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A. Computing the Number of Defensive Samples
Algorithm 1 requires a measure of ESS in order to evaluate the quality of a gradient estimate and, consequently, to adapt
the batch size. Although several ESS measures for IS have been studied (see, e.g., (Martino et al., 2017)), to the best of
our knowledge no measure specifically designed for MIS estimators has been proposed. A recent work by Elvira et al.
(2018) has analyzed the classical ESS measure introduced in Section 2 and has empirically demonstrated its effectiveness in
MIS. Thus, we have decided to apply it to our context as well. However, since for our application we are satisfied with a
lower bound on the ESS, instead of taking the variance of the importance weights under the given proposals, we take it w.r.t.
the mixture of these. This is motivated by the following proposition, which follows directly from the fact that the former
variance is always smaller than the latter (see (Owen & Zhou, 2000) or Lemma C.1 in Appendix C.5).

Proposition A.1. Under the balance heuristics, we have that ÊSS := n
1+Var[wMIS(τ )] ≥

n
d2(p(·|θ,f)‖qα(τ )) .

To estimate the Renyi divergence, we use the fact that the expected value of importance weights under trajectory distribution
qα is equal to one, so that: d2(p(·|θ, f)‖qα(τ )) = 1 +Varqα [p(·|θ,f)

qα
] ' 1 + 1

n

∑n
i=1(wi − 1)2, where the sum is over the

trajectories from all the proposals and wi are their importance weights. This is in practice much better than using a naı̈ve
estimate of the second moment, 1

n

∑n
i=1 w

2
i , which would lead to an infinite ESS when the target distribution p gets too far

from qα, and better than taking the sample variance of the weights, 1 + 1
n−1

∑n
i=1(wi − w̄)2, which would result in an ESS

of n in such case. Since these degenerate cases are not uncommon in our context (recall the changes in target distribution
during learning), it is extremely important to have a guard against them.

Finally, computing the number n0 of defensive samples to be collected to guarantee a minimum ESS of ESSmin requires
the analysis of the increase rate of the function of Proposition A.1 when adding the target trajectories. Although, in the
asymptotic case, this rate is 1 (i.e., every new target sample increases the ESS by 1), this may not hold when a finite sample
is considered. However, we show that, for a given weight vector w, this rate cannot be worse than c := w̄3+3(1−w̄)

(1+V̂ar[w])2
, where

w̄3 = 1
n

∑n
i=1 w

3
i , w̄ = 1

n

∑n
i=1 wi, and V̂ar[w] = 1

n

∑n
i=1(wi − 1)2. This leads to the following proposition, whose

proof can be found in Appendix C.

Proposition A.2. The number n0 of defensive samples to guarantee an ESS greater than or equal to ESSmin can be computed
as n0 = max{nmin,min{ESSmin, n

′
0}}, where

n′0 =

⌈
ESSmin − n

1+V̂ar[w]

min{1, c}

⌉
. (12)
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B. Estimating the Source Models
The model-estimation algorithms of Section 4, starting from Theorem 4.1, are derived only for the case where the source
tasks (i.e., their transition models) are fully known. Here we show how the proposed methods can be straightforwardly
generalized when such an assumption does not hold.

We first extend the upper bound on the MSE of Theorem 4.1 to account for inexact source models. For each j ∈ J , we
now have an arbitrary function f̃j ∈ F , while all true models fj ∼ ϕj are uncertain according to distributions ϕj ∼ ∆(F).
Similarly to Section 4, we use ∇J to denote the true gradient at θ and ∇̂J(f̃0, . . . , f̃m) to denote the MIS estimator with
arbitrarily chosen models.

Theorem B.1. Let f̃0, . . . , f̃m : S × A → S be arbitrary functions and suppose that ‖g(τ )R(τ )‖∞ ≤ B almost surely.
Then,

E
[
‖∇̂J(f̃0, . . . , f̃m)−∇J‖2

]
≤ dB2

n
d2

(
p(·|θ0, f̃0)‖qα(·; f̃0, . . . , f̃m)

)
+ c1dB

2
m∑
l=0

αl

T−1∑
t=0

Eτ∼p(·|θl,f̃l)
[
‖f̄l(st,at)− f̃l(st,at)‖22

]
+ c1dB

2
m∑
l=0

αl

T−1∑
t=0

Eτ∼p(·|θl,f̃l) [Tr (Σl(st,at))] +O(1), (13)

where the expectation is w.r.t. τi,j ∼ p(τ |θj , fj) and fj ∼ ϕj . Here f̄l(s,a) := Efl∼ϕl [fl(s,a)], Σl(s,a) =
Covfl∼ϕl [fl(s,a)], and c1 is a constant.

As mentioned in Remark 4.1, the only component that really needs to be estimated online is the target model. Furthermore, if
we plug the mean estimate of each source model f̄l into 13, the resulting bound reduces, without considering the covariance
terms, to the one for the case of known sources (Theorem 4.1). Therefore, the algorithms derived in the main paper can be
easily adopted when the source tasks are estimated. One simply needs to plug these estimates, obtained in batch before
learning starts, into the bound of Theorem 4.1 as if they were the true source models.
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C. Proofs
C.1. Proof of Theorem 3.1

Theorem 3.1 (Unbiasedness of PD estimator). Let hj,t(τ ) be a function such that, for all t ∈ {0, . . . , T − 1} and τ ,∑m
j=0 hj,t(τ ) = 1. Then, the per-decision MIS estimator in (7) is unbiased.

Proof. The proof simply starts from the definition of PDMIS and shows that, by leveraging the assumption that the heuristic
function is a partition of unity, its expected value is the policy gradient:

E
[
∇̂PDθ J(θ, f)

]
=

m∑
j=0

Ep(τ |θj ,fj)

[
T−1∑
t=0

hj,t(τ )
p(τ0:t|θ, f)

p(τ0:t|θj , fj)
γtR(st,at)gt(τ )

]

=

m∑
j=0

∫ T−1∑
t=0

hj,t(τ )p(τ0:t|θ, f)γtR(st,at)gt(τ )dτ

=

∫ T−1∑
t=0

p(τ0:t|θ, f)γtR(st,at)gt(τ )

m∑
j=0

hj,t(τ )︸ ︷︷ ︸
=1

dτ

=

∫ T−1∑
t=0

p(τ0:t|θ, f)γtR(st,at)gt(τ )dτ

= Ep(τ |θ,f)

[
T−1∑
t=0

γtR(st,at)

t∑
l=0

∇θ log πθ(al|sl)

]
= ∇θJ(θ, f).

C.2. Proof of Proposition 3.1

Proposition 3.1. The estimator (8) is unbiased for any βd. Furthermore, under the optimal coefficients β∗d ,
Var[∇̂CV

θd
J(θ,P)] ≤ Var[∇̂MIS

θd
J(θ,P)].

Proof. To prove the unbiasedness, recall that

Eτi,j∼p(·|θj ,fj)
[
∇̂MIS
θd
J(θ, f)

]
= ∇θdJ(θ, f).

Thus, we only need to prove that the second term has expected value equal to zero. Hence,

Eτi,j∼p(·|θj ,fj)

 1

n

m∑
j=0

nj∑
i=1

βTd ψd(τi,j)

 =
1

n

m∑
j=0

njβ
T
d Eτ∼p(·|θj ,fj) [ψd(τ )]

=
1

n

m∑
j=0

nj

m+1∑
l=0

βl,dEτ∼p(·|θj ,fj) [ψl,d(τ )] .

Recall that we consider ψj,d(τ ) =
p(τ |θj ,fj)
qα(τ ) − 1 for j = 0, . . . ,m and ψm+1,d(τ ) = p(τ |θ,f)gd(τ )

qα(τ ) . The first m CVs are
well-known to have zero expectation (Owen & Zhou, 2000). In fact,

1

n

m∑
j=0

nj

m∑
l=0

βl,dEτ∼p(·|θj ,fj)
[
p(τ |θl, fl)
qα(τ )

− 1

]
=

m∑
l=0

βl,d

∫ m∑
j=0

nj
n
p(·|θj , fj)

(
p(τ |θl, fl)
qα(τ )

− 1

)
dτ

=

m∑
l=0

βl,d

(∫
p(τ |θl, fl)dτ −

∫
qα(τ )dτ

)
= 0.

The (m + 1)-th term is the well-known baseline commonly adopted in policy gradient methods. It’s expectation can be
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easily verified to be zero:

βm+1,d
1

n

m∑
j=0

njEτ∼p(·|θj ,fj)
[
p(τ |θ, f)gd(τ )

qα(τ )

]
= βm+1,d

∫
p(τ |θ, f)gd(τ )dτ

= βm+1,d

∫
p(τ |θ, f)

T−1∑
t=0

∇θ log πθ(at|st)dτ .

The last integral can be rewritten as
T−1∑
t=0

∫
P0(s0)

∫
πθ(a0|s0)· · ·

∫
πθ(at|st)∇θ log πθ(at|st)ds0 . . . dat,

which is equal to zero since
∫
∇θπθ(a|s)da = 0 for any state s. This concludes the proof of the first statement.

In order to prove the second statement, let z = [0, 0, . . . , 0] be the (m+ 1)-th dimensional vector of zeros. Then, under the
coefficients β∗d minimizing the variance of the CV estimator (8),

Var[∇̂CV
θd
J(θ, f)] = Var

∇̂MIS
θd
J(θ, f)− 1

n

m∑
j=0

nj∑
i=1

βTd ψd(τi,j)


≤ Var

∇̂MIS
θd
J(θ, f)− 1

n

m∑
j=0

nj∑
i=1

zTψd(τi,j)


= Var[∇̂MIS

θd
J(θ, f)].

C.3. Proof of Theorem 3.2

Theorem 3.2. Assume the return J is L-smooth (i.e., its gradient is L-Lipschitz). Let nmin > 0 be the minimum batch size
for ACV (APDCV) and the fixed batch size for BR (BG). Assume all algorithms start from the same parameter θ0, use a
learning rate 0 < η ≤ 2

L , and that ACV (APDCV) uses the optimal CV coefficients β∗d . Then, for all ε > 0:

ACV ⊀ BR, APDCV ⊀ BG.

Proof. Let J̃(θ) := −J(θ, f) and consider the equivalent problem arg minθ J̃(θ). Following standard proofs of conver-
gence for non-convex stochastic optimization (see, e.g., Appendix B of (Allen-Zhu, 2017)), we can show that, for a fixed
parameter θk and algorithm A ,

J̃(θk)− EA

[
J̃(θk+1)

]
≥
(
η − η2L

2

)
‖∇θJ̃(θk)‖22 −

η2L

2
VarA

[
∇̂A
θ (J̃(θk))

]
, (14)

where θk+1 = θk − η∇̂A
θ J̃(θk) and the expectations are taken w.r.t. the stochasticity in the estimation of the gradient.

Rearranging (14), we obtain(
η − η2L

2

)
‖∇θJ̃(θk)‖22 ≤ J̃(θk)− EA

[
J̃(θk+1)

]
+
η2L

2
VarA

[
∇̂A
θ J̃(θk)

]
. (15)

Let us now take the expectation under the whole stochastic process θ0:k, with θ0 being deterministic and fixed, and sum
over iterations the first k iterations. Then,(

η − η2L

2

) k−1∑
l=0

EA

[
‖∇θJ̃(θl)‖22

]
≤ J̃(θ0)− EA

[
J̃(θk+1)

]
+
η2L

2

k−1∑
l=0

EA

[
VarA

[
∇̂A
θ J̃(θl) | θl

]]
≤ J̃(θ0)− J̃(θ∗) +

η2L

2

k−1∑
l=0

EA

[
VarA

[
∇̂A
θ J̃(θl) | θl

]]
,
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where θ∗ = arg minθ J̃(θ). Rearranging,

1

k

k−1∑
l=0

EA

[
‖∇θJ̃(θl)‖22

]
≤ 1

k
(
η − η2L

2

) (J̃(θ0)− J̃(θ∗)
)

+
ηL

2− ηL
1

k

k−1∑
l=0

EA

[
VarA

[
∇̂A
θ J̃(θl) | θl

]]
. (16)

Let us now compare BR and ACV. From Theorem 2 of Owen & Zhou (2000), we know that, for every j = 1, . . . ,m, a
mixture IS estimator with proportions α using the optimal CV parameter β∗ has a variance that is upper bounded by that of
an IS estimator using only the j-th proposal divided by the proportion αj of samples from such proposal. Furthermore, this
property holds for a MIS estimator as well since its variance is always smaller than the one of the corresponding mixture
estimator. In our context, the algorithm ACV uses the MIS estimator (8) with the optimal CV coefficients. Thus, for any θ
and dimension d,

Var
[
∇̂ACV
θd

J̃(θ)
]
≤ min
j=0,...,m

Var
[
∇̂IS-j
θd
J̃(θ)

]
αj

, (17)

where ∇̂IS-j
θd
J̃(θ) denotes an IS estimator using n samples from the j-th proposal p(τ |θj , fj) only. Recalling that the

0-th proposal corresponds to the current target distribution, p(τ |θ, f), and that, by assumption, the minimum number of
trajectories that ACV collects at each step is nmin, we obtain

min
j=0,...,m

Var
[
∇̂IS-j
θd
J̃(θ)

]
αj

≤
Var

[
∇̂IS-0
θd

J̃(θ)
]

α0

=
Var

[
1
n

∑n0

i=1 w
IS
0 (τi)g(τi)R(τi)

]
α0

=
1
nVar [g(τ )R(τ )]

α0

≤ 1

nmin
Var [g(τ )R(τ )]

= Var
[
∇̂BR
θd
J̃(θ)

]
.

The second equality follows from the fact that wIS
0 (τ ) := p(τ |θ,f)

p(τ |θ,f) = 1. Since this holds for all the policy dimensions d and

Var
[
∇̂ACV
θ (J̃(θ))

]
= Tr(Cov[∇̂ACV

θ (J̃(θ))]), we obtain

Var
[
∇̂ACV
θ J̃(θ)

]
≤ Var

[
∇̂BR
θ J̃(θ)

]
, (18)

i.e., the variance of the transfer algorithm in estimating the gradients is always smaller than the one of the no-transfer
baseline. Furthermore, by assumption, the variance of the no-transfer baseline is bounded. Let CBR be its bound. Then,

1

k

k−1∑
l=0

EBR

[
‖∇θJ̃(θl)‖22

]
≤ 1

k
(
η − η2L

2

) (J̃(θ0)− J̃(θ∗)
)

+
ηL

2− ηL
CBR . (19)

Suppose now that the upper bound (19) is less or equal then ε, which implies that BR converged. Since we showed that
Var

[
∇̂ACV
θ J̃(θ)

]
≤ CBR ,

1

k

k−1∑
l=0

EACV

[
‖∇θJ̃(θl)‖22

]
≤ 1

k
(
η − η2L

2

) (J̃(θ0)− J̃(θ∗)
)

+
ηL

2− ηL
1

k

k−1∑
l=0

EACV

[
VarACV

[
∇̂ACV
θ J̃(θl) | θl

]]
≤ 1

k
(
η − η2L

2

) (J̃(θ0)− J̃(θ∗)
)

+
ηL

2− ηL
CBR ≤ ε.

Hence, whenever we are able to prove that BR converged, we are also able to prove that ACV converged, which is exactly
our definition of robustness against negative transfer.

The proof for APDCV and BG proceeds analogously by noticing that the variance of the former is always less or equal than
the variance of the latter.



Transfer of Samples in Policy Search via Multiple Importance Sampling

C.4. Proof of Proposition A.2

Proposition A.2. The number n0 of defensive samples to guarantee an ESS greater than or equal to ESSmin can be computed
as n0 = max{nmin,min{ESSmin, n

′
0}}, where

n′0 =

⌈
ESSmin − n

1+V̂ar[w]

min{1, c}

⌉
. (12)

Suppose our current dataset D contains n trajectories, with the target distribution being p(τ ) = p(τ |θ, f) and the mixture of
source proposals being qα(τ ) =

∑m
j=1 αjpj(τ ), with pj(τ ) = p(τ |θj , fj). Notice that qα(τ ) does not necessarily contain

the target distribution p since the number of defensive samples has still to be computed. If we add n0 defensive samples, the
resulting ESS (according to Proposition A.1) is

ESS(n0;D) =
n+ n0∫ p(τ )2∑m

j=1

nj
n+n0

pj(τ )+
n0

n+n0
p(τ )

dτ

=
n+ n0

Eτ∼qα(τ ;n0)

[
p(τ )2

qα(τ ;n0)2

]
=

n+ n0

1 + Varτ∼qα(τ ;n0)

[
p(τ )

qα(τ ;n0)

]
=

n+ n0

1 +
∫
qα(τ ;n0)

(
p(τ )

qα(τ ;n0) − 1
)2 ,

where we use qα(τ ;n0) to denote the updated mixture after collecting n0 defensive trajectories from p. Let us now
approximate the variance term using our current samples. To simplify the notation, let us index the samples with i = 1, . . . , n,
while dropping the index j of the proposal which generated the sample itself (under the balance heuristics, the weight does
not depend on j). We have

Varτ∼qα(τ ;n0)

[
p(τ )

qα(τ ;n0)

]
' 1

n

n∑
i=1

qα(τi;n0)

qα(τi)

(
p(τi)

qα(τi;n0)
− 1

)2

=
1

n

n∑
i=1

p(τi)
2

qα(τi)qα(τi;n0)
+

1

n

n∑
i=1

qα(τi;n0)

qα(τi)
− 2

n

n∑
i=1

p(τi)

qα(τi)

= (n+ n0)

n∑
i=1

a2
i

bi(bi + ain0)
+

n

n+ n0
+

n0

n+ n0

n∑
i=1

ai
bi
− 2

n∑
i=1

ai
bi
,

where we defined the constants ai := p(τi) and bi :=
∑m
j=1 njpj(τi). Thus, the ESS improvement as a function of n0 can

be approximated as

ÊSS(n0;D) =
n+ n0

1 + (n+ n0)
∑n
i=1

a2i
bi(bi+ain0) + n

n+n0
+ n0

n+n0

∑n
i=1

ai
bi
− 2

∑n
i=1

ai
bi

=
1∑n

i=1
a2i

bi(bi+ain0) + n
(n+n0)2 + n0

(n+n0)2

∑n
i=1

ai
bi

+ 1
n+n0

(
1− 2

∑n
i=1

ai
bi

) .
Note that ÊSS(0;D) = n

1+ 1
n

∑n
i=1

(
p(τi)

qα(τi)
−1
)2 , which is exactly our ESS measure. Furthermore, this function is strictly

increasing for n0 ≥ 0 and limn0→∞
ÊSS(n0;D)

n0
= 1, i.e., the asymptotic increase rate is linear with slope 1. Therefore,

ÊSS(n0;D) ≥ ÊSS(0;D) + n0 infx∈(0,+∞) ÊSS
′
(x;D). It is easy to check that infx∈(0,+∞) ÊSS

′
(x) is either 1, when the

function grows at a rate that is always grater than the asymptotic one, or c, when the initial rate is smaller. Thus,

ÊSS(n0;D) ≥ n

1 + 1
n

∑n
i=1

(
p(τi)
qα(τi)

− 1
)2 + min{1, c}n0.

Using this equation and setting the right-hand side to ESSmin, we get that the number n0 of defensive samples to guarantee
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an ESS of at least ESSmin can be approximated as

n0 =

⌈
ESSmin − n

1+V̂ar[w]

min{1, c}

⌉
.

Finally, we clip this value to nmin below, as required by our algorithm, and to ESSmin above since the collecting ESSmin
samples is sufficient to guarantee an ESS of at least such value. In fact, if we have ESSmin samples from the target p in our
dataset, d2(p‖qα) ≤ n

ESSmin
since the importance weights are bounded by 1

α0
= n

ESSmin
. Hence, n

d2(p‖qα) ≥ ESSmin.

C.5. Proof of Theorem 4.1

To prove Theorem 4.1 we need to introduce the following Lemma about the variance of the sample mean estimator.

Lemma C.1. Let Q1, . . . , Qm be probability measures over (X ,F ), Qα =
∑m
j=1 αjQj be a mixture of these measures

with coefficients αj ≥ 0 such that
∑m
j=1 αj = 1, and f : X → R be any measurable function. Consider µ̂ =

1
n

∑m
j=1

∑nj
i=1 f(xi,j) where xi,j are i.i.d. samples and n =

∑m
j=1 nj . Then, choosing αj =

nj
n , for each j ∈ {1, . . . ,m},

Varxi,j∼Qj [µ̂] ≤ Varxi,j∼Qα [µ̂].

Proof. Let µ = Ex∼Qα [f(x)] and µj = Ex∼Qj [f(x)]. Then,

Varxi,j∼Qα [µ̂] =
1

n2

m∑
j=1

nj

∫
qj(x)(f(x)− µ)2dx

=
1

n2

m∑
j=1

nj

∫
qj(x)(f(x)− µ± µj)2dx

=
1

n2

m∑
j=1

nj

∫
qj(x)(f(x)− µj)2dx+

1

n2

m∑
j=1

nj

∫
qj(x)(µj − µ)2dx

= Varxi,j∼Qj [µ̂] +
1

n

m∑
j=1

αj(µj − µ)2

≥ V arxi,j∼Qj [µ̂].

Theorem 4.1. Let f̃ : S ×A → S be any function and pα(τ ) =
∑
j∈Jtgt

αj
αtgt
p(τ |θj , f̃). Suppose that ‖g(τ )R(τ )‖∞ ≤ B

almost surely. Then, for f ∼ ϕ,

E
[
‖∇̂J(f̃)−∇J‖2

]
≤ dB2

n
d2

(
p(·|θ, f̃)‖qα(·; f̃)

)
+ c1dB

2
T−1∑
t=0

Eτ∼pα
[
‖f̄(st,at)− f̃(st,at)‖22

]
+ c1dB

2
T−1∑
t=0

Eτ∼pα [Tr (Σ(st,at))] +O(n−1), (9)

where the expectation is w.r.t. τi,j ∼ p(τ |θj , fj) and f ∼ ϕ. Here f̄(s,a) := Ef∼ϕ[f(s,a)], Σ(s,a) = Covf∼ϕ[f(s,a)],
and c1 is a constant.

Proof. Since Eτi,j∼p(·|θj ,fj),f∼ϕ
[
‖∇̂J(f̃)−∇J‖22

]
= Ef∼ϕ

[
Eτi,j∼p(·|θj ,fj)

[
‖∇̂J(f̃)−∇J‖22

∣∣f]], let us start by
bounding the inner expectation given a fixed f . Thus, whenever not explicitly stated, expectations are taken under
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the trajectories τi,j distributed according to p(·|θj , fj). We start by decomposing the MSE into variance and bias squared:

E
[
‖∇̂J(f̃)−∇J‖22

]
=
∑
d

E
[(
∇̂dJ(f̃)−∇dJ

)2
]

=
∑
d

Var
[
∇̂dJ(f̃)

]
+
∑
d

(
E
[
∇̂dJ(f̃)

]
−∇dJ

)2

,

where we use ∇dJ and ∇̂dJ to denote the d-th component of the gradient. We now analyze the two terms separately.
Regarding the variance, we have

Var
[
∇̂dJ(f̃)

]
= Var

 1

n

m∑
j=0

nj∑
i=1

p(τi,j |θ, f̃)

qα(τi,j ; f̃)
g(τi,j)R(τi,j)


=

1

n2

m∑
j=0

njVarτ∼p(·|θj ,fj)

[
p(τ |θ, f̃)

qα(τ ; f̃)
g(τ )R(τ )

]

≤ 1

n
Varτ∼qα(τ ;f)

[
p(τ |θ, f̃)

qα(τ ; f̃)
g(τ )R(τ )

]

≤ 1

n
Eτ∼qα(τ ;f)

[
p2(τ |θ, f̃)

q2
α(τ ; f̃)

g2(τ )R2(τ )

]

≤ B2

n
Eτ∼qα(τ ;f)

[
p2(τ |θ, f̃)

q2
α(τ ; f̃)

]
,

where the first equality leverages trajectory independence and the first inequality follows from Lemma C.1. The last
expectation can be further decomposed as

Eτ∼qα(τ ;f)

[
p2(τ |θ, f̃)

q2
α(τ ; f̃)

]
=

∫ (
qα(τ ; f)± qα(τ ; f̃)

) p2(τ |θ, f̃)

q2
α(τ ; f̃)

dτ

=

∫
p2(τ |θ, f̃)

qα(τ ; f̃)
dτ +

∫ ∑
j∈Jtgt

αj

(
p(τ |θj , f)− p(τ |θj , f̃)

) p2(τ |θ, f̃)

q2
α(τ ; f̃)

dτ

≤ d2

(
p(τ |θ, f̃)||qα(τ ; f̃)

)
+

1

α2
0

∫ ∑
j∈Jtgt

αj

∣∣∣p(τ |θj , f)− p(τ |θj , f̃)
∣∣∣dτ

= d2

(
p(τ |θ, f̃)||qα(τ ; f̃)

)
+

2

α2
0

∑
j∈Jtgt

αjDTV

(
p(·|θj , f)‖p(·|θj , f̃)

)
,

where DTV is the total variation divergence. Note that the last inequality is valid since p(τ |θ,f̃)

qα(τ ;f̃)
≤ 1

α0
thank to the defensive

component in qα(τ ; f̃) (see Section 2). Thus,

Var
[
∇̂dJ(f̃)

]
≤ B2

n
d2

(
p(τ |θ, f̃)||qα(τ ; f̃)

)
+
B2

n

2

α2
0

∑
j∈Jtgt

αjDTV

(
p(·|θj , f)‖p(·|θj , f̃)

)
. (20)

Let us now consider the bias term. First note that E
[
∇̂dJ(f̃)

]
can be written as

E
[
∇̂dJ(f̃)

]
=

1

n

m∑
j=0

njEτ∼p(·|θj ,fj)

[
p(τ |θ, f̃)

qα(τ ; f̃)
gd(τ )R(τ )

]

=

∫
qα(τ ; f)

qα(τ ; f̃)
p(τ |θ, f̃)gd(τ )R(τ )dτ ,
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while∇dJ =
∫
p(τ |θ, f)gd(τ )R(τ )dτ . Then,∣∣∣E [∇̂dJ(f̃)

]
−∇dJ

∣∣∣ =

∣∣∣∣E [∇̂dJ(f̃)
]
±
∫
p(τ |θ, f̃)gd(τ )R(τ )dτ −∇dJ

∣∣∣∣
≤

∣∣∣∣∣
∫ (

qα(τ ; f)

qα(τ ; f̃)
− 1

)
p(τ |θ, f̃)gd(τ )R(τ )dτ

∣∣∣∣∣+

∣∣∣∣∫ (p(τ |θ, f̃)− p(τ |θ, f)
)
gd(τ )R(τ )dτ

∣∣∣∣
≤ B

∫ ∣∣∣∣∣qα(τ ; f)

qα(τ ; f̃)
− 1

∣∣∣∣∣ p(τ |θ, f̃)dτ +B

∫ ∣∣∣p(τ |θ, f̃)− p(τ |θ, f)
∣∣∣dτ

≤ B

α0

∫ ∣∣∣qα(τ ; f)− qα(τ ; f̃)
∣∣∣dτ +B

∫ ∣∣∣p(τ |θ, f̃)− p(τ |θ, f)
∣∣∣dτ

=
B

α0

∑
j∈Jtgt

αj

∫ ∣∣∣p(τ |θj , f)− p(τ |θj , f̃)
∣∣∣dτ +B

∫ ∣∣∣p(τ |θ, f̃)− p(τ |θ, f)
∣∣∣ dτ .

Since the first addendum contains the second one (for j = 0), this equation can be upper bounded by
2 B
α0

∑
j∈Jtgt

αj
∫ ∣∣∣p(τ |θj , f)− p(τ |θj , f̃)

∣∣∣dτ . Thus,

(
E
[
∇̂dJ(f̃)

]
−∇dJ

)2

≤ 4
B2

α2
0

∑
j∈Jtgt

αj

∫ ∣∣∣p(τ |θj , f)− p(τ |θj , f̃)
∣∣∣ dτ

2

≤ 4
B2

α2
0

∑
j∈Jtgt

αj

(∫ ∣∣∣p(τ |θj , f)− p(τ |θj , f̃)
∣∣∣dτ)2

= 8
B2

α2
0

∑
j∈Jtgt

αjDTV

(
p(·|θj , f)‖p(·|θj , f̃)

)2

.

where in the second inequality we used Jensen’s inequality. Summing the last term with the corresponding one in (20), we
obtain

8
B2

α2
0

∑
j∈Jtgt

αj

(
1

4n
DTV

(
p(·|θj , f)‖p(·|θj , f̃)

)
+D2

TV

(
p(·|θj , f)‖p(·|θj , f̃)

))
.

Since, kx ≤ x2 + k2

2 , this equation can be upper bounded by

16
B2

α2
0

∑
j∈Jtgt

αjD
2
TV

(
p(·|θj , f)‖p(·|θj , f̃)

)
+
B2αtgt

4α2
0n

2

The first term can be upper bounded using Pinsker’s inequality as

16
B2

α2
0

∑
j∈Jtgt

αjD
2
TV

(
p(·|θj , f)‖p(·|θj , f̃)

)
≤ 8

B2

α2
0

∑
j∈Jtgt

αjDKL

(
p(τ |θj , f̃)‖p(τ |θj , f)

)

= 8
B2

α2
0

∑
j∈Jtgt

αjEτ∼p(·|θj ,f̃)

[
log

p(τ |θj , f̃)

p(τ |θj , f)

]

= 8
B2

α2
0

∑
j∈Jtgt

αjEτ∼p(·|θj ,f̃)

[
T−1∑
t=0

log
Pf̃ (st+1|st,at)
Pf (st+1|st,at)

]

= 8
B2αtgt

α2
0

T−1∑
t=0

Eτ∼pα
[
DKL

(
Pf̃ (·|st,at)‖Pf (·|st,at)

)]
.
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By combining the bounds on variance and bias and summing over the gradient dimensions, we obtain

E
[
‖∇̂J(f̃)−∇J‖2

]
≤ dB

2

n
d2

(
p(τ |θ, f̃)||qα(τ |f̃)

)
+ 8d

B2αtgt

α2
0

T−1∑
t=0

Eτ∼pα
[
DKL

(
Pf̃ (·|st,at)‖Pf (·|st,at)

)]
+ d

B2αtgt

4α2
0n

2
. (21)

If we now consider the outer expectation over f ∼ ϕ, we note that only the bias term depends on f . Since
DKL

(
Pf̃ (·|st,at)‖Pf (·|st,at)

)
= 1

2σ2
P
‖f(st,at)− f̃(st,at)‖22, the expected KL divergence is

Ef∼ϕ
[
DKL

(
Pf̃ (·|st,at)‖Pf (·|st,at)

)]
=

1

2σ2
P
Ef∼ϕ

[
‖f(st,at)− f̃(st,at)‖22

]
=

1

2σ2
P
‖f̄(st,at)− f̃(st,at)‖22 +

1

2σ2
P

Tr (Covf∼ϕ[f(s,a)]) .

The theorem follows by plugging this last equation into (21) and noticing that the constant term d
B2αtgt

4α2
0n

2 decreases as
O(n−1).

C.6. Proof of Theorem 4.2

Theorem 4.2. Let (X ,F ) be a measurable space, P and Q be two probability measures on X such that P � Q, and
Qα = αP + (1− α)Q denotes their convex combination with coefficient α ∈ (0, 1). Suppose there exists a finite constant
C > 0 such that ess sup dP

dQ ≤ C. Then,

d2(P ||Qα) ≤ 1 + u(α)DKL(P ||Q), (10)

where

u(α) =

{
2C(1−α)2

(αC+1−α)3 if C ≤ 1−α
2α

8
27α otherwise.

Proof. Since the proof relies on the theory of f -divergences (Csiszár, 1967), let us first recall some basic definitions. Let
f : (0,∞)→ R be a convex function such that f(1) = 0. Then, the f -divergence between P and Q is defined as:

Df (P‖Q) =

∫
f

(
dP

dQ

)
dQ. (22)

An example of f -divergence, which we will adopt in the remaining, is the chi-square divergence (Pearson, 1900), which is
given by

Dχ2(P ||Q) =

∫ (
dP

dQ

)2

dQ− 1, (23)

or, equivalently, as the f -divergence with fχ2(w) = (w − 1)2. Then,

d2(P‖Qα) =

∫ (
dP

dQ

)2

dQ = Dχ2(P ||Qα) + 1. (24)

Let us now introduce an f -divergence ∆α(P ||Q) defined by the function

f∆α(w) =
(w − 1)2

α
1−αw + 1

. (25)

This diverge can be seen as a skewed version of the triangular discrimination ∆(P ||Q) (Le Cam, 1986), which is given by
(25) for the particular case α = 1

2 . Furthermore, it is easy to check that Dχ2(P ||Qα) = (1− α)∆α(P ||Q). Thus, in order
to bound d2(P‖Qα) we only need to bound ∆α(P ||Q).

Note that f∆α is twice differential on (0,∞) and that, by assumption, ess sup dP
dQ ≤ C. Then, we can apply Theorem 3.1 of
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Taneja (2004)4 to obtain

∆α(P ||Q) ≤ DKL(P ||Q) sup
w∈(0,C)

wf ′′∆α
(w). (26)

Let us now compute the constant multiplying the KL divergence on the right-hand side. A simple algebra shows that the first
derivative of f∆α

is

f ′∆α
(w) =

(w − 1)
(

α
1−αw + α

1−α + 2
)

(
α

1−αw + 1
)2 ,

while the second derivative is

f ′′∆α
(w) =

2
(

α
1−α + 1

)2

(
α

1−αw + 1
)3 .

Let us define g∆α
(w) := wf ′′∆α

(w). Then,

g′∆α
(w) =

2
(

α
1−α + 1

)2 (
1− 2 α

1−αw
)

(
α

1−αw + 1
)4 .

This function is positive for w ≤ 1−α
2α and negative for w ≥ 1−α

2α . Thus,

sup
w∈(0,C)

g∆α
(w) = g∆α

(C) =
2C
(

α
1−α + 1

)2

(
α

1−αC + 1
)3

for C ≤ 1−α
2α , while

sup
w∈(0,C)

g∆α
(w) = g∆α

(
1− α

2α

)
=

8

27

1

α(1− α)

in the opposite case. The theorem follows after multiplying these two constants by 1− α and plugging everything into (24).

C.7. Proof of Proposition 4.1

Proposition 4.1. The objective L(f̃) given in (9) can be upper bounded by

L(f̃) ≤ k1

T−1∑
t=0

Eτ∼p(·|θ,f̃)

 ∑
j∈Jsrc

αj‖f̃(xt)− fj(xt)‖22


+ k2

T−1∑
t=0

Eτ∼pα
[
‖f̃(xt)− f̄(xt)‖22

]
+ k3,

where k1 = u(α)dB2

2σ2
Pn(1−α0)

, k2 =
4αtgtdB

2

α2
0σ

2
P

, and k3 is a constant independent of f̃ .

Proof. From Theorem 4.2 we know that d2

(
p(·|θ, f̃)‖qα(·; f̃)

)
≤ 1 + u(α)DKL

(
p(·|θ, f̃)‖q̄α(·; f̃)

)
, where we write q̄

to denote the normalized mixture of proposals without the defensive component p(·|θ, f̃). Neglecting the constant term

4Technically speaking, Taneja (2004) consider only discrete spaces. However, their result generalizes straightforwardly to general
probability measures.
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(which does not depend on f̃ ), we have

DKL

(
p(·|θ, f̃)‖q̄α(·; f̃)

)
≤ 1

1− α0

m∑
j=1

αjDKL

(
p(·|θ, f̃)‖p(·|θj , f̃j)

)

=
1

1− α0

m∑
j=1

αjEτ∼p(·|θ,f̃)

[
log

p(τ |θ, f̃)

p(τ |θj , f̃j)

]

=
1

1− α0

m∑
j=1

αjEτ∼p(·|θ,f̃)

[
T−1∑
t=0

log
Pf̃ (st+1|st,at)
Pf̃j (st+1|st,at)

]
+

1

1− α0

m∑
j=1

αjEτ∼p(·|θ,f̃)

[
T−1∑
t=0

log
πθ(at|st)
πθj (at|st)

]

=
1

1− α0

∑
j∈Jsrc

αj

T−1∑
t=0

Eτ∼p(·|πθ,f̃)

[
DKL(Pf̃ (·|st,at)‖Pfj (·|st,at))

]
+ const

=
1

1− α0

1

2σ2
P

T−1∑
t=0

Eτ∼p(·|πθ,f̃)

 ∑
j∈Jsrc

αj‖f̃(xt)− fj(xt)‖22

+ const,

where the first inequality follows from the convexity of the function 1/x and Jensen’s inequality. Note that the expected KL
divergence between policies can be considered constant since, according to the approximation introduced in Section 4.2,
the expectation is not computed under the current model f̃ . Furthermore, in the penultimate equality we dropped all the
components from the target task since their KL divergence w.r.t. Pf̃ is zero.

The last term in (9) can be safely regarded as a constant since the integrand does not depend on f̃ . Noting that the bias term
remained unchanged, the proposition is obtained after renaming the constants.

C.8. Proof of Proposition 4.2

Proposition 4.2. The function f∗ minimizing (11) is

f∗(x) = ATk(x),

where k(x) is the RT -dimensional vector with entries K(xr,t,x) and

A = (k1αtgtWK + k2K + λRI)−1(k1WFsrc + k2F̄ ),

with K being the Gram matrix, W = diag(wr,t), F̄ = [f̄(x1,0), . . . , f̄(xR,T−1)]T , Fsrc =
∑
j∈Jsrc

αjFj , and Fj =

[fj(x1,0), . . . , fj(xR,T−1)]T .

Proof. For the objective (11) the representer theorem of RKHS holds. Then, for each dimension d of the state space, the
solution has the form

f∗d (x) =

R∑
r=1

T−1∑
t=0

a
(d)
r,tK(xr,t,x) = aTd k(x).

Let us define the matrixA = [a1, . . . ,ad] of coefficients and rewrite the objective in matrix form:
1

R
k1

∑
j∈Jsrc

αjTr
(
(Fj −KA)TW (Fj −KA)

)
+

1

R
k2Tr

(
(F̄ −KA)T (F̄ −KA)

)
+ λTr

(
ATKA

)
.

Taking the derivative with respect toA, we obtain

− 2

R
k1

∑
j∈Jsrc

αjKW (Fj −KA)− 2

R
k2K(F̄ −KA) + 2λKA.

The result follows by equating to zero and solving forA.
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C.9. Proof of Theorem B.1

Theorem B.1. Let f̃0, . . . , f̃m : S × A → S be arbitrary functions and suppose that ‖g(τ )R(τ )‖∞ ≤ B almost surely.
Then,

E
[
‖∇̂J(f̃0, . . . , f̃m)−∇J‖2

]
≤ dB2

n
d2

(
p(·|θ0, f̃0)‖qα(·; f̃0, . . . , f̃m)

)
+ c1dB

2
m∑
l=0

αl

T−1∑
t=0

Eτ∼p(·|θl,f̃l)
[
‖f̄l(st,at)− f̃l(st,at)‖22

]
+ c1dB

2
m∑
l=0

αl

T−1∑
t=0

Eτ∼p(·|θl,f̃l) [Tr (Σl(st,at))] +O(1), (13)

where the expectation is w.r.t. τi,j ∼ p(τ |θj , fj) and fj ∼ ϕj . Here f̄l(s,a) := Efl∼ϕl [fl(s,a)], Σl(s,a) =
Covfl∼ϕl [fl(s,a)], and c1 is a constant.

Proof. We only sketch the main steps since the proofs is very similar to the one of Theorem 4.1. We start by writing
Eτi,j∼p(·|θj ,fj),fj∼ϕj

[
‖∇̂J(f̃0, . . . , f̃m)−∇J‖22

]
= Efj∼ϕj

[
Eτi,j∼p(·|θj ,fj)

[
‖∇̂J(f̃0, . . . , f̃m)−∇J‖22

∣∣f]]. Let us
fix f0, . . . , fm and focus on the inner expectation. Using a bias-variance decomposition,

E
[
‖∇̂J(f̃0, . . . , f̃m)−∇J‖22

]
=
∑
d

E
[(
∇̂dJ(f̃0, . . . , f̃m)−∇dJ

)2
]

=
∑
d

Var
[
∇̂dJ(f̃0, . . . , f̃m)

]
︸ ︷︷ ︸

(a)

+
∑
d

(
E
[
∇̂dJ(f̃0, . . . , f̃m)

]
−∇dJ

)2

︸ ︷︷ ︸
(b)

.

Term (a) can be easily bounded as in the proof of Theorem 4.1, obtaining

Var
[
∇̂dJ(f̃0, . . . , f̃m)

]
≤ B2

n
d2

(
p(·|θ0, f̃0)‖qα(·; f̃0, . . . , f̃m)

)
+

2B

α2
0n

∑
l∈J

αlDTV

(
p(·|θl, fl)‖p(·|θl, f̃l)

)
︸ ︷︷ ︸

(c)

.

Similarly, term (b) can be reduced to(
E
[
∇̂dJ(f̃0, . . . , f̃m)

]
−∇dJ

)2

≤ 8B2

α2
0

∑
l∈J

αlDTV

(
p(·|θl, fl)‖p(·|θl, f̃l)

)2

︸ ︷︷ ︸
(d)

.

Then,

(c) + (d) ≤ 16B2

α2
0

∑
l∈J

αlDTV

(
p(·|θl, fl)‖p(·|θl, f̃l)

)2

︸ ︷︷ ︸
(e)

+
B2

4α2
0n

2︸ ︷︷ ︸
(f)

.

(f) is the O(1) term in the final bound, while (e) can be upper bounded using Pinsker’s inequality as

(e) ≤ 8B2

α2
0

∑
l∈J

αl

T−1∑
t=0

Eτ∼p(·|θl,f̃l)
[
DKL

(
Pf̃l(·|st,at)‖Pfl(·|st,at)

)]
.

Putting these terms together, we obtain

E
[
‖∇̂J(f̃0, . . . , f̃m)−∇J‖22

]
≤ dB2

n
d2

(
p(·|θ0, f̃0)‖qα(·; f̃0, . . . , f̃m)

)
+

8B2

α2
0

∑
l∈J

αl

T−1∑
t=0

Eτ∼p(·|θl,f̃l)
[
DKL

(
Pf̃l(·|st,at)‖Pfl(·|st,at)

)]
+

B2

4α2
0n

2
.

Then, the theorem follows after taking the expectation under fj ∼ ϕj and decomposing the KL between Gaussian models as
in Theorem 4.1.
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Parameter LQR (transfer) LQR (sample reuse) Cartpole Minigolf

Policy space Linear Linear Linear Polynomial (4-th order)
Optimizer SGD SGD SGD ADAM
Learning rate 1e-5 8e-6 1e-3 1e-2
Horizon 20 20 200 20
Adaptive Yes No Yes Yes
nmin or fixed batch size 5 10 3 5
ESSmin 20 − 20 20
Number of source tasks 5 − 5 5
Source samples per configuration 20 − 10 40
Maximum number of samples for GPs − − 250 1000
Maximum number of samples for L − − 20 50

Table 1. Summary of the hyperparameters adopted in all experiments for the transfer algorithms.

D. Additional Details on the Experiments
In this section, we provide the details of the experiments presented in the main paper, together with some additional results.
The hyperparameters used in all experiments are compactly summarized in Table 1.

D.1. Linear Quadratic Regulator

The system has linear dynamics, st+1 = Ast + Bat + ε, with Gaussian noise ε ∼ N (0, σ2
P), and quadratic rewards

R(st, at) = −Us2
t − V a2

t . Due to its simplicity and the fact that the optimal policy is available in closed-form, the LQR is
a suitable benchmark for testing the properties of different gradient estimators.

Parameters We used Gaussian policies with a linearly parameterized mean and fixed variance σ2
π , πθ(a|s) = N (a|θs, σ2

π).
We set the maximum horizon to T = 20. For each run, we randomly generated 5 source tasks by uniformly sampling A
in [0.6, 1.4] and B in [0.8, 1.2], while the target task was fixed with A = 1 and B = 1. We considered 8 policies with
parameters {−0.1,−0.2, . . . ,−0.8} and generated 20 episodes from each model-policy couple to built our initial source
dataset. We used the same learning rate of 1e-5 and the same initialization θ0 = −0.1 for all algorithms. We set the batch
size of GPOMDP to 10 and used the adaptive version of Algorithm 1 with nmin = 5 and ESSmin = 20. We learned the target
task using standard SGD.

For the sample reuse experiment, all algorithms used a learning rate of 8e-6, a fixed batch size of 10, and the same
initialization as before.

Additional Results We provide additional insights into the performance of each estimator. Figure 3(left) shows the
expected return achieved by all alternatives as a function of the number of episodes. The results are coherent with those
presented in the main paper, although the differences between the algorithms’ performances are harder to appreciate. Figure
3(center) shows how the ESS changes at each iteration. As expected, the ESS of PD-IS remains almost constant, which is
due to the fact that general IS estimators highly depend on the chosen proposal distributions. On the other hand, the MIS
estimators do not suffer this problem and their ESS linearly increases with the number of iterations. Finally, Figure 3 shows
the number of samples collected by each algorithm at each iteration. Coherently with the plot of the ESS, PD-IS needs to
collect a high number of samples to meet the ESSmin requirement. On the other hand, all transfer algorithms manage to
learn while sampling the minimum number of trajectories allowed.

In order to better demonstrate the benefits of transfer using our estimators, we repeat the LQR experiments using three fixed
sets of source tasks of increasing distance from the target:

• Close sources: (A,B) ∈ {(0.92, 0.96), (0.95, 0.93), (0.98, 0.99), (1.02, 1.04), (1.05, 1.08)};

• Distant sources: (A,B) ∈ {(0.78, 0.85), (0.85, 0.88), (0.9, 0.9), (1.1, 1.15), (1.12, 1.2)};

• Very distant sources: (A,B) ∈ {(0.52, 0.6), (0.5, 0.63), (0.55, 0.55), (1.45, 1.4), (1.48, 1.46)}.
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Figure 3. Additional results for the LQR experiment of Section 6.1. Expected return (left), effective sample size (center), and the number
of samples collected at each iteration (right).
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Figure 4. LQR experiment with fixed source tasks of increasing distance from the target. Expected return (left), policy parameter (center),
and effective sample size (right).

The target task is again fixed with A = B = 1. For the sake of conciseness, we report only the results of the PDCV estimator.
Figure 4 shows the results. We may notice that, as expected, the learning performance improves as the source tasks get
closer to the target, i.e.,, when more information can be transferred. Interestingly, the performance using very distant source
tasks almost reduces to the one achieved by sample reuse. That is, the algorithm is not able to transfer any information from
the sources but still shows robustness to negative transfer.

D.2. Cartpole

Parameters Similarly to the previous experiments, we used Gaussian policies with linearly parameterized mean and fixed
variance. We considered different tasks by varying the mass m of the cart and the length l of the pole. For each run, we
generated 5 source tasks by uniformly sampling m in the interval [0.8, 1.2] and l in [0.3, 0.7]. The target task used the
standard Cartpole parameters, with m = 1.0 and l = 0.5. For each source task, we considered a sequence of 10 policies
generated by GPOMDP during its learning process and collected 10 episodes from each. We set the maximum horizon to
T = 200.

For the transfer algorithm with discrete model estimation, we considered the fixed set of possible tasks (m, l) ∈
{(1.0, 0.5), (0.8, 0.3), (1.2, 0.7), (1.1, 0.6), (0.9, 0.4), (0.9, 0.6), (1.1, 0.4), (1.5, 1.0)} and used R = 40 simulated trajecto-
ries to approximate the bound of Theorem 4.1 for each of them.

For the transfer algorithm with continuous model estimation, we use the squared exponential kernel,

K(x,x′) = ρ2 exp

(
1

2
(x− x′)TΛ−1(x− x′)

)
. (27)

The hyperparameters were not tuned and set to the default values of ρ = 1 and Λ = diag(1, . . . , 1). The objective 11 were
approximated by simulating 20 trajectories from the previously estimated model. Furthermore, since the constants in our
bound highly favor the bias term when a high number of source samples is available, we rebalanced these coefficients by
starting with equal values and decreasing the one multiplying the variance linearly with n.

For the gray curve in Figure 2, we logged the GP models learned by the RKHS estimator at fixed iterations and computed
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Figure 5. Some statistics on the importance weights computed by each algorithm in the Cartpole experiment of Section 6.2.

the optimal policies under these models using GPOMDP.

Additional Results Similarly to the LQR experiment, we investigate the quantities related to the importance weights
computed by the different algorithms (Figure 5). It is particularly interesting to notice that the continuous model estimation
approaches achieve similar performance to the other transfer algorithms while collecting less samples. It is also worth
noticing that, due to estimation errors, the mean of their weights is much lower than the one of the ideal weights. However,
this fact seems not to have only a negligible impact on the learning process.

D.3. Minigolf

In the minigolf game, the agent has to shoot a ball with radius r inside a hole of diameter D with the minimum number of
strokes. We assume that the ball moves along a level surface with a constant deceleration d = 5

7ρg, where ρ is the dynamic
friction coefficient between the ball and the ground and g is the gravitational acceleration. Given the distance x0 of the ball
from the hole, the agent must determine the angular velocity ω of the putter that determines the initial velocity v0 = ωl
(where l is the length of the putter) to put the ball in the hole in one strike. For each distance x0, the ball falls in the hole if

its initial velocity v0 ranges from vmin =
√

2dx0 to vmax =
√

(2D − r)2 g
2r + v2

min. vmax is the maximum allowed speed
o the edge of the hole to let the ball enter the hole and not to overcome it. At the beginning of each trial the ball is placed at
random, between 2000cm and 0cm far from the hole. At each step, the agent chooses an action that determines the initial
velocity v0 of the ball. When the ball enters the hole the episode ends with reward 0. If v0 > vmax the ball is lost and the
episode ends with reward 100. Finally, if v0 < vmin the episode goes on and the agent can try another hit with reward 1
from position x = x0 − (v0)2

2d . The angular speed of the putter is determined by the action a selected by the agent as follows:
ω = al(1 + ε), where ε ∼ N (0, 0.3). This implies that the stronger the action chosen the more uncertain its outcome will
be. As a result, the agent is disencumbered by trying to make a hole in one shot when it is away from the hole and will
prefer to perform a sequence of approach shots.

Parameters In this experiment, we adopted Gaussian policies with a linearly parameterized mean in a fourth-order
polynomial basis, πθ(a|s) = N (a|θTφ(s), σ2

π), where φ(s) = [1, s, s2, s3, s4]. Our source tasks were generated by
varying dynamic friction coefficient, hole size, and putter length from the realistic ranges defined above. Each run uniformly
sampled a set of 5 source tasks in these intervals. Furthermore, we considered 10 (fixed) source policies of increasing
quality, from those achieving very considered behavior to those overshooting the hole. We generated 40 episodes from each
model-policy pair. The target task was fixed with a friction of 0.131, a putter of 100cm, and a hole of diameter 10cm. The
maximum horizon was set to 20 time steps, which are sufficient for safely reaching the hole when starting from any position.

We used a fixed batch size of 10 episodes for GPOMDP, while the transfer algorithms were adaptive with nmin = 5 and
ESSmin = 20.

For the discrete model estimator, we consider the source tasks of each run as the set of possible environments and generate
40 trajectories to approximate the bound on the MSE.

For the continuous model estimator, we used the squared exponential kernel (27) and we tuned the hyperparameters using
the source samples. The objective (11) was approximated by collecting 50 episodes under the previously learned model, and
the maximum number of samples to train the GPs was limited to 1000.
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Figure 6. Some statistics on the importance weights computed by each algorithm in the Minigolf experiment of Section 6.3.

Additional Results Figure 6 shows the usual statistics on the importance weights. Here it is worth noticing that the very
high ESS achieved when using GPs predictions to directly estimated the importance weights is actually due to a drawback of
the ESS estimators. In fact, the errors due to the very imprecise GP models make all weights small (the mean is significantly
below one) and with low variance, a situation in which the ESS is typically overestimated. This leads the algorithm to collect
the minimum allowed amount of samples at each iteration, while it should actually collect many more. The MSE-aware
estimator, on the other hand, keeps an ESS which is very close to that of the ideal and discrete estimators. The higher mean
of the importance weights also implies that more information is transferred, which leads to the good empirical performance
showed in Section 6.3.


