then,

Tµ,νv1 − Tµ,νv2 = γPµ,ν(v1 − v2) ≤ γPµ,ν1||v1 − v2||∞ = γ1||v1 − v2||∞,

where 1 is the one vector. The last relation holds since Pµ,ν is a stochastic matrix and thus Pµ,ν1 = 1. By repeating the
same argument for Tµ,νv2 − Tµ,νv1 and taking the sup-norm we conclude that ||Tµ,νv1 − Tµ,νv2||∞ ≤ γ||v1 − v2||∞.

We now prove similar result on Tµ. Let ν, ν′ ∈ PB such that Tµv1 = Tµ,νv1, T
µv2 = Tµ,ν

′
v2. Then,

Tµv1 − Tµv2 ≤ Tµ,νv1 − Tµ,νv2,

Tµv2 − Tµv1 ≤ Tµ,ν
′
v1 − Tµ,ν

′
v2.

By taking the sup-norm and using the fact Tµ,ν is a γ-contraction, we conclude that Tµ is also a γ-contraction. Similar
argument establishes that T̄ ν is a γ-contraction.

Lastly, let µ ∈ PA such that Tv2 = Tµv2, and ν ∈ PB such that Tµv1 = Tµ,νv1. Then,

Tv1 − Tv2 = Tv1 − Tµv2

≤ Tµv1 − Tµv2

= Tµ,νv1 − Tµv2

≤ Tµ,νv1 − Tµ,νv2.

Similar argument leads to Tv2 − Tv1 ≤ Tµ,νv2 − Tµ,νv1 for properly defined µ, ν. Again, by taking the sup norm and
using the fact that Tµ,ν is a γ-contraction we conclude the proof.

The following propositions relate the fixed-point of Tµ, T̄ ν to the values and policies defined in 1. Furthermore, the last one
establishes the fact the zero-sum MG has value.

Proposition 3. The following claims hold.

• Let µ ∈ PA, ν ∈ PB be stationary policies. The value vµ,ν is the fixed point of the operator Tµ,ν , vµ,ν = Tµ,νvµ,ν .

• Given a policy ν ∈ PB , vν = supµ∈PA is the unique fixed point of T̄ ν . Furthermore, the sup is attainable in the set A.

• Given a policy µ ∈ PA, vµ = infν∈PB is the unique fixed point of Tµ. Furthermore, the inf is attainable in the set B.

Proof. The proof of the first claim is standard, e.g., Puterman (1994)[Section 6.1]. By fixing a policy for any of the players
the problem amounts for solving a single agent MDP (e.g., Puterman (1994)). Due to Assumption 1, the reward and
dynamics of the MDP are also continuous and bounded. Since the action set in compact for both player A and B, we can
use Puterman (1994)[Theorem 6.2.10] and conclude the proof.

Proposition 4. The unique fixed point v∗ = Tv∗ is also the equilibrium value of the zero-sum MG,
v∗ = supµ∈PA infν∈PB v

µ,ν = infν∈PB supµ∈PA v
µ,ν , thus, the MG has a well defined value.

Furthermore, the stationary policies µ ∈ PA, ν ∈ PB for which v∗ = T̄ v∗ = Tv∗ = Tµ,νv∗ are in Nash-Equilibrium, and
satisfy vµ

′,ν∗ ≤ v∗ ≤ vµ∗,ν for any ν′ ∈ PB , µ′ ∈ PA.

Proof. See proof Patek (1997)[Proposition 3.2].



Algorithm 1 Zero-Sum Markov-Game PI
Initialize: ν0, k = 0
while stopping criterion is not satisfied do
µk ∈ arg maxµ v

µ,νk

νk+1 ∈ arg minν T̄
νvµk,νk

k ← k + 1
end while
Return πk−1

Algorithm 2 Soft Zero-Sum Markov-Game PI
Initialize: ν0, k = 0, η ∈ (0, 1]
while stopping criterion is not satisfied do
µk ∈ arg maxµ v

µ,νk

ν′ ∈ arg minν T̄
νvµk,νk

νk+1 = (1− η)νk + ην′

k ← k + 1
end while
Return πk−1

A.2. Policy Iteration and Soft Policy Iteration for Zero-Sum Markov Games

In this section, we formulate two PI schemes that solve a zero-sum MG. The Zero-Sum MG PI scheme (see Alg. 1) is a well
known one (Hoffman & Karp, 1966; Rao et al., 1973; Hansen et al., 2013).

The Soft Zero-Sum MG PI (see Alg. 2) generalizes the usual PI. Instead of updating with a 1-step greedy policy it updates
softly w.r.t. the 1-step greedy policy. Although this generalization has been analyzed extensively for a single-agent PI
(e.g., (Kakade & Langford, 2002; Scherrer, 2014)), to the best of our knowledge, it was not analyzed in the context of
Markov-Games.

By generalizing arguments from (Scherrer, 2014) to framework of Zero-Sum MG (defined in Section A.1) we prove the
following result.

Theorem 5. The sequence vk
def
= vµk,νk contracts toward v∗ with rate of 1− η + γη, i.e.,

||vk − v∗α|| ≤ (1− η + γη)||vk−1 − v∗α|| .

As a corollary, and by plugging η = 1, we get the convergence rate of Zero-Sum MG PI. Notice that although the action
space is continuous the proof follows using standard machinery, since the state space is still finite. We now give the proof of
the theorem.

The proof has two steps. We first show v∗ ≤ vk+1 ≤ vk, where vk
def
= vµk,νk . Building on this fact, we prove the contraction

property by generalizing technique from (Scherrer, 2014)[Theorem 1], to two player game.

Lemma 6. v∗ ≤ vk+1 ≤ vk.

Proof. We have that vk = vµk,νk .

vµk,νk = T̄ νkvµk,νk

= (1− η)T̄ νkvµk,νk + ηT̄ νkvµk,νk

≥ (1− η)T̄ νkvµk,νk + min
ν∈PB

ηT̄ νvµk,νk

= (1− η)T̄ νkvµk,νk + ηT̄ ν
′
vµk,νk

= max
µ∈PA

((1− η)Tµ,νkvµk,νk) + max
µ∈PA

(
ηT̄µ,ν

′
vµk,νk

)
≥ max
µ∈PA

(
(1− η)Tµ,νkvµk,νk + ηT̄µ,ν

′
vµk,νk

)
= max
µ∈PA

Tµ,(1−η)νk+ην′vµk,νk = T̄ (1−η)νk+ην′vµk,νk . (1)

The first relation holds due to Proposition 3, the forth relation holds by construction of ν′, minν∈PB T̄
νvµk,νk =

T̄ ν
′
vµk,νk , the fifth relation is by Definition 2, the sixth relation holds since sum of maximum elements is big-

ger than the maximum of a sum, and the seventh relation holds since the fixed-policy Bellman operator satisfies
Tµ,(1−η)ν1+ην2 = (1− η)Tµ,ν1 + ηTµ,ν2 .



Due to the monotonicity of T̄ (1−η)νk+ην′ (e.g, Patek (1997)[Appendix A]), we can repeatedly use (1),

vk ≥ T̄ (1−η)νk+ην′vk ≥ · · · ≥ lim
n→∞

(T̄ (1−η)νk+ην′)nvk = vk+1,

where vk+1 = vµk+1,νk+1 . Indeed, T̄ (1−η)νk+ην′ is the optimal Bellman operator given a fixed adversary strategy,
(1− η)νk + ην′.

Lastly, we show that in each iteration v∗ ≤ vk. For any adversarial strategy νk,

vk = max
µ∈PA

vµ,νk ≥ min
ν∈PB

max
µ∈PA

vµ,ν = v∗.

Where the third relation holds by Proposition 4.

We are now ready to prove Theorem 5.

Proof. As before, define vk
def
= vµk,νk . We have that,

v∗ − vk+1 = v∗ − Tµk+1,(1−η)νk+ην′vk+1

≥ v∗ − Tµk+1,(1−η)νk+ην′vk

= (1− η)(v∗ − Tµk+1,νkvk) + η(v∗ − Tµk+1,ν
′
vk), (2)

where the first relation holds since vk+1 = vµk+1,(1−η)νk+ην′ and the second relation holds since Tµ,ν is a monotone
operator and vk+1 ≤ vk by Lemma 6.

Consider the first term in (2).

v∗ − Tµk+1,νkvk ≥ v∗ − Tµk,νkvk = vk. (3)

The first relation holds since Tµk,νkvk = maxµ∈PA T
µ,νkvk and the second relation holds since by definition vk = vµk,νk =

Tµk,νkvµk,νk (due to Proposition 3).

Remember that ν′ ∈ arg minν∈PB T̄
νvk (as in the update of Alg. 2). Thus,

T̄ ν
′
vk = min

ν∈PB
T̄ νvk = min

ν∈PB
max
µ∈PA

Tµ,νvk = max
µ∈PA

min
ν∈PB

Tµ,ν = Tvk, (4)

where the third relation is due to Lemma 1.

Now, for the second term in (2) we have that,

v∗ − Tµk+1,ν
′
vk = Tv∗ − Tµk+1,ν

′
vk

≥ Tµ
∗,ν∗v∗ − max

µ∈PA
Tµ,ν

′
vk

= Tv∗ − Tvk. (5)

The first relation holds since v∗ is the fixed point of T , and the third relation holds by (4).

Plugging (3) and (5) to (2) yields,

v∗ − vk+1 ≥ (1− η)(v∗ − vk) + η(Tv∗ − Tvk).

Since 0 ≥ v∗ − vk+1 by Lemma 6, we can take the max-norm and conclude the proof,

||v∗ − vk+1||∞ ≤ (1− η)||v∗ − vk||∞ + η||Tv∗ − Tvk||∞
≤ (1− η)||v∗ − vk||∞ + ηγ||v∗ − vk||∞,

where the first relation holds by the triangle inequality and the second holds since T is a γ-contraction by Proposition 2.



B. Probabilistic Action Robust MDP
In this section, we focus on PR-MDPs (Section 3) and map the problem of solving the optimal probabilistic robust policy to
solving a Zero-Sum MG. We then continue and provide the proofs of Section 3, which are mostly corollaries to the results in
Section A.

For simplicity, we provide the definition of PR-MDPs as given in Section 3.
Definition 3. Let α ∈ [0, 1]. A Probabilistic Action Robust MDP is defined by the 5-tuple of an MDP (see Section 2.1). Let
π, π̄ be policies of an agent an adversary. We define their probabilistic joint policy πmix

P,α(π, π̄) as ∀s ∈ S, πmix
P,α(a | s) ≡

(1− α)π(a | s) + απ̄(a | s).

Let π be an agent policy. As opposed to standard MDPs, the value of the policy is defined by
vπP,α = minπ̄∈Π Eπ

mix
P,α(π,π̄)[

∑
t γ

tr(st,at)], where at ∼ πmix
P,α(π(st), π̄(st)). The optimal probabilistic robust policy is

the optimal policy of the PR-MDP

π∗P,α ∈ arg max
π∈P(Π)

min
π̄∈Π

Eπ
mix
P,α(π,π̄)[

∑
t

γtr(st,at)]. (6)

The optimal probabilistic robust value is v∗P,α = v
π∗P,α
P,α .

B.1. Probabilistic Action Robust MDP as a Zero-Sum Markov Game

Consider the single agent MDP on which the PR-MDP is defined,M = (S,A, P,R, γ).
Assumption 2.

• A is compact metric space.

• For any s ∈ S the reward r is continuous and bounded function on A.

• For any s ∈ S, whenever (an)→ (a), where (an), (a) ∈ A, then P (· | s, an) converges weakly to P (· | s, a).

Solving the optimal probabilistic robust policy can be equivalently viewed as solving a Zero-Sum MG MP,α. Let
MP,α = (S,A,A, PP,α, RP,α, γ). Meaning, its state-space is equal to that of the original MDP, the action space of the two
players is the action space of the original MDP, and its discount factor is equal to the discount factor ofM. Its reward and
dynamics are given as follows,

rP,α(s, a, b) = (1− α)r(s, a) + αr(s, b), PP,α(s′ | s, a, b) = (1− α)P (s′ | s, a) + αP (s′ | s, b). (7)

By Assumption 2 onM, Assumption 1 on the MG is satisfied.

It is easy to prove that a value vπ
mix
P,α(π1,π2) defined onM is equal to the value vπ1,π2 defined onMP,α. Since there is a

one-to-one correspondence between the problems, solving the later is equivalent to solving the first.

B.2. Proof of Proposition 1

Consider the Zero-Sum MGMP,α, and let PA be the set of all probability measures on the Borel Sets of A. We see that the
Bellman operators ofMP,α (Definition 2) decouples to two terms due to (7),

Tv = max
µ∈PA

min
ν∈PA

rµ,ν + γPµ,νv

= (1− α)

(
max
µ∈PA

rµ + Pµv

)
+ α

(
min
ν∈PA

rµ + Pµv

)
, (8)

and similarly for Tµ, T̄ ν and Tµ,ν .

According to Proposition 4 the the optimal policy for the max-agent µ∗ satisfies v∗ = Tv∗ = Tµ
∗
v∗. Thus, µ∗ should

satisfy

(1− α)

(
max
µ∈PA

rµ + Pµv∗
)

+ α

(
min
ν∈PA

rµ + Pµv∗
)

= (1− α)
(
rµ
∗

+ Pµ
∗
v∗
)

+ α

(
min
ν∈PA

rµ + Pµv∗
)

⇐⇒ max
µ∈PA

rµ + Pµv∗ = rµ
∗

+ Pµ
∗
v∗



meaning, µ∗ ∈ maxµ∈PA r
µ + Pµv∗ which can always be solved by a deterministic policy.

B.3. Probabilistic Action Robust and Robust MDPs

Based on the mapping between a PR-MDP to a corresponding Zero-Sum MG B.1 the relation to Robust MDPs becomes
apparent. Instead for the adversary to pick an action which induces a change in the dynamics and reward 7, the adversary
can directly choose the dynamics and reward. Obviously, the value of such a policy is similar under this equivalent view. We
conclude the result since the adversary is defined on the class of stochastic policies P(Π).

B.4. Proof of Proposition 2

Repeating the same arguments as in Policy Gradient Theorem (Sutton et al., 2000)[Theorem 1] for continuous action space
we have that for any s ∈ S and π ∈ P(Π), i.e., any stochastic stationary policy,

∇πvπ(s) =
∑
s

dπ(s)

∫
a∈A
∇ππ(s,a)qπ(s,a)da

Notice that we can replace the integration and differentiation order by Leibniz integral rule since ∇πvπ(s) exists and is
bounded. Let h(· | s) be a deterministic probability measure on A. Similarly to (Scherrer & Geist, 2014) for any s ∈ S,

〈∇πvπ(s), h〉 =
∑
s

dπ(s)

∫
a∈A
〈∇ππ(s,a), h〉qπ(s,a)da

=
∑
s

dπ(s)qπ(s, h(s)).

To minimize 〈∇πvπ(s), h〉 we choose for any s ∈ S, ah ∈ arg mina q
π(·, a) = arg minπ′ r

π′ + γPπ
′
vπ .

B.5. Proof of Theorem 3

The theorem is a corollary of Theorem 5 and Proposition 2, while using the structure of the defined zero-sum MG for
PR-MDP in Section B.1,MP,α.

Specifically, the first stage of the general Soft Zero-Sum MG PI 2 is similar to the first stage of Soft Probabilistic Robust
PI 2. Furthermore, forMP,α it holds for any bounded v ∈ R|S|,

arg min
ν∈PA

T̄ νv = arg min
ν∈PA

max
µ∈PA

Tµ,νv

= arg min
ν∈PA

max
µ∈PA

(1− α)(rµ + γPµv) + α(rν + γP νv)

= arg min
ν∈PA

(rν + γP νv) ,

where the first relation holds by definition 2, the second relation holds due to the specific form of the Bellman operators
similarly to (8), and the third relation holds since the first term does not depend on ν.

By using Proposition 2 we get that Soft Probabilistic Robust PI 2 is an instance of the more general Soft Zero-Sum MG PI 2,
and prove the Theorem as a corollary of Theorem 5.

C. Noisy Action Robust MDP as a Zero-Sum Markov Game
We focus on NR-MDPs (Section 4) and map the problem of solving the optimal noisy robust policy to solving a Zero-Sum
MG. As in previous section, the proofs of Section 4, are mostly corollaries to the results in Section A.

For simplicity, we provide the definition of NR-MDPs as given in Section 3.
Definition 2. Let α ∈ [0, 1]. A Noisy Action Robust MDP is defined by the 5-tuple of an MDP (see Section 2.1). Let π, π̄ be
policies of an agent and an adversary. We define their noisy joint policy πmix

N,α(π, π̄) as

∀s ∈ S,a ∈ A, πmix
N,α(a | s) ≡ Eb∼π(·|s)

b̄∼π̄(·|s)
[1a=(1−α)b+αb̄],



the relation is obtained by the fact that a ∼ π, ā ∼ π̄.

Let π be an agent policy. For NR-MDP, its value is defined by vπN,α = minπ̄∈Π Eπ
mix
N,α(π,π̄)[

∑
t γ

tr(st,at)], where at ∼
πmix
N,α(π(st), π̄(st)). The optimal α-noisy robust policy is the optimal policy of the NR-MDP

π∗N,α ∈ arg max
π∈P(Π)

min
π̄∈Π

Eπ
mix
N,α(π,π̄)[

∑
t

γtr(st,at)]. (9)

The optimal noisy robust value is v∗N,α = v
π∗N,α
N,α .

C.1. Noisy Action Robust MDP as a Zero-Sum Markov Game

Consider the single agent MDP on which the NR-MDP is defined,M = (S,A, P,R, γ) and assume it satisfies Assumption
2. Solving the optimal probabilistic robust policy can be equivalently viewed as solving a Zero-Sum MGMN,α. Let
MN,α = (S,A,A, PN,α, RN,α, γ). Meaning, its state-space is equal to that of the original MDP, the action space of the
two players is the action space of the original MDP, and its discount factor is equal to the discount factor ofM. Its reward
and dynamics are given as follows,

rN,α(s, a, b) = r(s, (1− α)a+ αb), PP,α(s′ | s, a, b) = P (s′ | s, (1− α)a+ αb). (10)

Since the single agent MDP satisfies Assumption Assumption 2, the MG game defined byMN,α satisfies 1.

It is easy to prove that a value vπ
mix
N (π1,π2) defined on the induced NR-MDP fromM is equal to the value vπ1,π2 defined on

the MGMN,α. Since there is a one-to-one correspondence between the problems, solving the later is equivalent to solving
the first.

C.2. Proof of Proposition 4

Consider an MDP with a single state a quadratic reward of the form r(a) = a2 where a ∈ [−1, 1]. In this case, the solution
does not depend on the horizon and an optimal action w.r.t. a single time step will be the solution for the discounted reward.
Denote P([−1, 1]) as the set of all probability measures on the Borel sets of [−1, 1].

If both of the players are only allowed to take deterministic actions, then the min-max and max-min values are not equivalent,

max
a∈[−1,1]

min
b∈[−1,1]

((1− α)a+ αb)2 =

{
(1− 2α)2, α ≤ 0.5

0, α > 0.5

min
b∈[−1,1]

max
a∈[−1,1]

((1− α)a+ αb)2 = (1− α)2.

Thus, for this example, strong duality on the sets of deterministic policies does not hold,

max
a∈[−1,1]

min
b∈[−1,1]

((1− α)a+ αb)2 < min
b∈[−1,1]

max
a∈[−1,1]

((1− α)a+ αb)2 = (1− α)2.

Furthermore, we now show that considering random policies can increase the value. Let the policy of the max-player be
P (a = −1) = P (a = 1) = 0.5, obviously, P ∈ P([−1, 1]). For this policy, we have that,

min
b∈[−1,1]

Ea∼P (·)[(1− α)a+ αb)2] = min
b∈[−1,1]

(1− α)2 + α2b = (1− α)2.

We conclude that for this example

max
a∈[−1,1]

min
b∈[−1,1]

((1− α)a+ αb)2 < max
P∈P([−1,1])

min
b∈[−1,1]

Ea∼P [((1− α)a+ αb)2].

C.3. Policy Iteration of NR-MDP

We can use the Soft Zero-Sum MG PI (see Algorithm 2), or, by fixing η = 1, Zero-Sum MG PI.



The algorithm repeats two stages of (i) solving an MDP by fixing the adversary policy, (ii) solving a 1-step greedy minimax
decision problem on the set of stochastic policies. This comes in contrast to the corresponding PI algorithm that solves
PR-MDP. There, stage (ii) involved in solving a single agent, 1-step greedy, decision problem. This problem can be more
easily solved by function maximization.

Furthermore, this fact suggest that a simple Frank-Wolfe update (Frank & Wolfe, 1956), as was performed in Soft
Probabilistic Robust PI (Algorithm 2) would not work, at least not using the analysis we suggested here. Meaning, a relation
between the maximal projection on the gradient ∇πvπ and the 1-step greedy minimax decision problem, as shown to hold
in Proposition 2, would not exists.

D. Actor Gradients Proof
Proof. Our proof follows the proof of the deterministic policy gradients (DPG) (Silver et al., 2014).

In order to retain consistency with (Silver et al., 2014), we denote the deterministic policy π by µ : S 7→ A. The parametrized
policies µθ and µ̄θ̄ are, respectively, the actor and adversary policies. We refer to the α-mixture policy πmix

N/P,α(µθ, µ̄θ̄)

simply as πmix
N/P,α(θ, θ̄), for ease of notation.

Assumption 3. p(s′ | s,a),∇ap(s
′ | s,a), µθ(s),∇θµθ(s), µ̄θ̄(s),∇θ̄µ̄θ̄(s), r(s,a),∇ar(s,a), p1(s) are continuous in

all parameters and variables s,a, s′ and x.

Assumption 4. There exists a b and L such that sups p1(s) < b, supa,s,s′ p(s
′ | s,a) < b, supa,s r(s,a) <

b, supa,s,s′ ||∇ap(s
′ | s,a)|| < L, and sups,a ||∇ar(s,a)|| < L.

NR-MDP:

∇θvπ
mix
N,α(θ,θ̄) = ∇θQπ

mix
N,α(θ,θ̄)(s, πmix

N,α(θ, θ̄)(s))

= ∇θ
(
r(s, πmix

N,α(θ, θ̄)(s)) +

∫
S

γp(s′ | s, πmix
N,α(θ, θ̄)(s))vπ

mix
N,α(θ,θ̄)(s′)

)
d s′

= ∇θπmix
N,α(θ, θ̄)(s)∇ar(s,a) |a=πmix

N,α(θ,θ̄)(s) +∇θ
∫
S

γp(s′ | s, πmix
N,α(θ, θ̄)(s))vπ

mix
N,α(θ,θ̄)(s′)d s′

= ∇θπmix
N,α(θ, θ̄)(s)∇θr(s,a) |a=πmix

N,α(θ,θ̄)(s)

+

∫
S

γ
(
p(s′ | s, πmix

N,α(θ, θ̄)(s))∇θvπ
mix
N,α(θ,θ̄)(s′) +∇θπmix

N,α(θ, θ̄)(s)∇ap(s
′ | s,a) |a=πmix

N,α(θ,θ̄)(s) v
πmix
N,α(θ,θ̄)(s′)

)
d s′

= ∇θπmix
N,α(θ, θ̄)(s)∇a

(
r(s,a) +

∫
S

γp(s′ | s,a)vπ
mix
N,α(θ,θ̄)(s′)d s′

)
|a=πmix

N,α(θ,θ̄)(s)

+

∫
S

γp(s′ | s, πmix
N,α(θ, θ̄)(s))∇θvπ

mix
N,α(θ,θ̄)(s′)d s′

= ∇θπmix
N,α(θ, θ̄)(s)∇aQ

πmix
N,α(θ,θ̄)(s,a) |a=πmix

N,α(θ,θ̄)(s) +

∫
S

γp(s→ s′, 1, πmix
N,α(θ, θ̄))∇θvπ

mix
N,α(θ,θ̄)(s′)d s′ .

Where p(s→ s′, t, π) denotes the density at state s′ after transitioning for t steps from state s. Iterating this formula leads



to the following result:

∇θvπ
mix
N,α(θ,θ̄) = ∇θπmix

N,α(θ, θ̄)(s)∇aQ
πmix
N,α(θ,θ̄)(s,a) |a=πmix

N,α(θ,θ̄)(s)

+

∫
S

γp(s→ s′, 1, πmix
N,α(θ, θ̄))∇θπmix

N,α(θ, θ̄)(s′)∇aQ
πmix
N,α(θ,θ̄)(s′,a) |a=πmix

N,α(θ,θ̄)(s′) d s
′

+

∫
S

γp(s→ s′, 1, πmix
N,α(θ, θ̄))

∫
S

γp(s′ → s′′, 1, πmix
N,α(θ, θ̄))∇θvπ

mix
N,α(θ,θ̄)(s′′)d s′′ d s′

= ∇θπmix
N,α(θ, θ̄)(s)∇aQ

πmix
N,α(θ,θ̄)(s,a) |a=πmix

N,α(θ,θ̄)(s)

+

∫
S

γp(s→ s′, 1, πmix
N,α(θ, θ̄))∇θπmix

N,α(θ, θ̄)(s′)∇aQ
πmix
N,α(θ,θ̄)(s′,a) |a=πmix

N,α(θ,θ̄)(s′) d s
′

+

∫
S

γ2p(s→ s′, 2, πmix
N,α(θ, θ̄))∇θvπ

mix
N,α(θ,θ̄)(s′)d s′

=

∫
S

∞∑
t=0

γtp(s→ s′, t, πmix
N,α(θ, θ̄))∇θπmix

N,α(θ, θ̄)(s′)∇aQ
πmix
N,α(θ,θ̄)(s′,a) |a=πmix

N,α(θ,θ̄)(s′) d s
′ .

Taking the expectation over S1:

∇θJ(πmix
N,α(θ, θ̄)) = ∇θ

∫
S

p1(s)vπ
mix
N,α(θ,θ̄)(s)d s

=

∫
S

p1(s)∇θvπ
mix
N,α(θ,θ̄)(s)d s

=

∫
S

∫
S

∞∑
t=0

γtp1(s)p(s→ s′, t, πmix
N,α(θ, θ̄))∇θπmix

N,α(θ, θ̄)(s′)∇aQ
πmix
N,α(θ,θ̄)(s′,a) |a=πmix

N,α(θ,θ̄)(s′) d s
′ d s

=

∫
S

ρπ
mix
N,α(θ,θ̄)∇θπmix

N,α(θ, θ̄)(s)∇aQ
πmix
N,α(θ,θ̄)(s,a) |a=πmix

N,α(θ,θ̄)(s) d s

=

∫
S

ρπ
mix
N,α(θ,θ̄)∇θ((1− α)µθ(s) + αµ̄θ̄(s))∇aQ

πmix
N,α(θ,θ̄)(s,a) |a=πmix

N,α(θ,θ̄)(s) d s

= (1− α)

∫
S

ρπ
mix
N,α(θ,θ̄)∇θµθ(s)∇aQ

πmix
N,α(θ,θ̄)(s,a) |a=πmix

N,α(θ,θ̄)(s) d s

notice that compared to the standard DPGs (Silver et al., 2014), the gradient is w.r.t. the actor’s (adversary’s) policy and is
weighted by 1− α (α). Similar to the DPG, the gradient of the action-value function is taken w.r.t. the action taken (the
mixture policy).

PR-MDP: The PR-MDP, constructed by two deterministic policies µθ and µ̄θ̄ can be defined as follows:

πmix
P,α(u | s; θ, θ̄) = (1− α)δ(u− µθ(s)) + αδ(u− µ̄θ̄(s)).

vπ
mix
P,α(θ,θ̄) =

∫
A

πmix
P,α(u | s; θ, θ̄)Qπ

mix
P,α(θ,θ̄)(s, πmix

P,α(θ, θ̄)(s))du

∇θvπ
mix
P,α(θ,θ̄) = ∇θ

∫
A

πmix
P,α(u | s; θ, θ̄)Qπ

mix
P,α(θ,θ̄)(s, u)du

= ∇θ[(1− α)Qπ
mix
P,α(θ,θ̄)(s, µθ(s)) + αQπ

mix
P,α(θ,θ̄)(s, µ̄θ̄(s))]

= (1− α)∇θQπ
mix
P,α(θ,θ̄)(s, µθ(s)) + α∇θQπ

mix
P,α(θ,θ̄)(s, µ̄θ̄(s))

we address each element, (1)∇θQπ
mix
P,α(θ,θ̄)(s, µθ(s)) and (2) Qπ

mix
P,α(θ,θ̄)(s, µ̄θ̄(s)), individually:



(1):

∇θQπ
mix
P,α(θ,θ̄)(s, µθ(s)) = ∇

(
r(s, µθ(s)) +

∫
S

γp(s′ | s, µθ(s))vπ
mix
P,α(θ,θ̄)(s′)

)
d s′

= ∇θµθ(s)∇ar(s,a) |a=µθ(s) +∇θ
∫
S

γp(s′ | s, µθ(s))vπ
mix
P,α(θ,θ̄)(s′)d s′

= ∇θµθ(s)∇θr(s,a) |a=µθ(s)

+

∫
S

γ
(
p(s′ | s, µθ(s))∇θvπ

mix
P,α(θ,θ̄)(s′) +∇θµθ(s)∇ap(s

′ | s,a) |a=µθ(s) v
πmix
P,α(θ,θ̄)(s′)

)
d s′

= ∇θµθ(s)∇a

(
r(s,a) +

∫
S

γp(s′ | s,a)vπ
mix
P,α(θ,θ̄)(s′)d s′

)
|a=µθ(s)

+

∫
S

γp(s′ | s, µθ(s))∇θvπ
mix
P,α(θ,θ̄)(s′)d s′

= ∇θµθ(s)∇aQ
πmix
P,α(θ,θ̄)(s,a) |a=µθ(s) +

∫
S

γp(s→ s′, 1, µθ)∇θvπ
mix
P,α(θ,θ̄)(s′)d s′ .

Where p(s→ s′, t, π) denotes the density at state s′ after transitioning for t steps from state s.

(2):

∇θQπ
mix
P,α(θ,θ̄)(s, µ̄θ̄(s)) = ∇θ

(
r(s, µ̄θ̄(s)) +

∫
S

γp(s′ | s, µ̄θ̄(s))vπ
mix
P,α(θ,θ̄)(s′)

)
d s′

= ∇θµ̄θ̄(s)∇ar(s,a) |a=µ̄θ̄(s) +∇θ
∫
S

γp(s′ | s, µ̄θ̄(s))vπ
mix
P,α(θ,θ̄)(s′)d s′

=

∫
S

γ
(
p(s′ | s, µ̄θ̄(s))∇θvπ

mix
P,α(θ,θ̄)(s′) +∇θµ̄θ̄(s)∇ap(s

′ | s,a) |a=µ̄θ̄(s) v
πmix
P,α(θ,θ̄)(s′)

)
d s′

=

∫
S

γp(s′ | s, µ̄θ̄(s))∇θvπ
mix
P,α(θ,θ̄)(s′)d s′ .

Hence:

∇θvπ
mix
P,α(θ,θ̄) = (1− α)∇θQπ

mix
P,α(θ,θ̄)(s, µθ(s)) + α∇θQπ

mix
P,α(θ,θ̄)(s, µ̄θ̄(s))

= (1− α)∇θµθ(s)∇aQ
πmix
P,α(θ,θ̄)(s,a) |a=µθ(s)

+ (1− α)

∫
S

γp(s→ s′, 1, µθ)∇θvπ
mix
P,α(θ,θ̄)(s′)d s′+α

∫
S

γp(s′ | s, µ̄θ̄(s))∇θvπ
mix
P,α(θ,θ̄)(s′)d s′

= (1− α)∇θµθ(s)∇aQ
πmix
P,α(θ,θ̄)(s,a) |a=µθ(s) +

∫
S

γp(s′ | s, πmix
P,α(θ, θ̄)(s))∇θvπ

mix
P,α(θ,θ̄)(s′)d s′

Applying this iteratively:



∇θvπ
mix
P,α(θ,θ̄) = (1− α)∇θµθ(s)∇aQ

πmix
P,α(θ,θ̄)(s,a) |a=µθ(s)

+

∫
S

γp(s′ | s, πmix
P,α(θ, θ̄)(s))∇θvπ

mix
P,α(θ,θ̄)(s′)d s′

= (1− α)∇θµθ(s)∇aQ
πmix
P,α(θ,θ̄)(s,a) |a=µθ(s)

+

∫
S

γp(s→ s′, 1, πmix
P,α(θ, θ̄))∇θµθ(s′)∇aQ

πmix
N,α(θ,θ̄)(s′,a) |a=µθ(s′) d s

′

+

∫
S

γp(s→ s′, 1, πmix
P,α(θ, θ̄))

∫
S

γp(s′ → s′′, 1, πmix
P,α(θ, θ̄))∇θvπ

mix
N,α(θ,θ̄)(s′′)d s′′ d s′

= (1− α)∇θµθ(s)∇aQ
πmix
P,α(θ,θ̄)(s,a) |a=µθ(s)

+ (1− α)

∫
S

γp(s→ s′, 1, πmix
P,α(θ, θ̄))∇θµθ(s′)∇aQ

πmix
P,α(θ,θ̄)(s′,a) |a=µθ(s′) d s

′

+

∫
S

γ2p(s→ s′, 2, πmix
P,α(θ, θ̄))∇θvπ

mix
P,α(θ,θ̄)(s′)d s′

= (1− α)

∫
S

∞∑
t=0

γtp(s→ s′, t, πmix
P,α(θ, θ̄))∇θµθ(s′)∇aQ

πmix
P,α(θ,θ̄)(s′,a) |a=µθ(s′) d s

′ .

Taking the expectation over S1:

∇θJ(πmix
P,α(θ, θ̄)) = ∇θ

∫
S

p1(s)vπ
mix
P,α(θ,θ̄)(s)d s

=

∫
S

p1(s)∇θvπ
mix
P,α(θ,θ̄)(s)d s

= (1− α)

∫
S

∫
S

∞∑
t=0

γtp1(s)p(s→ s′, t, πmix
P,α(θ, θ̄))∇θπθ(s′)∇aQ

πmix
P,α(θ,θ̄)(s′,a) |a=πθ(s′) d s

′ d s

= (1− α)

∫
S

ρπ
mix
P,α(θ,θ̄)∇θπθ(s)∇aQ

πmix
P,α(θ,θ̄)(s,a) |a=πθ(s) d s

the resulting gradient update for the actor does not directly take into consideration the policy of the adversary, thus resulting
in a gradient rule similar (weighted by (1− α) for the actor and α for the adversary) to that seen in Silver et al. (2014).

Intuitively, as the action is sampled w.p. (1− α) from the actor and w.p, α from the adversary, each player acts greedily at
the immediate step ignoring potential perturbations. The mutual effect of the actor and adversary is attained through the Q
value which captures the long term return of the mixture policy.



Algorithm 3 Action-Robust DDPG
Input: Actor update steps (N ), uncertainty value α and discount factor γ
Randomly initialize critic network Q(s,a;φ), actor f(s; θ) and adversary f̄(s; θ̄)
Initialize target networks with weights φ−, θ−, θ̄−

Initialize replay buffer R
for episode in 0...M do

Receive initial state s0

for t in 0...T do

Sample action at =

{
f(s; θπ) w.p. (1− α) and f̄(s; θπ̄) otherwise , PR-MDP
(1− α)f(s; θπ) + αf̄(s; θ̄π̄) , NR-MDP

ãt = at + exploration noise
Execute action ãt and observe reward rt and new state st+1

Store transition (st, ãt, rt, st+1) in R
for i in 0...N do

Sample batch from replay buffer
Update actor:

θ ←

{
∇θ(1− α)Q(s, f(s; θ)) ,PR-MDP
∇θQ(s, (1− α)f(s; θ) + αf̄(s; θ̄)) ,NR-MDP

Update critic:

φ←

{
∇φ||r + γ[(1− α)Q(s′, f(s′; θ−)) + αQ(s′, f(s′; θ̄−))]||22 ,PR-MDP
∇φ||r + γ[Q(s′, (1− α)f(s′; θ−) + αf(s′; θ̄−))]||22 ,NR-MDP

end for
Sample batch from replay buffer
Update adversary:

θ̄ ←

{
∇θ̄αQ(s, f̄(s; θ̄)) ,PR-MDP
∇θ̄Q(s, (1− α)f(s; θ) + αf̄(s; θ̄)) ,NR-MDP

Update critic
Update the target networks:

θ− ← τθ + (1− τ)θ−

θ̄− ← τ θ̄ + (1− τ)θ̄−

φ− ← τφ+ (1− τ)φ−

end for
end for

Algorithm 3 presents our Action Robust approach adapted to the DDPG algorithm (Lillicrap et al., 2015). The action we
play during exploration is based on the exploration scheme selected, OU noise adds noise at the action level whereas in
parameter space noise we pertube the parameters θ and θ̄.

Notice that the critic update is different, in both scenarios, from the default DDPG update rule. The reason is that the critic is
updated based on the expectation over the policy, which in the NR-MDP results in the α mixture policy and in the PR-MDP
a convex sum of Q values.



Figure 1 presents a block diagram of our approach for the NR-MDP scenario:

Figure 1. Action Robust DDPG, NR-MDP

Actor

+

Adversary

Critic

Q(s, πmix
N (s))

s

s

µ(s) µ̄(s)

πmix
N (µ, µ̄)(s)

We improve the actor (adversary) by taking the gradient of Q w.r.t. θ(θ̄) and performing backpropagation through the critic.
Autograd engines (Baydin et al., 2018) automatically ensure that the gradients propagate directly to the actor (adversary)
without affecting the adversary (actor) or the critic. During exploration we simply play πmix

N a deterministic policy (as it is a
convex sum of two deterministic values).

For the PR-MDP the schema is similar to the standard DDPG approach.

Figure 2. Action Robust DDPG, PR-MDP

Actor

+

Adversary

s

µ(s) µ̄(s)

πmix
P (µ, µ̄)(s)

Figure 2 depicts the block diagram during exploration. πmix
P defines a stochastic policy over µ and µ̄. Thus, with probability

1− α we sample action µ(s) and otherwise µ̄(s).



Figure 3. Action Robust DDPG, PR-MDP

Actor

Critic

Q(s, µ(s))

s

s

µ(s)

Figure 3 presents the approach during training. This approach is identical to the standard DDPG approach, except that once
taking the gradient∇θQ(s, µθ(s)), we multiply the loss (similar to a change of learning rate) by 1− α.

The critic is trained on the expectation over the mixture policies, which in the case of DDPG results in Q(s,a) =
r(s,a) + γ[(1− α)Q(s′, µ(s′)) + αQ(s′, µ̄(s′))].



E. Empirical Results

No Noise OU Noise Param Noise

Figure 4. NR-MDP: exploration and α ablation.

Figure 5. NR-MDP: α and training ratio ablation.



No Noise OU Noise Param Noise

Figure 6. PR-MDP: exploration and α ablation.

Figure 7. PR-MDP: α and training ratio ablation.



Baseline NR-MDP PR-MDP

Hopper

Walker2d

Humanoid

InvertedPendulum

Figure 8. Robustness to model uncertainty. Noise probability denotes the probability of a randomly sampled noise being played instead of
the selected action.



Baseline NR-MDP PR-MDP

Swimmer

HalfCheetah

Ant

Figure 9. Robustness to model uncertainty continued. Noise probability denotes the probability of a randomly sampled noise being played
instead of the selected action.



Figure 10. Robustness to mass uncertainty.
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