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Abstract

We consider the transfer of experience samples
in reinforcement learning. Most of the previous
works in this context focused on value-based set-
tings, where transferring instances conveniently
reduces to the transfer of (s, a, s’,r) tuples. In
this paper, we consider the more complex case
of reusing samples in policy search methods, in
which the agent is required to transfer entire trajec-
tories between environments with different transi-
tion models. By leveraging ideas from multiple
importance sampling, we propose robust gradi-
ent estimators that effectively achieve this goal,
along with several techniques to reduce their vari-
ance. In the case where the transition models are
known, we theoretically establish the robustness
to the negative transfer for our estimators. In the
case of unknown models, we propose a method
to efficiently estimate them when the target task
belongs to a finite set of possible tasks and when it
belongs to some reproducing kernel Hilbert space.
We provide empirical results to show the effec-
tiveness of our estimators.

1. Introduction

In many real-world problems, reinforcement learning (RL)
agents (Sutton & Barto, 1998) repeatedly face environments
with similar, but different, dynamics. Consider, for instance,
deploying a policy on a robot with different physical param-
eters than the ones it was trained for, or adapting from sim-
ulation to reality, or learning under non-stationarity. In all
these cases, the agent could potentially exploit knowledge
acquired in the past environments to speed-up the learning
process of new related tasks. How this knowledge reuse can
be achieved is the fundamental problem of transfer in RL.

Knowledge transfer has been widely studied for RL domains
(Taylor & Stone, 2009; Lazaric, 2012). In this context, the
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agent is supposed to reuse knowledge acquired from a set
of source tasks to accelerate the learning process of a new
target task. Designing a transfer algorithm poses three main
questions: what element should be transferred? How should
the transfer be performed? Is this procedure beneficial for
the target task? An answer to the last question is particularly
crucial to prevent negative transfer, the situation in which
reused knowledge harms the learning process.

Among the many kinds of knowledge that have been suc-
cessfully transferred in RL, we focus on experience samples,
i.e., states, actions, and rewards that the agent collects from
different tasks. Most of the previous approaches in this
setting focused on value-based algorithms, where the agent
attempts to reuse single transition and reward instances from
different decision processes. Taylor et al. (2008) proposed
an algorithm to transfer samples so as to augment the dataset
used by a model-based RL algorithm. Almost simultane-
ously, Lazaric et al. (2008b) designed a model-free method-
ology to estimate which source samples are most likely to
benefit the target and used it to transfer into a batch RL
algorithm. The same settings were considered by Laroche
& Barlier (2017), who showed that no measure of similarity
is needed to safely transfer under the restrictive assumption
that tasks do not differ in their dynamics. More recently,
Tirinzoni et al. (2018b) proposed a method to transfer all
given samples without carrying out any explicit selection,
while reweighing their contribution to the learning process
proportionally to their importance for solving the target task.

One of the drawbacks of the above-mentioned approaches
is that they do not easily generalize to policy search, where
the agent is required to transfer long sequences of states
and actions rather than only single-step information. Since
policy search algorithms, despite their recent successes,
typically require large batches in order to reliably estimate
the expected return or its gradient, reusing samples from
different tasks would be practically very useful.

In this paper, we propose a methodology to address this lim-
itation for families of tasks differing only in their transition
models. Similarly to Tirinzoni et al. (2018b), we employ im-
portance sampling (IS) (Owen, 2013) techniques to transfer
all source samples, while correcting the bias introduced by
their different distributions. However, instead of focusing
on single transitions and rewards, we show that it is pos-
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sible to transfer entire trajectories from different policies
and environments to improve the gradient estimates of a
policy search algorithm, thus reducing its sample complex-
ity and the number of iterations required to converge. In
order to accomplish this objective, we use ideas from multi-
ple importance sampling (MIS) (Veach & Guibas, 1995) to
derive gradient estimators that automatically transfer sam-
ples from several different distributions and we propose
two techniques to reduce their variance. Our estimators
are simple, enjoy strong theoretical guarantees, and are of
general interest even outside our transfer settings. For in-
stance, we show that they can be successfully applied to
reuse samples from past policies during the learning process
(a kind of intra-environment transfer). For the ideal case in
which the transition models are known, we formally estab-
lish robustness to negative transfer of the proposed methods.
For the more realistic case in which the transition models
are unknown, we propose a methodology to estimate them
which explicitly trades off between the bias and variance
these models might induce on the importance weights. Fi-
nally, we empirically demonstrate the effectiveness of our
estimators in three domains of increasing difficulty.

2. Preliminaries

Policy Search We define a task as a discounted Markov deci-
sion process (Puterman, 2014), M := (S, A, P, R, Po, ),
where S C R% is the state space, A C R" is the action space,
P : Sx A — A(S) is the transition kernel, R : Sx. A4 — R
is the reward function, Py € A(S) is the initial state dis-
tribution, and v € [0, 1] is a discount factor. Here A()
denotes the set of probability measures over a generic ). At
each time ¢, the agent is in some state sy, it takes an action
a; according to some policy 7 : S — A(A), it receives
areward r; := R(sy, a;), and it transitions to a new state
s¢+1 according to P(:|s¢, a;). In policy search (Peters &
Schaal, 2008; Sutton et al., 2000; Deisenroth et al., 2013), a
class of parameterized polices mg is considered and the goal
is to find the parameters maximizing the expected return,

argmax J(0,P) := /p(T|9,P)R(T)dT, (D
6

where T = (89, ag, - . ., S7) denotes a trajectory of 7" time
steps and with some abuse of notation, we set R(7) :=
Zt _o V'R(s¢, a;). Common approaches for optimizing
this objective function employ stochastic gradient methods.
Let g(7) := ZtT;()l Vo log mg(a:|s;), then the well-known
REINFORCE algorithm (Williams, 1992) approximates the
gradient of (1) using n i.i.d. trajectories from 7g as

Zg i)R(T:) )

Transfer of Samples In the sample transfer problem (Tay-
lor & Stone, 2009; Lazaric, 2012), a set of experience

VgJHP

samples is provided from a small number of source tasks
My, ..., M, and, given a new target task, the goal is to
figure out how to reuse these instances in order to speed up
the learning process. In our policy search settings, these
samples are entire trajectories collected under arbitrary poli-
cies. We make the following assumption.

Assumption 1 (Task differences). Each task M; is
uniquely characterized by its transition kernel P;. State-
action space, reward function, and initial state distribution
are shared among tasks'.

Formally, our input is a dataset D = {Dy, ..., D,, }, where
each D; = {71,...,7Ty,,} is a set of n; trajectories from
a fixed task-policy couple (6;,P;). We assume that the
policies used to collect each trajectory are known.

Multiple Importance Sampling Multiple importance sam-
pling (MIS) (Veach & Guibas, 1995; Veach, 1997) is a
very effective method for estimating the expected value
of a function given samples from multiple proposal distri-
butions. Consider a measurable space (X, .%#), a function
f X = R, and m+1 probability measures P, Q1,...,Qm
absolutely continuous w.r.t. the Lebesgue measure, with
D,q1, - - -, qm denoting their densities. A MIS estimator for
w=E, p[f(x)] given n; samples from each @Q; is

m

Z Z "””j))f(a:i,j), 3)

where the functlon h is often referred to as heuristics and
must be a partition of unity, i.e., >, hj(z) = 1 for all
r € X. It is easy to show (Veach & Guibas, 1995) that
the MIS estimator is unbiased. A common and convenient
choice for h is the balance heuristics, hj(x) = Z’”%,
1—y nuqi ()
for which the MIS estimator reduces to an IS estlmator with
a mixture of proposals, fi = & >0, 371, q’l wm‘lj 5 f (2i,5)s
where n = Z;"Zl n; and g (x) = 23:1 a;q;i(z), with
o = ~4. This estimator is also known in the literature as
deterministic mixture sampling or stratification (Hesterberg,
1995; Owen & Zhou, 2000). A key property is that, when
a set of ny samples is available from the target distribution
P, the resulting weights are bounded by aio This fact also
implies that the variance of these weights is bounded, a
property that rarely holds for plain IS. For these reasons,
samples from P are often referred to as defensive. An
important measure of the goodness of an IS estimator is the
eﬁ‘egéze sample size (ESS), which is typically approximated

as BSS := +Var[ ’(L o) (Liu, 1996) or, equivalently, as
ESS = o (PHQ) (Cortes et al., 2010; Ryu 2016; Metelli

et al., 2018), where do(P||Q) = [ p(x)?*q(z) ' dx is the

exponentiated second-order Renyi dlvergence

'In practice, it is enough that the target reward function is
known rather than shared. The extension to unknown rewards is
simple (see, e.g., (Tirinzoni et al., 2018b)).
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3. Transfer via Importance Sampling

We describe how IS techniques can be used to efficiently
transfer samples in policy search in case transition models
are known. We will deal with unknown models in Section 4.

3.1. Multiple Importance Sampling Estimators

Consider the transfer settings described in Section 2. Our
idea is to learn the target task using standard gradient-based
techniques, collecting a batch of ng episodes at each step,
while reusing the source trajectories to augment the dataset
for estimating the gradient in order to reduce its variance.
Since, due to different policies and transition models, these
trajectories follow different distributions than the one in-
duced by the current policy in the target task, IS techniques
can be straightforwardly employed to yield an unbiased
estimator,

m ng

EN 1
Ve J(0,P) = - SN W (ri)e(ri)R(Tig), @)
§=0i=1
where the f’mportance weight w;S(T) = % can be
computed in closed-form as
T-1
W) = [[ mo(a|s:) P(sit1ls,ar) 5)

=0 705 (at|st) Pj(ses1lse, ar)’

Unfortunately, this IS scheme is likely to fail in most cases
of practical interest. It is well known, especially from the
literature on off-policy estimation (Precup, 2000; Hachiya
et al., 2009; Thomas & Brunskill, 2016; Guo et al., 2017;
Liu et al., 2018), that importance sampling on long trajec-
tories is likely to give almost zero or huge weights, thus
leading to estimators with very high (sometimes infinite)
variance (Li et al., 2015; Jiang & Li, 2016). This draw-
back is even amplified in our transfer settings, where there
is a model mismatch in addition to the one between the
policies. Several variance reduction techniques, typically
paying a small amount of bias, have been proposed (e.g.,
self-normalized estimators (Kong, 1992), truncation (Ion-
ides, 2008), flattening (Hachiya et al., 2009)). Fortunately,
MIS comes to the rescue in our settings, allowing us to get a
low-variance estimator without introducing any bias. Using
Equation (3), the MIS gradient estimator is

Vs J(6,P) = % Zo Zlw?dls(ﬂ,j)g(ﬂ,j)R(Ti,j)7 6)
j=0i=
where ) (1) := JLh;(T)w(7) for a general heuris-

tic function h. For brevity, we define ¢o(7) =
> im0 ajp(T|85,P;), so that the weights for the particular

choice of balance heuristics reduce to w}"S(7) := p(qL(gf;).

Algorithm 1 outlines how these weighted estimators are used
in our proposed transfer procedure. Line 1 initializes the
policy parameters. A criterion for achieving a good jump-

Algorithm 1 Transfer via Importance Sampling

Require: Target task M, source dataset D =
{<(T1,...,Tnj),0j7pj> | ] = 1,...,m}, gradi—
ent estimator 69 J(6,P), effective sample size
estimator ES\S(nO; D), minimum effective sample size
ESSin, minimum batch size ny,, step-size sequence
Mk

1: Initialize policy: 8y <+ INIT-POLICY (M, D)

2: Initialize iteration count: k < 0

3: while not converged do

4:  Find the minimum ng € {nmin,. .., ESSmin} such
that ESS(ng; D) > ESSmin

5. Sample ng trajectories from M under policy g,

6:  Store samples: D <— DU {{(T1,...,Tn,), Ok, P)}

7. Update parameters: 01 < 0), + nkﬁgj(gk, P)

8: end while

start could be easily derived. Since our primary concern is
the optimization rather than the initialization, we leave this
step unspecified. At each iteration, we decide adaptively
the batch size (i.e., the number of defensive samples) that
guarantees a minimum ESS for the resulting dataset (line 4).
The rationale is that, if the gradient of the current policy can
be reliably estimated using the source samples, there is no
need to collect new trajectories at all. In order to carry out
this step, we derive a lower bound on the increase rate of
the approximate ESS as a function of ny. Due to space con-
straints, we defer this discussion to Appendix A. In practice,
we impose a minimum batch size of ny,;, to avoid degener-
ate cases. The new batch (line 5) is then added to the current
dataset (line 6). Note that this step has two key implications:
(i) the gradient estimator always uses at least n;, defensive
samples, and (ii) the number m of policy-model pairs in
D grows with the number of iterations as trajectories from
the target task (but policies potentially different from the
current one) are stored. Finally, the parameters are updated
using the chosen weighted estimator on the current dataset.

The next two sections propose two techniques to further re-
duce the variance of the MIS estimator without introducing
any bias.

3.2. Per-decision Estimators

Per-decision IS (Precup, 2000) is a common variance reduc-
tion technique from off-policy evaluation. It relies on the
intuition that future actions cannot influence past rewards,
i.e., each reward r; should be weighted only by the proba-
bility of a trajectory up to that time. This technique can be
easily combined with MIS, leading to the PD estimator,

m mnj; T—1

6}(;DJ(@JD) =1 > 2. %Wtwg}?(ﬁ,j)gt(ﬁ,j)ﬁy (7

<
I
<}
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where g;(7) := g¢(70.t), with 79.; being a trajectory up
to time ¢, and w;?('r) = achy, (T)w }S(To;t). Using the
balance heuristics, w?B(T) w™(79.;). Notice that the
heuristics is now a function of tlme. We show that, if this
function is uniformly normalized over time, the resulting
estimator remains unbiased.

Theorem 3.1 (Unbiasedness of PD estimator). Let h; .(T)
be a function such that, for all t € {0,...,T — 1} and T,
Z;n:o hj+(T) = 1. Then, the per-decision MIS estimator
in (7) is unbiased.

3.3. Regression-based Control Variates

Control variates (CVs) are a widely applied variance reduc-
tion technique for general Monte Carlo estimators (Hammer-
sley & Handscomb, 1964). The key idea is that a random
variable with known expectation could be used to reduce the
variance of a mean estimator for another random variable.
Owen & Zhou (2000) have popularized the usage of CVs for
IS and MIS. For the d-th dimension of the gradient, consider
a vector of functions ¥4 (7) := [Y0,4(T), .-, Ym+1,4(T)]
such that E- ., [¥;,4(7)] = O for every j. Then, our MIS
estimator (6) with 14 as CVs becomes

= VS 7(9,P) — 1 _ZO Zlﬂgd’d('ri,j)a (8)
J=0i=

where B; € R™*! is the vector of CV coefficients. As

shown by Owen & Zhou (2000), the proposal distributions

composing the mixture of a MIS estimator, whose inte-

gral is known to be 1, can be used as very effective con-

trol variates. Thus, we consider 1; 4(7) = %{T’)ﬁj) -1

for j = 0,...,m. Furthermore, g(7) is a widely adopted
control variate in policy search (a.k.a. baseline) since its
expectation is known to be 0. Therefore, we consider
Ym+1,4(T) = %&f;d(ﬂ. Finally, the vectors (3} mini-
mizing the variance of (8) can be approximated by solving
the following regression problem (Owen & Zhou, 2000):

2
arg min E Z (quz;'_’))g(ﬂ SIR(Ti ;) — 5511’(1(7'1‘73‘)) .

Ba  j=0i=
In practice, we can fit the CVs and estimate the gradient
using different partitions of the current dataset to keep an
unbiased estimator.

VS8, P)

Proposition 3.1. The estimator (8) is unbiased for any
Ba.  Furthermore, under the optimal coefficients (3,

Var[VGY.J(0,P)] < Var[V3IS (0, P)).

Note that, when the number of dimensions d of the parame-
ter space is large, it is common to fit a unique 3 for all d. In
this case, simply taking ¢,,,+1(7) = % and
solving the regression problem is therefore equivalent to (ap-
proximately) minimizing Tr((Cov[VCVJ (6,P)]). Finally,
we note that the CVs can be combined straightforwardly
with the PD estimator of Section 3.2.

3.4. Robustness to Negative Transfer

We now show that our MIS estimator with CVs enjoys safety
guarantees against negative transfer. We first propose a
definition of negative transfer for policy gradient algorithms
in terms of convergence to e-optimal stationary points 2.

Definition 3.1 (Negative transfer). Let .o/ and % be two
policy gradient algorithms. Fix an initial parameter 0y,
a learning rate 7, a batch size n, and an accuracy € >
0. Then, </ negatively transfers w.rt. B (o < AB) if
there exists an lteratlon number k > 1 such that we
can guarantee that Ez o Egg[”VgJ(Bl)HQ] < € but

i Cis0 ExlIVe(61)]?) >

Let Br be the REINFORCE algorithm and %g be the
GPOMDP algorithm (Baxter & Bartlett, 2001). The next
result shows that Algorithm 1 using CVs and the MIS esti-
mator (2/cy) or the PD estimator (.@%ppcy) cannot be worse
than their no-transfer counterparts.

Theorem 3.2. Assume the return J is L-smooth (i.e., its
gradient is L-Lipschitz). Let ny;, > 0 be the minimum
batch size for oy (Hppcy) and the fixed batch size for Br
(PBg). Assume all algorithms start from the same parameter
6o, use a learning rate 0 < n < %, and that ey (Hppcy)
uses the optimal CV coefficients 3};. Then, for all € > 0:

dCV 74 %Ra ijPDCV 74 %G~

We remark that, according to our definition, the fact that .o/
is robust against Z does not necessarily imply that </ con-
verges faster than 2 but only that, whenever we can prove
that # converged, we can also prove that ./ converged.
Hence, we might say that <7 cannot be much worse than
A, the standard (weaker) notion of negative transfer that is
often considered in the literature (Taylor & Stone, 2009).

4. The Case of Unknown Models

The transfer algorithm presented in Section 3 requires full
knowledge of the transition models of each task, an assump-
tion that rarely holds in practice. Here we consider the more
realistic case in which the models (equivalently, the impor-
tance weights) are unknown and have to be estimated from
data. In general, this goal can be efficiently achieved by
directly estimating density ratios (Sugiyama et al., 2012).
Unfortunately, in our settings, this is not a good approach
for at least two reasons: (i) density ratios are not transfer-
able, i.e., they must be recomputed for each new policy
and/or task; (ii) our weights are defined over entire trajecto-
ries, high-dimensional random variables whose distributions
have some structure that would not be exploited by a direct
estimator. Therefore, we decide to take a more indirect ap-

2As a standard in non-convex optimization, convergence to sta-
tionary points could be replaced with convergence to local maxima
at the cost of a more complicated analysis.



Transfer of Samples in Policy Search via Multiple Importance Sampling

proach and estimate only the missing components, namely
the transition models. However, instead of naively plugging
in any density estimator or probabilistic model of the uncer-
tain dynamics, we propose an estimator that is aware of the
MIS scheme in which these models will be adopted.

From now on, we consider system dynamics of the form
Si11 = f(8t,a1) + €, where € ~ N(0,0%1), and we sup-
pose each task to be uniquely identified by its transition
function f. Our main assumption is that the source tasks
f; are known, while the target task f is uncertain accord-
ing to a distribution ¢ € A(F), where F is the set of
all possible transition functions in the family of tasks un-
der consideration.> Let us fix a policy parameter 6 and
a dataset D. Let VJ := VgJ (0, f) denote the true gra-
dient at 0 and V.J(f) = @E,M'S)J (6, f) denote its MIS
estimate (6) using the balance heuristics where an arbitrary
function fis used to compute the importance weights in-
stead of the unknown target model f. Note that, although
we assume to know the source distributions, the denomina-
tor go (T) = 372, a;p(76y, f;) is still unknown since at
least one of its components depends on f. We write ¢, (7; f)
to make this dependence explicit in the remainder. Given
the set 7 = {0,1,...,m}, weuse Jiu = {j € J|f; = [}
to denote the indexes of proposals from the target task, and
define Jye = J \ Jig. Moreover, o = €T de-
notes the proportion of target samples in D, and similarly
for o = 1 — cvg. We begin by deriving an upper bound
on the mean square error (MSE) of the MIS estimator.

Theorem 4.1. Let f : S x A — 8 be any func-
tion and po(T) = Zjejw z—;p(rwj, f)- Suppose that
lg(T)R(T)||so < B almost surely. Then, for f ~ o,

o dB? - -
— 2 = . ..
E[I95(F) = VII] < Z=da (p(16. Dllgal: )
T-1 ) N
+1dB2 Y Ernp [IF(s1a0) — Fs1,a)l3]
t=0
T-1
+01dB? Y Erey, [Tr (S(s1,a0)] + O(n7Y), (9)
t=0
where the expectation is w.rt. T;; ~ p(T|0;, f;) and
[~ @ Here f(s,a) = Epp[f(s,a)], X(s,a) =
Covyinylf(s,a)], and c1 is a constant.

Let £(f) denote the value of this bound as a function of f.
Then, we look for the function f* € F that minimizes L.
Intuitively, we seek for a model that trades off between three
different objectives: (i) when few trajectories are available
and the target model is highly uncertain, it should stay close
to the mixture of source distributions in order to reduce
the variance of the resulting estimator (first term); (ii) as

3A discussion on how our results can be generalized to un-
known source tasks is deferred at the end of this section.

Algorithm 2 MSE-aware Model Estimation
Require: Model space F, target trajectories Dy =
{D;| j € Jiet}, uncertainty model ¢
1: Update ¢ using Dig

2: Compute f € F minimizing the bound of Theorem 4.1
3: return f

the number of samples grows, it should move towards f,
our best guess for the true model (second term); finally, it
should give priority to the regions of the state-action space
where the target model is more accurate (third term). Our
MSE-aware approach to model estimation is summarized in
Algorithm 2. Although appealing, optimizing the bound for
the optimal transition function is non-trivial. Now we show
two cases in which this can be done efficiently.

4.1. Discrete Task Family

We start by considering the simple setting in which F =
{f1, fa,..., fu} is a finite set of possible transition func-
tions. Our uncertainty model is therefore a discrete distribu-
tion over this set. Assuming a uniform prior g (f) = ﬁ,
this distribution can be updated iteratively for every f € F
given a batch of target trajectories Dy under policy 8}, as

T—1
ok () ocor(f) T 1] mou(@ils)Pr(sisalse, ar).
TEDy t=0

Given g, the bound of Theorem 4.1 can be easily approxi-
mated for every f € F. Notice that all expectations in (9)
are under distributions induced by the model f and, there-
fore, they can be approximated by simulating trajectories
without interacting with the true environment.

4.2. Reproducing Kernel Hilbert Spaces

We now consider a more general functional space for our
transition models. Let X = S x A and consider a posi-
tive semi-definite kernel function £ : X x X — R. We
suppose that F is the unique reproducing kernel Hilbert
space (RKHS) induced by K. In an RKHS, the reproducing
property implies that every function f can be written as
f(x) = (f,K(x,)), where (-, -} denotes the dot product on
F. For simplicity, we consider each dimension of our tran-
sition models separately. We refer the reader to (Micchelli
& Pontil, 2005) for the extension to vector-valued RKHS.

We represent the uncertainty over the target model as a
Gaussian process (GP) (Williams & Rasmussen, 2006),
f ~ GP(0,K), with a zero-mean prior and X as covariance
function. As usual in model-based RL (e.g., (Deisenroth
& Rasmussen, 2011)), we train conditionally independent
GPs for each dimension of the state space. Suppose that
we get a set of [ training inputs X = [x1,..., 2]’ and [
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training targets Y = [y1, ..., ;|7 from our dataset Dyg of
trajectories from the target task, where x; = (s;, a;) and
yi = f(x;) + N(0,0%1I). Then, the posterior mean func-
tion can be evaluated at any point x as f(x) = k(x)T (K +
o2I)~1Y (Williams & Rasmussen, 2006), where k(x) is
the vector with entries k;(x) = K(z;,«) and K is the
Gram matrix, K;; = K(x;, x;).

Now that we have an uncertainty model for our target tran-
sition function, let us move to optimize our bound L on the
MSE. Unfortunately, minimizing £(f) w.r.t. f € F is not
as simple as in the finite-model case since (i) fcontrols the
distributions under which expectations are taken, and (ii) it
appears as a product over several time steps in the Renyi
divergence term. For these reasons, we now introduce some
simplifications that will lead to a convenient closed-form
solution. First, we approximate the two expectations by
drawing a small number of trajectories from our last hy-
pothesized model, so that their dependence on the function
to be computed is removed. Secondly, we further bound
our objective in a more convenient way. In order to carry
out this last step, we derive an upper bound on the expo-
nentiated Renyi divergence w.r.t. the Kullback-Leibler (KL)
divergence, which could be of independent interest.

Theorem 4.2. Let (X, .F) be a measurable space, P and
Q be two probability measures on X such that P < Q, and
Qo = aP + (1 — a)Q denotes their convex combination
with coefficient o € (0,1). Suppose there exists a finite

constant C' > 0 such that ess sup % < C. Then,
d2(P||Qa) < 1+ u(a) Dxr(P|Q), (10)
where
2C(1—a)? . 1—a
U(Ot) _ ) (aC+1-a)3 lfc < 2a
27% otherwise.

Using Theorem 4.2, our objective L(f) can be bounded in
a very convenient way.

Proposition 4.1. The objective L(f) given in (9) can be
upper bounded by

T-1
E(f) < ki Z ]E.,.Np(.wvf) Z O‘ij(xt) - f](wt)H%

t=0 JETsre

T-1 _ )

ke 3 B [IF () = F@0) 3] + ks,

=0

where ky = 5 Z(a()f_BZ 3 ko = 4“‘5"1’52, and ks is a con-
orhn ag agoy

stant independent of f

Our new bound is quite appealing. While the bias term
remains unchanged, the variance is now a mixture of ex-
pected [, distances between fand the known source models
f;. In practice, we optimize a regularized version of this

objective so that the representer theorem of RKHS applies.
Furthermore, as mentioned above, we approximate the two
expectations by drawing R trajectories from the mixture pq,
using our last hypothesized model. The resulting objective
reduces to a regularized least-squares problem,

R T-1
1 =
wgin 35 (ko 3 o) - )

r=1 t=0 FETse
+ kol f () — f(a:r,t)H%) + M| f1I%S (11)

where A > 0 is the regularization parameter and w,; =
[T, 5 —=edes

e Ty ag ™0, (arls)
rect the distribution mismatch in the first expectation. Most
importantly, its solution is available in closed form.

is an importance weight to cor-

Proposition 4.2. The function f* minimizing (11) is
fr(x) = ATk(z),

where k(x) is the RT-dimensional vector with entries
K(xy ¢, ) and

A = (k1agWK + kyK + ARI) ™' (ly W Fy + ko F),

with K being the Gram matrix, W = diag(wy.), F =
[f(x10),.. ., f(®rr-1)]", Fy > jer,. i Fj, and

Fj = [fj(®1,0),--- T

s filerr-1)]".

Discussion One might be wondering why the estimated
transition models are not directly used for planning in a
standard model-based RL algorithm instead of estimating
the importance weights for a model-free approach. It is
well-known that even small errors can lead to disastrous
performances when the optimal policy is computed under
the estimated models. Since in our case the learned models
are only used to re-weight samples from the true environ-
ment, we argue that the impact of such errors is much more
contained. In fact, as far as the weights keep reasonable
values, the learning process could potentially be carried out
effectively. Furthermore, note that our estimators are con-
sistent as the number of target samples goes to infinity for
any hypothesized model, not necessarily the true one.

Remark 4.1 (Unknown source models). The extension of
Theorem 4.1 to unknown source models is reported in Ap-
pendix B. Unfortunately, optimizing the resulting bound over
all models becomes considerably more difficult due to the
combinatorial growth of the problem. However, in practice,
we typically update online only the target model. In fact, we
cannot require additional source samples and, thus, we can
estimate the source models in batch before learning starts.
Therefore, our algorithm can be straightforwardly applied,
e.g.,, by fitting GPs and then plugging the MAP estimates
into Theorem 4.1 instead of the true source models (hence
our simplification of known sources).
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5. Related Works

The closest work to ours is the recent paper of Tirinzoni
et al. (2018b). The authors propose an IS-based algorithm to
transfer samples in a value-based batch RL setting, together
with a methodology to estimate the weights using Gaussian
processes. Besides extending these algorithms to policy
search, our MIS estimators naturally combine multiple dis-
tributions and are much more robust to source tasks that are
very different from the target, a drawback of plain IS.

Among the existing transfer approaches for policy search,
Ammar et al. (2014) and Ammar et al. (2015) focus on a
lifelong learning scenario, where the agent continually faces
new tasks sampled from a common distribution and must
quickly adapt to each of them. Similarly to our work, several
recent papers provide theoretical guarantees on the transfer
procedure (e.g., Brunskill & Li, 2013; Zhan et al., 2016; Bar-
reto et al., 2017; Abel et al., 2018; Tirinzoni et al., 2018a).
Our assumption of environments with different dynamics
is also related to Hidden-parameter MDPs (Doshi velez &
Konidaris, 2013; Killian et al., 2017), although we do not
require transitions to be parameterized. Crucially, while we
both learn transition models, we do not use these for plan-
ning but only for computing the weights, which is typically
more robust to estimation errors.

Finally, our MIS estimators are related to, and might be of in-
terest for, different RL settings such as off-policy evaluation
(Precup, 2000; Hachiya et al., 2009; Thomas & Brunskill,
2016; Guo et al., 2017; Liu et al., 2018), off-policy learn-
ing (Precup et al., 2001; Mahmood et al., 2014; Geist &
Scherrer, 2014; Munos et al., 2016; Metelli et al., 2018),
and sample reuse (Zhao et al., 2013; Hachiya et al., 2011).

6. Experiments

We analyze the performance of our estimators with known
models in Section 6.1 and with model estimation in Sections
6.2 and 6.3. Due to space constraints, we only provide the
high-level configuration of each experiment, while referring
the reader to Appendix D for the specific hyperparameters
that were adopted (see Table 1 for a quick summary).

6.1. Linear-Quadratic Regulator

Our first test domain is the one-dimensional linear-quadratic
regulator (LQR) (Dorato et al., 1995; Peters & Schaal, 2008),
a well-known benchmark from the control literature. The
system has linear dynamics, s;11 = Asy + Bay + €, with
Gaussian noise € ~ N(0, 0% ), and quadratic rewards.

We begin by evaluating the MIS estimators proposed in
Section 3. Besides our proposed estimators, we compare to
per-decision IS (PD-IS), which is widely adopted in the liter-
ature and can be straightforwardly adapted to our case, and

LQR (transfer) LQR (sample reuse)

|6 — 07|

1 1 1 1
200 600 1000 1400 0 1000 2000 3000
Episodes
— GPOMDP — PD-IS — MIS — PD-MIS — PDCV-MIS

Episodes

Figure 1. Comparison of the proposed gradient estimators in the
LQR domain under known models. (left) transfer experiment,
and (right) sample reuse experiment. Each curve is the average
of 40 independent runs, each re-sampling the source tasks, with
Student’s t 95% confidence intervals

to GPOMDP (Baxter & Bartlett, 2001) as our no-transfer
baseline. The source tasks are randomly generated by uni-
formly sampling A in [0.6,1.4] and B in [0.8,1.2], while
the target task is fixed with A = 1 and B = 1. We employ
linear Gaussian policies and consider 8 source parameters,
0 € {-0.1,-0.2,...,—0.8}, generating 20 episodes from
each model-policy couple. To have a fair comparison, we
use the same learning rate and initialization for all algo-
rithms. Figure 1(left) shows the distance to the optimal
target parameter as a function of the number of episodes.
As expected, PD-IS shows a significant amount of negative
transfer w.r.t. GPOMDP. This is due to the fact that the huge
variance of the importance weights forces the algorithm to
collect large batches to guarantee the required ESS. MIS
and PD-MIS achieve an improvement over the no-transfer
baseline, with the latter having smaller variance. When in-
troducing CVs, the algorithm enjoys much better gradient
estimates and significantly outperforms all alternatives.

Sample Reuse in Policy Gradients Our estimators can be
successfully adopted to reuse samples generated by previous
policies in standard (no-transfer) policy gradients. Figure
1(right) shows the result of learning the same target task as
before from scratch (i.e., without any source sample), where
each algorithm uses the same (fixed) batch size, learning
rate, and initialization. We can appreciate that both the per-
decision and our estimator enjoy a speedup over GPOMDP,
but the former suffers a much higher variance.

6.2. Cart-pole Balancing

Our second domain is the well-known Cartpole problem
(Sutton & Barto, 1998), where the goal is to balance a pole
on a moving cart. We generate source tasks by uniformly
sampling the mass of the cart in the interval [0.8, 1.2] and the
length of the pole in the interval [0.3,0.7]. The target task is
the standard Cartpole with cart mass 1.0 and pole length 0.5.
For each of 5 source tasks, we consider a sequence of 10
linear policies generated by GPOMDP during its learning
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Cartpole Minigolf

Expected Return

50 100 150 200 250 - 200 400 600

Episodes Episodes
~— GPOMDP — Ideal — Sample reuse — RL on GP model
— GP — MSE (RKHS) — MSE (discrete) Unknown Sources

Figure 2. Comparison of our model estimation approach in the
Cartpole (left) and minigolf (right) domains. Each curve is the
average of 40 independent runs, each re-sampling the source tasks,
with Student’s t 95% confidence intervals.

process and collect 10 episodes from each. While the LQR
domain was relatively short-horizon (1" = 20), here we
allow trajectories up to 7' = 200 time steps, which allows
us to verify the transferability of long state-action sequences.

We now test our model estimation approaches. Besides
GPOMDP, we report the performance of the sample reuse
(SR) variant of our algorithm where we ignore the source
tasks and transfer only past target trajectories. All transfer
algorithms use the PD-MIS estimator. Figure 2(left) shows
the results. Interestingly, all transfer approaches outperform
both GPOMDP and SR, which confirms that reusing trajec-
tories from different environments can significantly improve
the quality of the learning process. Both our model estima-
tion approaches perform comparably to the ideal estimators.
While this should be expected for the discrete estimator,
the continuous one works well since an accurate GP model
of the Cartpole dynamics can be obtained with a relatively
small amount of samples. This fact can be verified from
the GP curve, where the weights have been estimated by di-
rectly plugging in the GP predictions instead of optimizing
our bound. Not surprisingly, the algorithm that estimates
the source models as in Remark 4.1 performs comparably
to the best alternatives. However, the fact that the fitted GP
is accurate for estimating the weights does not imply that it
is an accurate model of the system dynamics which can be
used for planning. The gray curve in Figure 2(left), which
shows the performance achieved by optimal policies for the
estimated dynamics, confirms this statement.

6.3. Minigolf

In this last domain, we want to study how much the pro-
posed transfer algorithms can speed up the learning process
of an agent playing a minigolf game by reusing the experi-
ence made on different minigolf courses. The various tasks
may differ in the length of the putter (between 70cm and
100cm), in the hole size (between 10cm and 15¢m), and in
the dynamic friction coefficient (whose range was measured

empirically (Penner, 2002) between 0.065 and 0.196). The
minigolf domain was originally introduced in the RL field
by Lazaric et al. (2008a); here, we change the dynamics
following the modeling developed by Penner (2002) in order
to make the problem more realistic. A detailed description
of the minigolf domain is available in Appendix D.3.

In this experiment, we adopt Gaussian policies with a fourth-
order polynomial basis function. We generated 5 source
tasks by randomly sampling dynamic friction coefficient,
hole size, and putter length from the realistic ranges de-
fined above. Furthermore, we considered 10 source policies
of increasing quality and generated 40 episodes from each
model-policy pair. The target task is fixed with a friction
of 0.131, a putter of 100cm, and a hole of diameter 10cm.
All transfer algorithms use the PDCV estimator. The results
are shown in Figure 2(right). Unlike the simpler Cartpole
domain, GPOMDP is not able to learn the task in such a
small number of episodes. Interestingly, due to the high
level of noise present in this environment, direct estimation
of weights using the GP predictions leads to unsatisfactory
results. On the other hand, both our model estimation ap-
proaches solve the task with performance comparable to
the ideal estimator. We note that the speed-up over the SR
algorithm is not as remarkable as in the previous experi-
ment due to the little amount of knowledge transfer that
can be achieved in this more complicated setting. We fi-
nally point out that most of the simplifications introduced
in the previous sections do not hold in this domain. In fact,
the transition models are not Gaussian, while the noise is
heteroscedastic and changes between tasks. Despite these
relaxations, our approach can be applied without suffering
any considerable performance degradation.

7. Conclusion

In this paper, we introduced a methodology which employs
multiple importance sampling for transferring samples (i.e.,
entire trajectories) to reduce the variance of the estimated
gradients in policy search. We showed that our estimators
are general, in the sense that they can be of interest outside
the transfer literature, and they enjoy strong theoretical prop-
erties. We proposed a methodology to estimate the unknown
task models in a principled way by directly minimizing an
upper bound on the MSE that these models induce on the
resulting importance-weighted estimator. Finally, we em-
pirically demonstrated the effectiveness of our algorithm in
different domains, both in the ideal and estimated cases.

An interesting question is whether our method could be gen-
eralized to the policy gradient theorem (Sutton et al., 2000),
where the importance weights would be on the stationary
distributions of single states. This could dramatically in-
crease the amount of transferred knowledge, as shown by
Liu et al. (2018) for the case of off-policy evaluation.
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