
ELF OpenGo: An Analysis and Open Reimplementation of AlphaZero

A. Detailed system and software design of
ELF OpenGo

We now describe the system and software design of ELF
OpenGo, which builds upon the DarkForest Go engine (Tian
& Zhu, 2015) and the ELF reinforcement learning plat-
form (Tian et al., 2017).

A.1. Distributed platform

ELF OpenGo is backed by a modified version of ELF (Tian
et al., 2017), an Extensive, Lightweight and Flexible plat-
form for reinforcement learning research; we refer to the
new system as ELF++. Notable improvements include:

• Distributed support. ELF++ adds support for dis-
tributed asynchronous workflows, supporting up to
2,000 clients.

• Increased Python flexibility. We provide a dis-
tributed adapter that can connect any environment with
a Python API, such as OpenAI Gym (Brockman et al.,
2016).

• Batching support. We provide a simple autobatching
registry to facilitate shared neural network inference
across multiple game simulators.

A.2. Go engine

We have integrated the DarkForest Go engine (Tian & Zhu,
2015) into ELF OpenGo, which provides efficient handling
of game dynamics (approximately 1.2 µs per move). We use
the engine to execute game logic and to score the terminal
game state using Tromp-Taylor rules (Tromp, 2014).

A.3. Training system

ELF OpenGo largely replicates the training system architec-
ture of AlphaZero. However, there are a number of differ-
ences motivated by our compute capabilities.

Hardware details We use NVIDIA V100 GPUs for our
selfplay workers. Every group of eight GPUs shares two
Intel Xeon E5-2686v4 processors.

We use a single training worker machine powered by eight
V100 GPUs. Increasing the training throughput via dis-
tributed training does not yield considerable benefit for ELF
OpenGo, as our selfplay throughput is much less than that
of AlphaZero.

To elaborate on this point, our ratio of selfplay games to
training minibatches with a single training worker is roughly
13:1. For comparison, AlphaZero’s ratio is 30:1 and Al-
phaGo Zero’s ratio is 7:1. We found that decreasing this
ratio significantly below 10:1 hinders training (likely due

to severe overfitting). Thus, since adding more training
workers proportionally decreases this ratio, we refrain from
multi-worker training.

GPU colocation of selfplay workers We use GPUs in-
stead of TPUs to evaluate the residual network model. The
primary difference between the two is that GPUs are much
slower for residual networks. 9 Neural networks on GPUs
also benefit from batching the inputs; in our case, we ob-
served near-linear throughput improvements from increas-
ing the batch size up to 16, and sublinear but still significant
improvements between 16 and 128.

Thus, to close the gap between GPU and TPU, we co-locate
32 selfplay workers on each GPU, allowing the GPU to pro-
cess inputs from multiple workers in a single batch. Since
each worker has 8 game threads, this implies a theoretical
maximum of 256 evaluations per batch. In practice, we limit
the batch size to 128.

This design, along with the use of half-precision floating
point computation, increases the throughput of each ELF
OpenGo GPU selfplay worker to roughly half the through-
put of a AlphaGo Zero TPU selfplay worker. While Al-
phaGo Zero reports throughput of 2.5 moves per second
for a 256-filter, 20-block model with 1,600 MCTS rollouts,
ELF OpenGo’s throughput is roughly 1 move per second.

Asynchronous, heterogenous-model selfplays This
colocation, along with the inherent slowness of GPUs
relative to TPUs, results in much higher latency for game
generation (on the order of an hour). Since our training
worker typically produces a new model (i.e. processes
1,000 minibatches) every 10 to 15 minutes, new models are
published faster than a single selfplay can be produced.

There are two approaches to handling this:

Synchronous (AlphaGo Zero) mode In this mode, there
are two different kinds of clients: Selfplay clients and
Eval clients. Once the server has a new model, all the
Selfplay clients discard the current game being played,
reload the new model and restart selfplays, until a given
number of selfplays have been generated. Then the server
starts to update the current model according to Equation 1.
Every 1,000 minibatches, the server updates the model and
notifies Eval clients to compare the new model with the
old one. If the new model is better than the current one by
55%, then the server notifies all the clients to discard current
games, and restart the loop. On the server side, the selfplay
games from the previous model can either be removed from

9According to December 2018 DawnBench (Coleman et al.,
2017) results available at https://dawn.cs.stanford.
edu/benchmark/ImageNet/train.html, one TPU has
near-equivalent 50-block throughput to that of eight V100 GPUs



ELF OpenGo: An Analysis and Open Reimplementation of AlphaZero

Parameter/detail AGZ AZ ELF OpenGo

cpuct (PUCT constant) ? ? 1.5
MCTS virtual loss constant ? ? 1.0
MCTS rollouts (selfplay) 1,600 800 1,600

Training algorithm SGD with momentum = 0.9
Training objective value squared error + policy cross entropy + 10−4 · L2

Learning rate 10{−2,−3,−4} 2 · 10{−2,−3,−4} 10{−2,−3,−4}

Replay buffer size 500,000 ? 500,000
Training minibatch size 2048 4096 2048

Selfplay hardware ? 5,000 TPUs 2,000 GPUs
Training hardware 64 GPUs 64 TPUs 8 GPUs
Evaluation criteria 55% win rate none none

Table S1. Hyperparameters and training details of AGZ, AZ, and ELF OpenGo. “?” denotes a detail that was ambiguous or unspecified in
Silver et al. (2017) or Silver et al. (2018)

the replay buffer or be retained. Otherwise, the Selfplay
clients send more selfplays of the current model until an
additional number of selfplays are collected by the server,
and then the server starts another 1,000 batches of training.
This procedure repeats until a new model passes the win
rate threshold.

Asynchronous (AlphaZero) mode Note that AlphaGo
Zero mode involves a lot of synchronization and is not
efficient in terms of boosting the strength of the trained
model. In AlphaZero mode, we release all the synchroniza-
tion locks and remove Eval clients. Moves are always
generated using the latest models and Selfplay clients
do not terminate their current games upon receiving new
models. It is possible that for a given selfplay game record,
the first part of the game is played by model A while the
second part of the game is played by model B.

We initially started with the synchronous approach before
switching to the asynchronous approach. Switching offered
two benefits: (1) Both selfplay generation and training real-
ized a drastic speedup. The asynchronous approach achieves
over 5x the selfplay throughput of the synchronous approach
on our hardware setup. (2) The ratio of selfplay games to
training minibatches increased by roughly 1.5x, thus helping
to prevent overfitting.

The downside of the asynchronous approach is losing ho-
mogeneity of selfplays – each selfplay is now the product of
many consecutive models, reducing the internal coherency
of the moves. However, we note that the replay buffer that
provides training data is already extremely heterogeneous,
typically containing games from over 25 different models.
Consequently, we suspect and have empirically verified that
the effect of within-selfplay heterogeneity is mild.

A.4. Miscellany

Replay buffer On the server side, we use a large replay
buffer (500,000 games) to collect game records by clients.
Consistent with Silver et al. (2017), who also use a replay
buffer of 500,000 games, we found that a large replay buffer
yields good performance. To increase concurrency (read-
ing from multiple threads of feature extraction), the replay
buffer is split into 50 queues, each with a maximal size of
10,000 games and a minimal size of 200 games. Note that
the minimal size is important, otherwise the model often
starts training on a very small set of games and quickly
overfits before more games arrive.

Fairness of model evaluation In synchronous mode, the
server deals with various issues (e.g., clients die or taking
too long to evaluate) and makes sure evaluations are done in
an unbiased manner. Note that a typically biased estimation
is to send 1,000 requests to Eval clients and conclusively
calculate the win rate using the first 400 finished games.
This biases the metric toward shorter games, to training’s
detriment.

Game resignation Resigning from a hopeless game is
very important in the training process. This not only saves
much computation but also shifts the selfplay distribution
so that the model focuses more on the midgame and the
opening after learning the basics of Go. As such, the model
uses the bulk of its capacity for the most critical parts of the
game, thus becoming stronger. As in Silver et al. (2017), we
dynamically calibrate our resignation threshold to have a
5% false positive rate; we employ a simple sliding window
quantile tracker.



ELF OpenGo: An Analysis and Open Reimplementation of AlphaZero

B. Auxiliary dataset details
B.1. Human games dataset

To construct the human game dataset, we randomly sample
1,000 professional games from the Gogod database from
2011 to 2015. 10

B.2. Ladder dataset

We collect 100 games containing ladder scenarios from
the online CGOS (Computer Go Server) service, where
we deployed our prototype model. 11 For each game, we
extract the decisive game state related to the ladder. We then
augment the dataset 8-fold via rotations and reflections.

C. Practical lessons
ELF OpenGo was developed through much iteration and
bug-fixing on both the systems and algorithm/modeling
side. Here, we relate some interesting findings and lessons
learned from developing and training the AI.

Batch normalization moment staleness Our residual
network model, like that of AGZ and AZ, uses batch normal-
ization (Ioffe & Szegedy, 2015). Most practical implementa-
tions of batch normalization use an exponentially weighted
buffer, parameterized by a “momentum constant”, to track
the per-channel moments. We found that even with relatively
low values of the momentum constant, the buffers would
often be stale (biased), resulting in subpar performance.

Thus, we adopt a variant of the postprocessing moment cal-
culation scheme originally suggested by Ioffe & Szegedy
(2015). Specifically, after every 1,000 training minibatches,
we evaluate the model on 50 minibatches and store the
simple average of the activation moments in the batch nor-
malization layers. This eliminates the bias in the moment
estimators, resulting in noticeably improved and consistent
performance during training. We have added support for this
technique to the PyTorch framework (Paszke et al., 2017). 12

Dominating value gradients We performed an uninten-
tional ablation study in which we set the cross entropy coef-
ficient to 1

362 during backpropogation. This change results
in optimizing the value network much faster than the pol-
icy network. We observe that with this modification, ELF
OpenGo can still achieve a strength of around amateur dan
level. Further progress is extremely slow, likely due to the
minimal gradient provided by the policy network. This sug-

10https://gogodonline.co.uk/
11http://www.yss-aya.com/cgos/19x19/

standings.html
12As of December 2018, this is configurable by setting

momentum=None in the BatchNorm layer constructor.

gests that any MCTS augmented with only a value heuristic
has a relatively low skill ceiling in Go.


