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Abstract

The olfactory system employs an ensemble of
odorant receptors (ORs) to sense odorants and
to derive olfactory percepts. We trained artificial
neural networks to represent the chemical space
of odorants and used this representation to predict
human olfactory percepts. We hypothesized that
ORs may be considered 3D convolutional filters
that extract molecular features and, as such, can
be trained using machine learning methods. First,
we trained a convolutional autoencoder, called
DeepNose, to deduce a low-dimensional repre-
sentation of odorant molecules which were rep-
resented by their 3D spatial structure. Next, we
tested the ability of DeepNose features in predict-
ing physical properties and odorant percepts based
on 3D molecular structure alone. We found that,
despite the lack of human expertise, DeepNose
features often outperformed molecular descrip-
tors used in computational chemistry in predicting
both physical properties and human perceptions.
We propose that DeepNose network can extract
de novo chemical features predictive of various
bioactivities and can help understand the factors
influencing the composition of ORs ensemble.

1. Introduction

The olfactory system has evolved to sense and recognize
a large number of chemicals present in the environment.
Olfactory receptors (ORs) act as molecular sensors that bind
odorants and convey information about their structure to
higher brain regions. ORs are activated by molecules in
a combinatorial manner: one receptor can bind to many
molecules, and one molecule can interact with many re-
ceptors (Buck & Axel, 1991; Malnic et al., 1999; Saito
et al., 2009; Soucy et al., 2009). The number of ORs varies
amongst species: from 350 in humans to about 1000 in other
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mammals (Olender et al., 2004). Here, we study the factors
influencing the OR ensemble composition.

We trained multilayer (deep) convolutional neural networks
(CNNs) to map the space of molecules and used the de-
rived representation to predict human perceptual responses.
CNNs are multilayer neural networks that use ensembles of
spatial filters of increasing complexity to extract features of
the objects present in the input (Krizhevsky & Hinton, 2012).
Networks based on CNNs are the best performing models
for image recognition, many of which perform better at clas-
sifying images than humans (Szegedy et al., 2015; He et al.,
2016). The performance of CNNs in 2D image recognition
tasks suggests that they are well-suited for learning other
types of spatial data, such as 3D molecular structures. Deep
networks have indeed been applied to classify molecules,
including the predictions of pharmacokinetics properties,
toxicity, and protein-ligand interactions (Unterthiner et al.,
2016; Xu et al., 2017; Ragoza et al., 2017; Torng & Alt-
man, 2017). CNNs were used to represent the SMILES
string of molecules (Gémez-Bombarelli et al., 2018). In this
study, we derived CNNs that can recognize 3D molecular
structures and predict human olfactory percepts.

Our main hypothesis is that the OR ensemble forms a set of
3D filters that interact with molecules in real space. In this
regard, molecules play the role of 3D images (Figure 1) and
ORs can be viewed as analogs of receptive fields, such as
edge detectors of the visual system (Hubel & Wiesel, 1962).
Both the visual receptive fields and the OR ensemble have
been shaped by evolution to sense relevant features present
in the stimuli. We thus hypothesize that the in silico OR en-
semble can be optimized using conventional machine learn-
ing methods, such as backpropagation (Rumelhart et al.,
1985), to accurately represent the space of molecules. Using
this approach, machine learning may help us understand the
factors influencing OR evolution and construct a realistic
model of OR-to-ligand binding.

One of the biggest limitations in building a robust predic-
tive computational model of olfactory processing is the lack
of large-scale data on OR binding affinities and perceptual
odorant descriptors. Recent efforts have been successful in
generating data for hundreds of odorants (Dravnieks, 1985;
Saito et al., 2009; Keller et al., 2017), while modern ma-
chine learning methods require thousands to millions of data
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points to be successful (Lecun et al., 2015). To overcome
this problem, we trained a stacked deep autoencoder (Hin-
ton & Salakhutdinov, 2006), which we called DeepNose, to
replicate 3D molecular structures (Figure 2). Training the
autoencoder relies on unsupervised learning, and, as such,
can be implemented using large-scale unlabeled datasets
containing 3D molecular structures (Bolton et al., 2011).
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Figure 1. Molecules as 5D inputs. Each atom is represented by
a Gaussian cloud that is sampled using a 3D square grid. One
3D channel is dedicated to each element. This ‘element’ chan-
nel constitutes the fourth dimension. Different orientations of
the molecule constitute the fifth dimension. In this example
(chlorobenzene), the molecule is converted into a grid of size 18 A,

with the resolution of 0.5 A, three elements, and two orientations.
The network input is of size 37 x 3 x 2.

We found that the autoencoder can be trained to fully and
accurately replicate input molecules. Therefore, DeepNose
can be viewed not only as a functional analog of the ORs
ensemble, but also as a data-driven and reversible chemical
feature extractor. We further tested the biological relevance
of the extracted features by predicting molecules’ chemical
and biological properties (Table 1). The resulting accuracies
were comparable to or higher than results obtained using
Dragon chemical descriptors, state-of-the-art molecular fea-
tures widely used in odorant percept prediction (Keller et al.,
2017; Todeschini & Consonni, 2010; Shang et al., 2017).

2. Results

Molecules in the environment can be viewed as 3D objects
that are recognized by the olfactory system. Similarly to im-

ages, each molecule can be represented by separate ‘color’
channels that contain information about the spatial distri-
bution of six elements: C, H, O, N, S, and Cl. This forth
dimension, called here ‘CHONSCI’, is analogous to RGB
channels representing color. In contrast to visual stimuli,
odorants are presented to the olfactory system in multiple
copies simultaneously, differing in orientations and confor-
mations, which constitute the fifth dimension of our input.
We therefore represent each input molecule by a 5D object,
including three spatial dimensions, one ‘color’ CHONSCI,
and one orientation dimension (Figure 1).

2.1. DeepNose autoencoder can be trained to
accurately represent the space of molecules

To take advantage of the large dataset containing ~ 107
unlabeled molecular structures (PubChem3D (Bolton et al.,
2011), Table 1), and to produce a compressed representation
of the space of molecules, we designed a stacked autoen-
coder (Hinton & Salakhutdinov, 2006; Rumelhart et al.,
1985) to accurately represent 3D molecular structures. The
autoencoder consists of two convolutional neural networks:
an encoder, which converts each molecular structure into
a feature vector, and a decoder, which recovers the spatial
structure (Figure 2A, Table 2). We restricted the feature
vector to have a lower dimensionality than the input, and,
therefore, induced the network to learn a latent representa-
tion that captures the most statistically salient information
in the molecular structures. Because it is not necessary and
feasible to present all available molecular shapes to the au-
toencoder, we restricted the training set to 105 molecules
randomly selected from the PubChem3D database. We ver-
ified that the result does not depend on the selection of
molecules. After training using a set of 10° molecules and
4 x 10* batches (48 molecules/batch), we achieved a test set
Pearson correlation of » = 0.98 (Figure 2B). Even though
the latent representation used ~ 45 times fewer neurons than
the input, it can capture the majority of the input informa-
tion and generalize to novel molecules. We also calculated
the correlation coefficients specific to each element channel.
We observed that C and H channels learn substantially faster
than the other channels. This might be due to the higher
frequency of C and H atoms in the training set. Nonetheless,
autoencoder was able to reconstruct atoms of every element
to a correlation of > 0.95 (Figure 2B and C). Overall, our

Table 1. Datasets used for the DeepNose autoencoder and classifier.

Dataset Purpose Activity Number of molecules
PubChem3D  Autoencoder N/A 10°/107
ESOL Classifier Water solubility 1144

Good Scents Classifier 580 semantic olfactory descriptors 3826
Flavornet Classifier 197 semantic olfactory descriptors 738
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autoencoder network was capable of accurately replicating
small molecules (< 350 g/mol) in both our training and test
sets based on a restricted number of features.

Table 2. Autoencoder network architecture.

Input Weights Output
1 18 x6x1 5°x6x12 143x12x1
2 143x12x1 53x12x24 10°x24x1
3 10°x24x1 53x24x48 62 x48x1
4 6°x48x1 B5>x48x96 22 x96x1
5 22%x96x1 53x96x48 62 x48x1
6 63x48x1 53x48x24 10®°x24x1
7 10°x24x1 53x24x12 14°x12x1
8 14°x12x1 5*x12x6 18 x6x1

2.2. DeepNose features accurately predict water
solubility

We next asked whether DeepNose features are relevant to
the molecules’ physicochemical properties. To this end,
we used the ESOL dataset (Table 1) that contains informa-
tion about water solubility for 1144 molecules to train a
neural network classifier (Delaney, 2004). The classifier
is composed of the autoencoder’s convolutional encoder
layers, a consolidation layer that averages responses of au-
toencoder features over spatial and orientation variables,
and three fully connected classifier layers (Figure 3A, Table
3). In constructing our network, we took inspiration from
the structure of the olfactory system. Thus, the goal of the
consolidation layer is to represent the responses of olfactory
sensory neurons. In the mammalian olfactory system, each
olfactory sensory neuron produces only one type of OR
and conveys information about the odorant to the olfactory
networks (Malnic et al., 1999). To implement this constraint
in our network, since autoencoder features are purported
to represent activities of individual in silico OR types, and
since responses of olfactory sensory neurons are not sensi-
tive to the presentation angle and position of each molecule,
we averaged autoencoder feature activity over ligands’ spa-
tial and orientation variables. To represent each molecule
as input, we used its 3D structure replicated at 320 orien-
tations that uniformly sampled three solid rotation angles
forming a “magic number configuration” (Wales & Ulker,
2006). We found that the magic number representation
provides better classification accuracy than the one based
on 1000 random orientations. To summarize, the classifier
receives each molecules’ 5D input structure of dimension
183 x 6 x 320, generates a set of molecular features using
the encoder layers of DeepNose autoencoder, averages these
features over space and orientation using the consolidation
layer, and passes the resulting responses to the fully con-
nected classifier layers (Figure 3A, Table 3, Ng;,, = 1). We
trained the classifier using 10° iterations and evaluated the

performance of the test set using the network with the high-
est validation set’s correlation. DeepNose features, when
paired with a neural networks classifier, are predictive of
the water solubility with the accuracy of r = 0.96 (Figure
3B and C).

Table 3. Classifier network architecture. Layers with fixed weights
are indicated by *. L; and Lo are the number of hidden units in
the fully connected layers. For the ESOL dataset, L; = 100 and
Lo = 50. For the Good Scents and Flavornet datasets, L1 = 200
and Lo = 100. Ngin, is the dimension of the network output and
has values 1, 10, and 25 for the ESOL, Flavornet, and Good Scents
datasets, respectively.

Input Weights Output
I 18 x6x320 53x6x12 143 x 12 x 320
2% 143 x12x320 53 x12x24 10 x 24 x 320
3x 10%x24x320 5% x24x48 6% x 48 x 320
4% 63 x48%x320 52 x48x96 23 x 96 x 320
5+ 23 %96 x 320  Consolidation 96/768 x 1
6 96/768 x 1 96/768 x L1 Lix1
7 L1 x 1 L1 X L2 L2 X 1
8 L2 x 1 L2 X Ndim Ndim x 1

2.3. Analysis of olfactory perceptual spaces

It was previously argued that the human olfactory space can
be viewed as a continuous, curved, and low-dimensional
manifold (Koulakov et al., 2011). We used two olfac-
tory perceptual datasets, Flavornet and Good Scents, to
embed the space of olfactory perceptual objects (Acree &
Arn; The Good Scents Company). These two datasets con-
tain information about human responses to a large num-
ber of molecules that are represented by semantic descrip-
tors (738 molecules/197 descriptors for Flavornet and 3826
molecules/580 descriptors for Good Scents, Table 1). Be-
cause these responses are binary and sparse, for the purposes
of obtaining a robust predictor, it is more relevant to obtain
a low-dimensional approximation of the datasets and to rep-
resent each molecule by a dense coordinate along each of
the dimensions (Figure 4A, Figure 5A). To reduce the di-
mensionality of each dataset, we used the Isomap algorithm
(Tenenbaum et al., 2000). Semantic descriptors that are
significantly enriched in the positive or negative directions
of the first three dimensions are illustrated in Figures 4C-E
and 5C-E.

The first perceptual dimension with the highest included
variance has been previously argued to represent a
molecule’s pleasantness (Kepple & Koulakov, 2017). In-
deed, the first perceptual dimensions of the overlapping set
of molecules between Flavornet and Good Scents datasets
have the highest correlation coefficient amongst all dimen-
sion pairs (r = 0.54, data not shown). Interestingly, we also
found that the second dimension of Good Scents database is
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Figure 2. DeepNose autoencoder. (A) The autoencoder consists of an encoder and a decoder. The encoder transforms the input into
a latent representation, while the decoder performs the inverse operation to reconstruct the spatial structure of input molecule. The
autoencoder is trained to minimize the difference between the input and the reconstruction (the number of random orientations used
was N, = 1. (B) Pearson correlation between input and output for test set molecules as a function of the number of training iterations
(batches, 48 molecules/batch, black). Correlations for individual elements are also shown: carbon (blue), hydrogen (red), oxygen (yellow),
nitrogen (purple), sulfur (green) and chloride (cyan). (C) Examples of two molecules reconstructed by the autoencoder: trichlorobenzene
(top) and oryzalin (bottom). Each box is a 2D projection of the 3D grid for individual elements.

correlated with the third dimension of Flavornet (r = 0.44).
Overall, we reduced the dimensionality of two discrete se-
mantic datasets of molecules describing human olfactory
percepts and found that several principal dimensions in both
datasets are correlated for the overlapping set of molecules.

We then tested how robust each datasets Isomap dimensions
are to the selection of the set of molecules using resampling
techniques. To this end, we selected two random subsets
from each dataset with a small overlap (100 molecules),
performed low dimensional embedding for each subset sep-
arately, and compared Isomap dimensions for the common
set of molecules. A large correlation between two subsets
(r = 1) would imply that the given Isomap dimension is
robust to the selection of molecules. For the Good Scents
dataset, we found that the first three dimensions are more
consistent compared to other dimensions (Figure 5B), sug-
gesting that these dimensions are robust to the selection of
molecules. For Flavornet, we found that only the first dimen-
sion is consistent between the two subsets, and that other
dimensions appear uncorrelated between subsampled data
(Figure 4B). Overall, we found that the first dimension in
both datasets is both consistent between them and is robust

to the selection of molecules. Good Scents contains more di-
mensions that are robust to resampling than Flavornet (3 vs.
1), which can be attributed to a higher number of molecules
included in Good Scents compared to Flavornet (3826 vs.
738).

2.4. DeepNose features predict perceptual dimensions
with accuracy comparable or higher than Dragon
descriptors

We then used our classifier network to predict human per-
cepts (Isomap dimensions) based on 3D molecular shapes.
For each molecule in the Flavornet and Good Scents
datasets, we used the trained encoder layers and the con-
solidation layer to produce a feature vector, which were
then used as inputs to a fully connected feedforward neural
networks (Figure 3A, Table 3, Ny;,,, = 10 for Flavornet,
Ngim = 25 for Good Scents). To benchmark DeepNose
features, we used Dragon chemical descriptors often used in
olfactory predictions (Keller et al., 2017; Todeschini & Con-
sonni, 2010; Shang et al., 2017), for comparison. Dragon
features include a diverse set of 4885 molecular descriptors
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Figure 3. DeepNose classifier and its performance in predicting molecules’ water solubility. (A) The classifier consists of four encoder
layers, one consolidation layer and three fully connected layers. The encoder layers are transferred from the trained autoencoders first four
layers; the consolidation layer averages DeepNose features over N, = 320 orientations; and the fully connected layers transform the
features into the bioactivity of Ng;., dimensions. The Ng;.,, values of the water solubility (ESOL), Good Scents, and Flavornet datasets
are 1, 25, and 10, respectively. (B) Average Pearson correlation coefficient of training (black) and validation (red) set molecules for the
ESOL dataset as functions of the number of training iterations (batches, 8 molecules/batch). (C) The predicted versus measured log water
solubility for the test set molecules after training (10 iterations, r = 0.96).

ranging from simple, such as molecular weight and atomic
composition, to more complex ones, such as topological
molecular indices (Todeschini & Consonni, 2010). These
properties summarize the variables developed in computa-
tional chemistry to characterize molecules. We included
approximately 2000 Dragon descriptors that had non-trivial
values (non-zero variance) for the molecules used. Dragon
features were computed for each molecule and used as in-
puts to the fully connected layers in Figure 3A and Table 3.
We found that DeepNose features, when paired with clas-
sifier networks, gave predictions of accuracy comparable
to or exceeding Dragon descriptors. For example, for the
first dimension in Good Scents database (Figure 5C), the
median correlation between predicted and observed values
is between r = 0.67 — 0.68 if DeepNose features are used
versus r = 0.66 for Dragon features (p < 0.05, Figure 5C).
For the first dimension of Flavornet, the correlations are
between r = 0.57 — 0.59 for DeepNose features compared
to 7 = 0.54 for Dragon (p < 0.05, DeepNose 96 features,
Figure 4C). Overall, we suggest that DeepNose autoencoder
is able to automatically discover useful chemical features
from 3D shapes of molecules alone. These features are
useful in predicting human olfactory percepts.

3. Discussion

In this study, we applied neural networks to directly encode
information about 3D molecular conformations. Our main
hypothesis is that ORs act as 3D filters that are activated by
molecules’ spatial features. As such, these features can be
extracted and ORs ‘trained’ using machine learning tech-
niques, such as backpropagation. First, we used autoencoder
networks to capture the latent space sampled by molecules.
The autoencoder, in our implementation, is a convolutional
feedforward multilayer neural network which receives 3D
molecular conformations as inputs and is trained to faithfully
replicate these conformations as outputs. The information
about molecular shapes passes through the middle latent
layer, which contains about 45 times fewer variables than
both inputs and outputs. Our DeepNose autoencoder there-
fore accomplished its goal using a substantial compression
of information. Our assumption is that the ensemble of ORs
is under evolutionary pressure to provide a compressed and
accurate representation of molecular shapes that is further
interpreted by olfactory networks. Under this assumption,
we can associate the latent variables produced by our au-
toencoder with the responses of the ensemble of ORs. We
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Figure 4. Perceptual dimensions in the Flavornet dataset. (A) 3D
Isomap embedding of the dataset. Individual molecules (points,
circles) are colored according to functional clusters (Oyibo et al.,
2018). (B) Correlation coefficients of the Isomap dimensions ob-
tained from two halves of the dataset for 100 resamplings show
that only the first dimension is robust to the selection of molecules.
(C-E) Top: Word clouds showing semantic descriptors signifi-
cantly enriched in the positive (blue) or negative (red) direction of
the first, second and third Isomap dimensions. Bottom: Prediction
accuracy for these dimensions using DeepNose features or Dragon
chemical descriptors (x: p < 0.05, right-tailed Wilcoxon rank sum
test).

thus propose a framework within which the evolution of
ORs can be viewed as neural network training.

Although DeepNose latent features can be interpreted as OR
responses, it is much harder to give a biological interpreta-
tion to individual layers in our network. We could argue,
for example, that the convolutional filters in the first layer
of the autoencoder represent individual amino acids within
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Figure 5. Perceptual dimensions in the Good Scents dataset. (A)
3D Isomap embedding of the dataset. Individual molecules (points,
circles) are colored according to functional clusters (Oyibo et al.,
2018). (B) Correlation coefficients of the Isomap dimensions ob-
tained from two halves of the dataset for 100 resamplings show that
the first three dimensions are robust to the selection of molecules.
(C-E) Top: Word clouds showing semantic descriptors signifi-
cantly enriched in the positive (blue) or negative (red) direction of
the first, second and third Isomap dimensions. Prediction accuracy
for these dimensions obtained using DeepNose features or Dragon
chemical descriptors (x: p < 0.05, right-tailed Wilcoxon rank sum
test).

the OR binding pocket, while subsequent layers correspond
to assemblies of amino acids of increasing complexity. To
make our networks more similar to the biological system, in
our classifier network (Figure 3A), we placed a special layer
called ‘consolidation’. The role of this layer is to compute
the output of the encoder in a position and orientation in-
dependent manner by averaging latent variables over these
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degrees of freedom. This layer is therefore intended to repli-
cate the outputs of olfactory sensory neurons which are not
sensitive to the ligand’s position and orientation in space.

In our study, we proposed a new way of representing small
molecules that is inspired by the interaction between odor-
ants and ORs. At the core of our approach is the realization
that each molecule is not a single 3D object but a large
number of such objects differing in orientations. Although
the visual system is exposed to a single image at a time,
olfactory system simultaneously deals with thousands of
such 3D images, approaching ORs at different orientations.
This is the key difference between the visual and olfactory
systems, which is reflected explicitly in our network archi-
tecture. Thus, we represented each molecule by a 5D array:
3 spatial, 1 element, and 1 orientation dimensions. Overall,
in our study, we adjusted network architecture to reflect
the specifics of olfactory stimuli, such as multiple inputs
presented simultaneously at different orientations.

We further used the features generated by our network to
replicate human olfactory percepts. Because of the need
for a large number of molecules in the training set, we used
large olfactory perceptual datasets (Good Scents and Fla-
vornet) that place molecules into discrete semantic space
and contain thousands of molecules. We described olfac-
tory percepts by the salient dimensions captured by Isomap
(Figures 4 and 5A). We added several fully connected clas-
sifier layers that crudely approximated olfactory networks,
which, in reality, have recurrent structures. We found that
the autoencoders 96 latent features yield a good predic-
tive value to the first Isomap perceptual dimension (median
r ~ 0.67 — 0.68 for the largest olfactory dataset). These
values of correlation were comparable to the ones generated
by state-of-the-art molecular descriptors used computational
chemistry (Dragon, median » = 0.66). This finding sug-
gests that DeepNose features represent variables relevant
to human olfaction. DeepNose features are computed for
each molecule de novo, based on its 3D shape only. As such,
they can be interpreted as outputs of OR ensemble. We
therefore suggest that our networks provide a useful set of
molecular descriptors that can also be interpreted as outputs
of biophysical ORs. When information about responses
of real ORs becomes available for a substantial number of
ligands, DeepNose features can be adapted to resemble their
biological counterparts.

4. Methods
4.1. Datasets

PubChem PubChem is a publicly available dataset that
contains more than 200 million unique molecules (Kim
et al., 2016). PubChem3D contains precomputed 3D con-
formations of molecules. PubChem3D included up to ten

conformations per molecule while attempting to maintain
coverage and match experimentally-determined 3D struc-
tures (Bolton et al., 2011). To consider molecules that are
odorant-like, we further filtered for those that weigh less
than 350 g/mol and contain up to six elements - C, H, O, N,
S, and Cl, or "CHONSCI”. We randomly selected 105 of
these eligible molecules to serve as the training set of the
DeepNose autoencoder.

ESOL The ESOL dataset contains 1144 molecules with
measured water solubility (Delaney, 2004). We used this
dataset to test the ability of DeepNose features to predict
water solubility.

Flavornet The Flavornet dataset contains 738 odorant
molecules associated with one or more perceptual descrip-
tors, such as flower, lemon, fish, etc. There are 197 of these
descriptors (Acree & Arn). We used this dataset to test the
ability of DeepNose features to predict odorant percepts.

Good Scents The Good Scents dataset contains 3826 per-
fumes associated with one or more semantic perceptual
descriptors, such as fruity, woody, citrus, etc. There are
580 of these descriptors (The Good Scents Company). We
used this dataset to test the ability of DeepNose features to
predict odorant percepts.

4.2. Dimensionality reduction of perceptual datasets

We used Isomap to reduce dimensionality of perceptual de-
scriptors in Flavornet and Good Scents datasets (Tenenbaum
et al., 2000; Kepple & Koulakov, 2017). For each dataset,
we constructed a graph in which each molecule is a node
and two molecules are connected by an edge if they share a
semantic descriptor. The distance between two connected
molecules is calculated based on the overlap between those
two molecules percepts, according to the following equa-
tions: E;; = 1—0;;/+/0i; x Oj;. Here O;; is the number
of semantic descriptors shared by molecules ¢ and j. We
then used Isomap to compute geodesic distance between all
pairs of molecules and embed them into a low dimensional
space. We tested the ability of DeepNose features to predict
these perceptual dimensions against molecular descriptors
produced by the Dragon 6 software (Todeschini & Consonni,
2010).

One way to visualize what is represented by each Isomap
dimension is to identify perceptual descriptors that are en-
riched in the positive or negative directions of particular
dimensions. For example, if a descriptor is associated with
N molecules, that descriptor is mapped to N values on
the first Isomap dimension. We compared the distribution
of these NV Isomap values associated with each semantic
descriptor to the distribution of all descriptors using the
non-parametric Mann-Whitney U test. We obtained a set
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of semantic descriptors that are significantly enriched in
the positive or negative directions of each Isomap dimen-
sion. These descriptors are displayed as word clouds (Figure
4C-E, Figure 5C-E).

Second, we tested how robust Isomap dimensions are to
subsampling within each dataset. To do that, we selected
two random subsets from each dataset with a small overlap
(100 molecules), performed low dimensional embedding for
each subset separately, and compared Isomap dimensions
for the common set of molecules. We repeated this analysis
for 100 times and calculated the Pearson correlation coef-
ficients between the two subsets for each dimension. For
each dimension, if correlations are near 1 or -1, this Isomap
dimension may be considered robust to molecular compo-
sition. The distributions of these correlations are shown in
Figures 4B and 5B.

Since 520 molecules are present in both Flavornet and the
Good Scents datasets, we also tested how much these two
datasets correlate for these molecules. We calculated the
Pearson correlation coefficient between Isomap dimensions
in two datasets for overlapping set of molecules. We found
that Isomap dimensions 1 and 2 of Good Scents is signifi-
cantly correlated (r = 0.4 — 0.5) with dimensions 1 and 3
of Flavornet, respectively.

4.3. Input representation

Just as images are represented as 2D objects grouped into
separate RGB channels, in our approach, molecules are pre-
sented to the network as 3D objects grouped into six chan-
nels corresponding to chemical elements (C, H, O, N, S,
CI, or CHONSCI). Spatial distribution of atoms of the same
type is represented by a 3D grid. We used grids that are 17A
on each side, with a resolution of 1 A. Each atom is a 3D
Gaussian distribution centering around its xyz-coordinates
provided by PubChem3D (Kim et al., 2016). We use a fixed
standard deviation of 1 A for all elements. To incorporate
different orientations of the molecules, we sample N, ro-
tation angle for every training instance of the molecules,
where N, = 1 for the autoencoder network and N, = 320
for the classifier network.

4.4. Training DeepNose autoencoder

The goal of autoencoder is to produce a compact represen-
tation of the space of molecules. It consists of two convo-
lutional neural networks: an encoder, which converts each
molecular structure into a feature vector, and a decoder,
which recovers the structure (Figure 2, Table 2). We re-
stricted the feature vector to have a lower dimensionality
than the input, and therefore induced the network to learn
a latent representation that captures the most statistically
salient information in the molecule’s structures. We refer to
this latent representation as DeepNose features.

One training instance can include one or more orientations,
and the same weights are used for each orientation. The
autoencoder is trained to minimize the /o norm error using
the backpropagation algorithm (Rumelhart et al., 1985).
We used a learning rate of 2 x 107 and a momentum of
0.9. We trained the network using 4 x 10 batches, with
each batch containing 48 molecules. We used a training
set of randomly selected 105 PubChem3D molecules and
cross-validated our network with a test set of randomly
selected 92 molecules in the ESOL dataset. We evaluated
the network performance by calculating the pixel-to-pixel
error and correlation between the original molecules and the
reconstructed molecules in the test set.

4.5. DeepNose classifier

The input of the classifier is a SD object, similar to that of the
autoencoder. We pair the trained encoder layers of our Deep-
Nose autoencoder with fully connected feedforward layers
to predict bioactivities of molecules (Table 1), including sol-
ubility and perceptual coordinates. Since molecules adopt
multiple conformations and orientations, we made a simpli-
fying assumption that the different orientations contribute
with equal probability to its activity. We therefore added a
consolidation layer, which averages network activity over
multiple orientations of the same molecules within the same
latent feature. We used the “magic number configuration’
that uniformly sampled three solid rotation angles to get
N, = 320 orientations and found that this representation
provide better classification accuracy than using N, = 1000
random orientations (Wales & Ulker, 2006).

s

Thus, each molecule is converted to a vector of either 96
DeepNose features (after consolidating over space and ori-
entation), 768 DeepNose features (after consolidating over
orientation), or 2000 non-trivial Dragon features (non-zero
variance). These features are fed into the fully connected
classifier layers. The classifier (Figure 3A, Table 3) is
trained to minimize the /s norm error. Weights in the the
first four layers are transferred from the autoencoder’s en-
coder layers and fixed. For the ESOL dataset, we used an [y
regularizer A\ = 1073 and a learning rate of 10~3. For the
Flavornet and Good Scents datasets, we used an /5 regular-
izer A = 1072 and a learning rate of 10~3. For all datasets,
we trained the networks for 10° batches, with each batch
containing 8 molecules. We split the dataset into three sets,
70%, 15% and 15%, for training, validation and test sets,
respectively. We evaluated the test set using the models with
the highest validation set’s correlation.
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