
Appendix A Proof of Lemma 1
Here we show that even in the presence of abstention, learning continues on the
true classes. Consider again the loss function defined for a sample x.

L(x) = (1− pk+1)

(
−

k∑
i=1

ti log
pi
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)
+ α log

1

1− pk+1
.

Let j, (1 ≤ j ≤ k) be the true class for x. During gradient descent, learning
on the true class takes place if ∂L

∂aj
< 0, where aj is the pre-activation into the

softmax unit of class j.
A straight-forward gradient calculation shows that

∂L
∂aj

= −(1− pj − pk+1) + pk+1pj log

(
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)
− α pk+1pj
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Since α ≥ 0 as per as our assumption, the last quantity in the above expression,
−α pk+1pj

1−pk+1
≤ 0

Also note that (1 − pj − pk+1) in the above expression is just the total
probability mass in the remaining real (i.e., non-abstention) classes; denote this
by q.

Then we have

−(1− pj − pk+1) + pk+1pj log

(
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)
= −q + pk+1pj log
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= −q + pk+1pj log

(
1 +
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)
≤ −q + pk+1pj

q

pj

= −q + pk+1q

≤ 0

where, in A, we have made use of the fact that log (1 + x) ≤ x for all x > −1.
Thus ∂L

∂aj
≤ 0 as desired.

Appendix B Noisy Labels associated with a data
transformation

We present further results on the abstaining ability of the DAC in the presence
of structured noise. Here we simulate a scenario where a subset of the training
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Figure 1: Results on blurred-image experiment with noisy labels (a)20% of the
images are blurred in the train set, and their labels randomized (b) Validation
accuracy for baseline vs DAC (non-abstained) (c)Abstention behavior for the
DAC during training (d) Distribution of predictions on the blurred validation
images for the DAC. We also observed (not shown) that for the baseline DNN,
the accuracy on the blurred images in the validation set is no better than random.

data, due to feature degradation, ends up with unreliable labels. We apply a
Gaussian blurring transformation to 20% of the train and test images across all
the classes (Figure 1a), and randomize the labels on the blurred training set.
This is similar to the smudging experiment, but lacks the presence of a consistent,
conspicuous feature that the DAC can associate with abstention. On the other
hand, the lack of high frequency components, or conversely the abundance of low
frequency components, might itself be thought of as a feature that is consistent
across the samples that have had their label randomized. Results The DAC
abstains remarkably well on the blurred images in the test set (Figure 1d), while
maintaining classification accuracy over the remaining samples in the validation
set (≈ 79%). The baseline DNN accuracy drops to 63% (Figure 1b), while
the baseline accuracy over the smudged images alone is no better than random
(≈ 9.8%) . The abstention behavior of the DAC on the blurred images in the test
set can be explained by how abstention evolves during training (Figure 1c). Once
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abstention is introduced at epoch 20, the DAC initially opts to abstain on a high
percentage of the training data, while continuing to learn (since the gradients
w.r.t the true-class pre-activations are always negative.). In the later epochs,
sufficient learning has taken place on the non-randomized samples but the DAC
continues to abstain on about 20% of the training data, which corresponds to
the blurred images indicating that a strong association has been made between
blurring and abstention.

Appendix C Results on Non-Uniform Label Noise

Dataset Method
Class Dependent

Label Noise Fraction
η =0.1 0.2 0.3 0.4

CIFAR-10
(ResNet-34)

Lq 90.91 89.33 85.45 76.74
Trunc Lq 90.43 89.45 87.10 82.28
Forward T 91.32 90.35 89.25 88.12
Forward T̂ 90.52 89.09 86.79 83.55
DAC 94.23 93.20 92.07 89.88

CIFAR-100
(ResNet-34)

Lq 68.36 66.59 61.45 47.22
Trunc Lq 68.86 66.59 61.87 47.66
Forward T 71.05 71.08 70.76 70.82
Forward T̂ 45.96 42.46 38.13 34.44
DAC 75.59 73.22 71.38 65.34

Fashion-MNIST

(ResNet-18)

Lq 93.51 93.24 92.21 89.53
Trunc Lq 93.53 93.36 92.76 91.62
Forward T 94.33 94.03 93.91 93.65
Forward T̂ 94.09 93.66 93.52 88.53
DAC 95.48 95.08 94.96 94.31

Table 1: Comparison of DAC vs related methods for class-dependent label noise.
Performance numbers reproduced from (Zhang & Sabuncu, 2018). For the DAC,
an abstaining classifier is first used to identify and eliminate label noise, and an
identical DNN is then used for downstream training.

Here we report results on CIFAR-10, CIFAR-100 and Fashion-MNIST for
class-dependent label noise. The experimental setup is exactly as described in
(Zhang & Sabuncu, 2018), and we compare with the results reported in that
paper which also includes the Forward correction method of (Patrini et al., 2017).
In CIFAR-10, the class dependent noise results in the following flip scenario
with probability η: TRUCK → AUTOMOBILE, BIRD → AIRPLANE, DEER
→ HORSE, and CAT ↔ DOG with probability. For CIFAR-100, classes are
organized into groups as described in (Krizhevsky & Hinton, 2009) and the
class-dependent noise is simulated by flipping each class into the next circularly
with probability η. For Fashion-MNIST, classes are flipped as follows: BOOT
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→ SNEAKER , SNEAKER → SANDALS, PULLOVER → SHIRT, COAT→
DRESS with probability η. The aforementioned flipping scenarios are identical
to the setup in (Zhang & Sabuncu, 2018). Results are shown in Table 1.
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