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A. Additional Experimental Details and Empirical Results
A.1. Experimental Details

For all experiments we sampled β from an isotropic Gaussian prior with unit variance. For all synthetic data results we first
generated a design matrix by sampling from a zero-mean Gaussian with diagonal covariance Σ with each Σi,i = 5 ∗ 1.05−i.
We then used a scikit-learn (Pedregosa et al., 2011) implementation of a randomized SVD algorithm due to Halko et al.
(2011), computed from two iterations (i.e., passes through X).

To assess robustness, in all experiments we used three or more replicate experiments, defined by independently generated
synthetic datasets or train/test splits as well as re-rerunning the randomized truncated SVD.

The performance of the Diagonal Laplace approximation is dependent upon the shape the exact posterior at βMAP. In
particular, using a dataset with axis aligned covariance structure gives Diagonal Laplace an unrealistic advantage given
that in most real applications we do not believe that low-rank structure will be axis aligned. As such, for all synthetic data
experiments presented, we randomly generated a basis of orthonormal vectors and used this basis to rotate our the design
matrix. This rotation preserves the spectral decay of the data but eliminates the axis alignment of the synthetic data.

In all experiments we consider N = 2,500 training examples. We obtained results on “Out of Sample Data” (in Figures A.1
and A.5) by sampling X from an alternative distribution over covariates. Specifically, we generated these out-of-sample
covariates in the manner described above, but with a different random rotation matrix.

We found MAP estimation using L-BFBS-B to be the most efficient of several available options in the scipy optimize library,
and used this method in all MAP estimation and Laplace approximation experiments.

For all Bayesian predictions, we use the probit approximation to the logistic function to enable fast approximation (Bishop,
2006, Chap. 4.5).

A.2. Additional Figures

In Figure A.1 we present results on prediction performance, in term of classification error, as well as negative log likelihood,
reported for “Training”, “Test”, and “Out of Sample Data”. In Figure A.2 we report the error of LR-Laplace and Random-
Laplace relative to NUTS for estimation of posterior means and variances. We see here that the estimates exhibit behavior
increasingly similar to that of the prior as the rank of the approximation, M , decreases. Next, Figure A.3 depicts the same
error trends for LR-MCMC using NUTS in Stan. We report calibration performance of the approximations of interest for
credible sets of parameters (Figure A.4) as well as for prediction (Figure A.5).

We additionally include results analogous to those in the main text for Laplace approximations using low-rank data
approximations to perform faster MCMC using NUTS with Stan (Carpenter et al., 2017), in Figure A.6. Finally, we also
here provide the relative error of posterior mean and standard deviation estimation for logistic regression with a regularized
horseshoe prior using the LR-MCMC approximation in Figure A.7. This experiment uses Stan for inference as well.

A.2.1. HORSESHOE LOGISTIC REGRESSION EXPERIMENT

For the logistic regression experiment using a regularized horseshoe prior we used N = 1,000 data points of dimension
D = 200. We used ten non-zero effects, each of size 10. Our implementation of the regularized horseshoe and inference in
Stan closely followed M. Betancourt’s “Bayes Sparse Regression” case study.6 We generated covariates as described in the
previous section.

A.3. Stan Model Code

First we show Stan code for Bayesian logistic regression.

data {
int<lower=1> N; // # of data
int<lower=1> D; // # of covariates
matrix[N, D] X; // Design matrix

6https://betanalpha.github.io/assets/case_studies/bayes_sparse_regression.html

https://betanalpha.github.io/assets/case_studies/bayes_sparse_regression.html
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Figure A.1. Predictive performance of posterior approximations in Bayesian logistic regression in terms of (Top) classification error and
(Bottom) average negative log likelihood (NLL) of responses under approximate posterior predictive distributions on (Left) train, (Center)
test and (Right) out of sample datasets. Lower is better.

Figure A.2. Approximate posterior mean and standard deviation across a parameter subset as M varies. Horizontal axis represents ground
truth from running NUTS using Stan without the LR-GLM approximation. D = 250.

int<lower=0> y[N]; // labels
real<lower=0> sigma;

}
parameters {
vector[D] beta;

}
model {
beta ˜ normal(0, sigma);
y ˜ bernoulli_logit(X * beta);

}

Second, we show Stan code for logistic regression with our low-rank approximation.

data {
int<lower=1> N; // # of data
int<lower=1> D; // # of covariates
int<lower=1> M; // Projected dimension



LR-GLM: fast GLMs with low-rank approximations

Figure A.3. This figure is analogous to Figure A.2 but examines the trade-off between computation and accuracy of LR-MCMC using
NUTS in Stan. D = 250.

Figure A.4. Credible set calibration. The fraction of parameters in the credible sets defined by different lower tail intervals as a function of
the approximate posterior probability of parameters taking values in that interval. The black dotted line (on the diagonal) reflects perfect
calibration.

matrix[D, M] U; // Projection matrix
matrix[N, M] barX; // Projected design matrix
int<lower=0> y[N]; // labels
real<lower=0> sigma;

}
parameters {
vector[D] beta;

}

transformed parameters {
vector[M] bar_beta = U’ * beta;

}
model {
beta ˜ normal(0, sigma);
y ˜ bernoulli_logit(barX * bar_beta);

}
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Figure A.5. Prediction calibration.

B. Related Work on Scalable Bayesian Inference
Developing scalable approximate Bayesian inference for models with many parameters (largeD) and many data points (large
N ) has been active area of research for decades, and researchers have developed a large variety of methods applicable to
GLMs. Historically, Markov chain Monte Carlo (MCMC) methods based on the Metropolis-Hastings algorithm (Metropolis
et al., 1953; Hastings, 1970) have been dominant. However MCMC is computationally expensive on large-scale problems
in which both D and N are very large. In particular, each likelihood evaluation requires O(DN) time, due to the matrix
vector product Xβ. Further, estimating posterior covariances uniformly well requires O(logD) samples (Cai et al., 2010).
Therefore, the total cost of collecting those samples is O(ND logD) time in the case of perfect, independent Monte Carlo
samples. In practice, though, mixing times may also have unfavorable scaling with dimensionality and sample size; these
issues can lead to even worse scaling in N and D. Several lines of research have explored the use of subsampling methods
to reduce the dependence on N . But these methods either lose the asymptotic guarantees of exact MCMC or fail to provide
faster inference in practice due to poor mixing behavior (Bardenet et al., 2017).

Other work has pursued deterministic approximations to the Bayesian posterior. Some of the most widely used of these
approximations include (1) the Laplace approximation, which is a Gaussian approximation of the posterior defined locally at
the posterior mode, (2) extensions of the Laplace approximation such as the integrated nested Laplace approximation (INLA)
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Figure A.6. This figure is analogous to Figure 2A but assesses LR-MCMC using NUTS in Stan rather than LR-Laplace. D = 250.

Figure A.7. Bayesian logistic regression with a regularized Horseshoe prior using NUTS in Stan. The red vertical line indicates the
runtime of inference with Stan using the exact likelihood.

(Rue et al., 2009), and (3) variational Bayes; see, e.g., (Bishop, 2006, Chap. 10) and (Blei et al., 2017). However, these
approaches also scale poorly with dimension in general. The Laplace approximation requires computing and inverting the
Hessian of the log posterior which demandO(ND2) andO(D3) time respectively, in order to compute approximate posterior
means and variances. In the N � D setting, this cost can be reduced to O(N2D) time (Appendix C). However, in large-N
settings of interest, the O(N2D) cost can be prohibitive as well. The cost of inference is further compounded when we give
a fully Bayesian treatment to model hyperparameters as well as parameters; e.g., INLA requires this heavy computation
for each nested approximation. In the face of difficulties posed by high dimensionality, practitioners frequently turn to
factorized (or “mean-field”) approximations. In the case of VB, the mean-field approach can yield biased approximations
that underestimate uncertainty (MacKay, 2003; Turner & Sahani, 2011). Likewise, factorized Laplace approximations,
which approximate the Hessian with only its diagonal elements, similarly underestimate uncertainty (Appendix F.8).

Some more recent work has approached scalable approximate inference in generalized linear models with theoretical
guarantees on quality in the large-N regime by using likelihood approximations that are cheap to evaluate (Huggins et al.,
2017; Campbell & Broderick, 2019; 2018; Huggins et al., 2016). But these methods fail to scale well to the large-D case.

More closely related to the present work, Geppert et al. (2017) and Lee & Oh (2013) focus on conjugate Bayesian regression,
respectively using random projections and principle component analysis to define low-rank descriptions of the design. Lee
& Oh (2013) restrict their consideration to the exactly low-rank case and primarily discuss the asymptotic consistency of the
resulting posterior mean without discussing computational considerations. Spantini et al. (2015) use conjugate Bayesian
regression as stepping-off point to derive a point estimator for Bayesian inverse problems. Guhaniyogi & Dunson (2015) use
random projections for Bayesian GLMs but focus on predictive performance rather than parameter estimation. Outside the
Bayesian context, Zhang et al. (2014), Wang et al. (2017), and many others have analyzed random projections for regression
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and classification using, for example, an M-estimation framework.

C. Fast matrix inversions in the N � D setting
In this section we focus on Gaussian conjugate linear regression with N � D. In this case, we can detail formulas for more
efficient computation of the posterior mean and covariance. We start from the standard expressions for the posterior mean
µN and covariance ΣN when the prior is mean zero with covariance Σβ ; see Section 3 and Section 4.1 for further notation
and setup of the model. These expressions are:

Σ−1
N = Σ−1

β + τX>X (C.1)

µN = τΣNX
>Y. (C.2)

Using these formulas naively in the D � N setting is computationally expensive due to the O(D3) time cost of matrix
inversion and O(D2) storage cost.

Using the Woodbury matrix identity, (A−1 + UCV )−1 = A − AU(C−1 + V AU)−1V A, allows us to write ΣN =
(Σ−1

β +X>(τIN )X)−1 as

ΣN = Σβ − ΣβX
>(τ−1IN +XΣβX

>)−1XΣβ . (C.3)

Computing ΣN via Eq. (C.3) requires only O(DN2) cost for the matrix multiplications and an O(N3) cost for the matrix
inversion. The posterior mean µN may then be computed in O(ND) time by multiplying through by X>Y . These time
costs can be significant reductions over the naive O(D3) cost when N � D.

Fast inversions for the Laplace approximation to the GLM posterior

We here show that the same approach described above may be used for the Laplace approximation in the context of Bayesian
GLMs. We say that we have a GLM likelihood if we can write

p(Y | β,X) =

N∑
n=1

φ(yn, x
>
n β)

for some mapping function φ : R× R→ R. The Bayesian posterior then becomes

log p(β | X,Y ) = log p(β) +

N∑
n=1

φ(yn, x
>
n β) + Z, (C.4)

where Z is a typically-intractable log normalizing constant.

Due to the analytic intractability of posterior inference in many common GLMs, approximations are necessary; the Laplace
approximation is a particularly widely used approximation and takes the form

p̄(β) = N (β | µ̄, Σ̄), (C.5)

where µ̄ := arg maxβ log p(β | X,Y ) and Σ̄ :=
(
−∇2

β log p(β|X,Y )|β=µ̄

)−1

. However, as in the conjugate case,
computing this matrix inverse naively can be expensive in the high-dimensional setting, and we are motivated to consider
more computationally efficient routes to evaluate it. In settings when N � D and when we have a Gaussian prior
p(β) = N (β | µβ ,Σβ), we may take an approach similar to our approach in the conjugate case. We first note

∇2
β log p(β | X,Y )|β=µ̄ = −Σ−1

β +X>diag(~φ′′(Y,Xµ̄))X, (C.6)

where ~φ′′(Y,A) is a vector in RN defined such that for any n in 1, 2, . . . , N , ~φ′′(Y,A)n := d2

da2φ(yi, a)|a=An . Applying
the same trick to this expression as before, we obtain

Σ̄N =
(
−∇2

β log p(β | X,Y )|β=µ̄

)−1
= Σβ − ΣβX

>(diag[−~φ′′(Y,Xµ̄)]−1 +XΣβX
>)−1

XΣβ , (C.7)

which again can yield computational gains.

It is worth noting however that this route is more computationally efficient only when the prior covariance matrix is structured
in some way that allows for fast matrix-vector and matrix-matrix multiplications. This will be the case, for example, if Σβ is
diagonal, block-diagonal, banded diagonal, or diagonal plus a low-rank matrix.
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D. Conjugate Gaussian regression with exactly low rank design
D.1. Derivation of Eq. (2)

Here we consider the setting of conjugate Bayesian linear regression, with X exactly low rank and Σβ = σ2
βID, as detailed

in Section 4.1. We now derive the expressions (Eq. (2)) for the mean and covariance of the Gaussian posterior for β in this
case. We suppose X = V diag(λ)U> for U, V matrices of orthonormal rows and λ a vector. The preceding equation for X
will capture low rank structure when U ∈ RD×M for some M with M � min(D,N).

For the covariance, we start from Eq. (C.1). Then we can rewrite ΣN as follows.

ΣN =
(
σ−2
β ID + τX>X

)−1

=
(
σ−2
β ID + τUdiag(λ)V >V diag(λ)U>

)−1

=
(
σ−2
β ID + Udiag(τλ� λ)U>

)−1

where � denotes component-wise multiplication, in this case across the components of the vector λ

= σ2
βI − σ2

βU(diag(τλ� λ)−1 + σ2
βIM )−1U>σ2

β

by the Woodbury matrix identity and U>U = IM

= σ2
βI − σ2

βUdiag

{(
1

τλ� λ
+ σ2

β1M

)−1

σ2
β

}
U>

where division within the diag input is component-wise and 1M is the all-ones vector of length M

= σ2
β

(
ID − Udiag

{
τλ� λ

σ−2
β 1M + τλ� λ

}
U>

)
.

Starting from Eq. (C.2), we can rewrite the posterior mean as follows.

µN = τΣNX
>Y

= τσ2
β

(
ID − Udiag

{
τλ� λ

σ−2
β 1M + τλ� λ

}
U>

)
Udiag(λ)V >Y

from the derivation above and substituting for X

= τσ2
β

(
U − Udiag

{
τλ� λ

σ−2
β 1M + τλ� λ

})
diag(λ)V >Y

since U>U = IM

= τσ2
βU

(
IM − diag

{
τλ� λ

σ−2
β 1M + τλ� λ

})
diag(λ)V >Y

= Udiag

{
τλ

σ−2
β 1M + τλ� λ

}
V >Y.

E. Proofs and further results for conjugate Bayesian linear regression with low-rank data
approximations

E.1. Proof of Theorem 4.1

Recall that for conjugate Gaussian Bayesian linear regression, the exact posterior is p(β | X,Y ) = N (β | µN ,ΣN ), where
µN and ΣN are given in Eqs. (C.1) and (C.2).

Using an orthonormal projection U yields a Gaussian approximate posterior p̃(β | X,Y ) = N (β | µ̃N , Σ̃N ). Recall
from Section 3 that we obtain this approximate posterior by replacing X with XUU>. Thus, we can find µ̃N and Σ̃N by
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consulting Eqs. (C.1) and (C.2):

Σ̃−1
N = Σ−1

β + τUU>X>XUU> (E.1)

µ̃N = τ̃ΣNUU
>X>Y. (E.2)

Upper bound on the posterior mean approximation error

We will obtain our upper bound on the error of the approximate posterior mean relative to the exact posterior mean by upper
bounding the norm of the difference between the gradient of the log posterior with respect to β at the approximate posterior
mean, µ̃N , and the exact posterior mean, µN . Together with the strong convexity of the negative log posterior, this bound
will allow us to arrive at the desired upper bound on ‖µN − µ̃N‖2.

First, we bound the norm of the gradient difference. To that end, the gradients of the exact log likelihood and the approximate
log likelihood are given by

∇β log p(Y | X,β) = ∇β
[
−τ

2
(Xβ − Y )>(Xβ − Y )

]
= −τ(X>Xβ −X>Y )

and

∇β log p̃(Y | X,β) = ∇β
[
−τ

2
(XUU>β − Y )>(XUU>β − Y )

]
= −τ(UU>X>XUU>β − UU>X>Y ).

We can thus upper bound the norm of the difference between the two log posteriors as follows.

‖∇β log p̃(β | X,Y )−∇β log p(β | X,Y )‖2
= ‖∇β log p̃(Y | X,β)−∇β log p(Y | X,β)‖2

since the prior is the same in both the exact and approximate model
and since the normalizing constant has no β dependence

=
∥∥−τ (UU>X>XUU>β − UU>X>Y )+ τ

(
X>Xβ −X>Y

)∥∥
2

= τ
∥∥(X>X − UU>X>XUU>)β + UU>X>Y −X>Y

∥∥
2

= τ
∥∥Ū Ū>X>XŪŪ>β − Ū Ū>X>Y ∥∥

2

where Ū (above) as well as λ̄ and V̄ (below) are defined in Section 3

= τ
∥∥Ūdiag(λ̄� λ̄)Ū>β − Ūdiag(λ̄)V̄ >Y

∥∥
2

≤ τ
(∥∥Ūdiag(λ̄� λ̄)Ū>β‖2 + ‖Ūdiag(λ̄)V̄ >Y

∥∥
2

)
by the triangle inequality

= τ
(∥∥diag(λ̄� λ̄)Ū>β‖2 + ‖diag(λ̄)V̄ >Y

∥∥
2

)
since ‖v‖22 = v>v for a vector v and U>U = IM

≤ τ
(∥∥diag(λ̄� λ̄)

∥∥
op

∥∥Ū>β‖2 + ‖diag(λ̄)‖op‖V̄ >Y
∥∥

2

)
by definition of the operator norm in this space

= τ
(
λ̄2

1‖Ū>β‖2 + λ̄1‖V̄ >Y ‖2
)

(E.3)

Second, we need a result that will let us use the strong convexity of the negative log posterior. We prove the following result
in Appendix E.2.
Lemma E.1. Let f, g be twice differentiable functions mapping RD → R and attaining minima at βf = arg minβ f(β)
and βg = arg minβ g(β), respectively. Additionally, assume that f is α–strongly convex for some α > 0 on the set
{tβf + (1− t)βg|t ∈ [0, 1]} and that ‖∇βf(βg)−∇βg(βg)‖2 = ‖∇βf(βg)‖2 ≤ c. Then

‖βf − βg‖2 ≤
c

α
. (E.4)
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To use the preceding result, we need a lower bound on the strong convexity constant of the negative log posterior; we
now calculate such a bound. We have that µN and µ̃N are the maximum a posteriori values of β under p(β|X,Y, α) and
p̃(β|X,Y, α), respectively; equivalently they minimize the respective negative log of these distributions. For a matrix
A, let λmin(A) denote its minimum eigenvalue. The Hessian of the negative log posterior with respect to β is precisely
Σ−1
β + τX>X everywhere. So the negative log posterior is α–strongly convex, where

α = λmin(Σ−1
β + τX>X) ≥ λmin(Σ−1

β ) + τλmin(X>X) = ‖Σβ‖−1
2 + τ λ̄2

D−M . (E.5)

In the first part of the final equality above, we use that the spectral norm of a matrix inverse is equal to the reciprocal of the
minimum eigenvalue of the matrix.

Now we have an upper bound on the norm of the difference in gradients of the negative log posteriors (the same as for the
log posteriors, in Eq. (E.3)) and a lower bound on the strong convexity constant from Eq. (E.5). So we can apply these
together with Lemma E.1 to find

‖µN − µ̃N‖2 ≤
τ
(
λ̄2

1‖Ū>µ̃N‖2 + λ̄1‖V̄ >Y ‖2
)

α
by Lemma E.1 taking log p(β|X,Y ) and log p̃(β|X,Y )

as f and g respectively, with c given by Eq. (E.3)

≤
τ
(
λ̄2

1‖Ū>µ̃N‖2 + λ̄1‖V̄ >Y ‖2
)

‖Σβ‖−1
2 + τ λ̄2

D−M

by Eq. (E.5)

=
λ̄1

(
λ̄1‖Ū>µ̃N‖2 + ‖V̄ >Y ‖2

)
‖τΣβ‖−1

2 + λ̄2
D−M

.

Notably, in the common special case that Σβ is diagonal, as we saw in Section 4.1, µ̃N will be in the span of U , and we will
have that ‖Ū>µ̃N‖2 = 0.

Error in Posterior Precision

The error in the precision matrices for the approximate and exact posteriors in linear regression are particularly straightfor-
ward since they do not depend on the responses, Y . In particular, we have

Σ−1
N − Σ̃−1

N = (Σ−1
β + τX>X)− (Σ−1

β + τUU>X>XUU>) (E.6)

= τX>X − τUU>X>XUU> (E.7)

= τŪŪ>X>XŪŪ> (E.8)

= τŪdiag(λ̄� λ̄)Ū>. (E.9)

Thus, since it is equal to the maximum eigenvalue, the spectral norm of the error in the precisions is precisely ‖Σ−1
N −

Σ̃−1
N ‖2 = τ λ̄2

1.

E.2. Proof of Lemma E.1

By the fundamental theorem of calculus, we may write

∇βf(β) = ∇βf(βg) +

∫ 1

t=0

(β − βg)>∇2
βf(tβ + (1− t)βg)dt.

Considering the norm of∇βf(β) and applying the triangle inequality provides that for any β in {tβf+(1−t)βg | t ∈ [0, 1]},

‖∇βf(β)‖2 ≥
∥∥∥∥∫ 1

t=0

(β − βg)>∇2
βf(tβ + (1− t)βg)dt

∥∥∥∥
2

− ‖∇βf(βg)‖2 (E.10)

≥ ‖β − βg‖2
∥∥∥∥∫ 1

t=0

∇2
βf(tβ + (1− t)βg)dt

∥∥∥∥
2

− ‖∇βf(βg)‖2 (E.11)

≥ ‖β − βg‖2α− ‖∇βf(βg)‖2. (E.12)
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Figure E.1. Example of posterior approximations with different projections (characterized by U ) for increasing sample sizes. Each plot
shows the contours of three densities: the prior, likelihood, and posterior (or approximations thereof). The top row shows the exact
posterior. The middle row shows the approximations found by using the best rank-1 approximation to X . The bottom row shows the
approximations found using the orthogonal rank-1 approximation. The star is at the parameter value used to generate simulated data for
these plots.

We consider this bound at βf . Recall we assume that ‖∇βf(βg)‖2 ≤ c. And ‖∇βf(βf )‖2 = 0 since f is twice differentiable.
Therefore, we have that 0 ≥ ‖βf − βg‖2α− c, and the result follows.

E.3. Proof of Corollary 4.2

Our approach is to show that

µ̃N
p→ ΣβU∗(U

>
∗ ΣβU∗)

−1U>∗ β. (E.13)

We then appeal to the following result, which we prove in Appendix E.4:
Lemma E.2. µ̃ := ΣβU(U>ΣβU)−1U>β is the vector of minimum Σ−1

β -norm satisfying U>µ̃ = U>β.

Finally, for any closed S ⊂ RD, µ̃ = arg minv∈S ‖v‖Σ−1
β

= arg maxv∈S − 1
2v
>Σ−1

β v = arg maxv∈S N (0,Σβ). There-
fore, the µ̃ in Lemma E.2 is the maximum a priori vector satisfying the constraint in Lemma E.2.
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We first turn to proving Eq. (E.13). Let UNdiag(λ(N))V >N denote the M -truncated SVD of the design matrix consisting

of N samples X = (x1, x2, . . . , xN ) where xi
i.i.d.∼ p∗. When the low rank approximation is defined by this SVD, from

Eq. (E.1) we have that µ̃N = τ Σ̃NUNU
>
NX

>Y . Noting that Y = Xβ + 1
τ ε for some ε ∈ RN with εi

i.i.d.∼ N (0, 1), we may
expand this out and write:

µ̃N = τ(Σ−1
β + UNU

>
NX

>τXUNU
>
N )−1UNU

>
NX

>(Xβ +
1

τ
ε)

= τ
{

Σ−1
β + UN

[
τdiag(λ(N) � λ(N))

]
U>N

}−1

UNdiag(λ(N))V >N

[
VNdiag(λ(N))U>Nβ +

1

τ
ε

]
=
{

Σ−1
β + UN

[
τdiag(λ(N) � λ(N))

]
U>N

}−1

UN

[
τdiag(λ(N) � λ(N))

] [
U>Nβ + diag(λ(N))−1V >N

1

τ
ε

]
= ΣβUN

[
U>NΣβUN + τ−1diag(λ(N))−2

]−1
[
U>Nβ + diag(λ(N))−1V >N

1

τ
ε

]
P→ ΣβU∗(U

>
∗ ΣβU∗)

−1U>∗ β,

where in the fourth line we use the matrix identity, (R−1 + W>QW )−1W>Q = RW>(WRW> + Q−1)−1 (Petersen
& Pedersen, 2008). Convergence in probability in the last line follows since diag(λ(N)−2

)
P→ 0 (Vershynin, 2012) and

UN
P→ U .

E.4. Proof of Lemma E.2

We show that β∗ = ΣβU(U>ΣβU)−1U>β is the vector of minimum norm satisfying the above constraints in the Hilbert
space RD with inner product 〈v1, v2〉 = v>1 Σ−1

β v2 for vectors v1, v2 ∈ RD.

Define β∗ as

β∗ = arg min
v∈RD

‖v‖Σ−1
β

subject to U>v = U>β (E.14)

First note that the condition U>β∗ = U>β may be expressed as a set the M linear constraints

〈ΣβU [:, i], β∗〉 = U [:, i]>β (E.15)

for i = 1, 2, . . . ,M . We thereby see that the constraint restricts β∗ to the linear variety β +
[{

ΣβU [:, i]
}M
i=1

]⊥
, where

[
A
]

denotes the subspace generated by the vectors of the set A and
[
A
]⊥

denotes the set of all vectors orthogonal to
[
A
]

(i.e.

the orthogonal complement of
[
A
]
). By the projection theorem (Luenberger, 1969), β∗ is orthogonal to

[{
ΣβU [:, i]

}M
i=1

]⊥
,

or β∗ ∈
[{

ΣβU [:, i]
}M
i=1

]⊥⊥
=
[{

ΣβU [:, i]
}M
i=1

]
. We can therefore write β∗ as a linear combination of the vectors{

ΣβU [:, i]
}M
i=1

; that is, for some c in RM

β∗ = ΣβUc. (E.16)

Our constraints in Eq. (E.15) then demand that 〈ΣβU [:, i],ΣβUc〉 = U [:, i]>β for each i, or equivalently that
U>ΣβΣ−1

β ΣβUc = U>β. This implies that c = (U>ΣβU)−1U>β. Plugging this into Eq. (E.16) yields β∗ =

ΣβU(U>ΣβU)−1U>β, as desired.

E.5. Proof of Corollary 4.3

Recall that we wish to show that, for conjugate Bayesian regression, under p̃ the uncertainty (i.e., posterior variance) for
any linear combination of parameters, Varp̃[v

>β], is no smaller than the exact posterior variance. First, we note that this
statement is formally equivalent to stating that v>Σ̃Nv ≥ v>ΣNv, or that E := Σ̃N − ΣN � 0 (where � denotes positive
definiteness). By Theorem 4.1, Σ−1

N − Σ̃−1
N = Ūdiag(λ̄2)Ū> � 0. Since this implies that the inverse of the difference

of these matrices is positive definite, we can then see that (Σ−1
N − Σ̃−1

N )−1 = Σ̃N (Σ̃N − ΣN )−1ΣN � 0. Because, as
valid covariance matrices, ΣN and Σ̃N are both positive definite, and because inverses and product of positive definite
matrices are positive definite, this implies that Σ̃−1

N Σ̃N (Σ̃N − ΣN )−1ΣNΣ−1
N = (Σ̃N − ΣN )−1 � 0. Finally, this implies

that Σ̃N − ΣN � 0 as desired.
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E.6. Information loss due the LR-GLM approximation

We see similar behavior to that demonstrated in Corollary 4.3 in the following corollary, which shows that our approximate
posterior never has lower entropy than the exact posterior. Concretely, we look at the reduction of entropy in the approximate
posterior relative to the exact posterior (MacKay, 2003), where entropy is defined as:

H
[
p(β)

]
:= Ep[− log2 p(β)]

Corollary E.1. The entropy H
[
p̃(β|X,Y )

]
is no less than H

[
p(β|X,Y )

]
. Furthermore, when using an isotropic Gaussian

prior Σβ = σ2
βI , the information loss relative to the exact posterior (in nats) is upper bounded as H

[
p̃(β|X,Y )

]
−

H
[
p(β|X,Y )

]
≤ τσ2

β

2

∑D−M
i=1 λ̄2

i .

This result formalizes the intuition that the LR-GLM approximation reduces the information about the parameter that we are
able to extract from the data. Additionally, the upper bound tells us that when U is obtained via an M truncated SVD, at
most τσ2

βλ̄
2
1/2 additional nats of information would have been provided by using the M + 1-truncated SVD.

Proof. The entropy of the exact and approximate posteriors are given as:

H(p) = −1

2
log |2πeΣ−1

N | = −
1

2

[
D log 2πe+

D∑
i=1

log(σ−2
β + τλ2

i )
]

and

H(p̃) = −1

2
log |2πeΣ̃−1

N | = −
1

2

[
D log 2πe+

M∑
i=1

log(σ−2
β + τλ2

i )−
D∑

i=M+1

log σ−2
β

]
.

Therefore, we conclude that

H
[
p̃(β|X)

]
−H

[
p(β|X)

]
= −1

2

D−M∑
i=1

log σ−2
β +

1

2

D−M∑
i=1

log(σ−2
β + τ λ̄2

i )

=
1

2

D−M∑
i=1

log
σ−2
β + τ λ̄2

i

σ−2
β

=
1

2

D−M∑
i=1

log(1 +
τ

σ−2
β

λ̄2
i )

≤ 1

2

D−M∑
i=1

τ

σ−2
β

λ̄2
i =

τσ2
β

2

D−M∑
i=1

λ̄2
i .

That H
[
p̃(β|X)

]
− H

[
p(β|X)

]
> 0 follows from the monotonicity of log, that log(1) = 0, and that τσ2

βλ̄
2
i > 0 for

i = 1, . . . , D −M .

F. Proofs and further results for LR-Laplace in non-conjugate models
In the main text we introduced LR-Laplace as a method which takes advantage of low-rank approximations to provide
computational gains when computing a Laplace approximation to the Bayesian posterior. In what follows we verify the
theoretical justifications for this approach. Appendix F.1 provides a derivation of Algorithm 1 and demonstrates the time
complexities of each step, serving as a proof of Theorem 5.1. The remainder of the section is devoted to the proofs and
discussion of the theoretical properties of LR-Laplace.

F.1. Proof of Theorem 5.1

Proof of Theorem 5.1. The LR-Laplace approximation is defined by mean and covariance parameters, µ̂ and Σ̂. We prove
Theorem 5.1 in two parts. First, we show that µ̂ and Σ̂ do in fact define the Laplace approximation of p̃(β|X,Y ), i.e. the
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construction of µ̂ in Line 9 satisfies µ̂ = arg maxβ p̃(β|X,Y ) and that Σ̂ =
(
−∇2

β log p̃(β|X,Y )|β=µ̂

)−1
. Second, we

show that each step of Algorithm 1 may be computed in O(NDM) time with O(DM +NM) storage.

Correctness of µ̂ and Σ̂

In Line 8, the definition of γ∗ implies that γ∗ = arg maxγ∈RM p̃U>β|X,Y (γ|X,Y ) since

log p̃U>β|X,Y (γ|X,Y ) = log p̃U>β(γ) + log p̃Y |X,U>β(Y |X, γ) + C

= log pU>β(γ) + log pY |X,β(Y |X,Uγ) + C

= logN (γ|U>µβ , U>ΣβU) +

N∑
i=1

log py|x,β(yi|xi, Uγ) + C

= −1

2
γ>U>ΣβUγ +

N∑
i=1

φ(yi, x
>
i Uγ) + C ′,

where line 1 uses Bayes’ rule, line 2 uses the definition of p̃ in Eq. (1), line 3 uses the normality the prior, and the assumed
conditional independence of the responses given β, and line 4 follows from the definition of φ(·, ·) and the assumption that
µβ = 0. C and C ′ are constants which do not depend on γ. This together with the following result (proved in Appendix F.2)
implies that as defined in Line 9 of Algorithm 1, µ̂ = arg maxβ p̃(β|X,Y ).

Lemma F.1. Suppose a Gaussian prior p(β) = N (µβ ,Σβ), and let γ∗ := arg maxγ∈RM log p̃U>β|X,Y (γ|X,Y ). Then
µ̂ := arg maxβ∈RD log p̃(β|X,Y ) may be written as µ̂ = Uγ∗ + Ū Ū>ΣβU(U>ΣβU)−1γ∗.

We now show that as defined in Line 12 of Algorithm 1, Σ̂ is inverse of the Hessian of the negative log posterior, H . We see
this by writing

H : = ∇2
β − log p̃(β|X,Y )|β=µ̂

= ∇2
β − logN (β|µβ ,Σβ)|β=µ̂ +∇2

β

N∑
i=1

−φ(yi, x
>
i UU

>β)|β=µ̂

= Σ−1
β +

N∑
i=1

−φ′′(yi, x>i UU>µ̂)xiUU
>x>i

= Σ−1
β + UU>X>diag

(
− ~φ′′(Y,XUU>µ̂)

)
XUU>,

where ~φ′′ is the second derivative of φ. The Woodbury matrix lemma then provides that we may compute Σ̂N := H−1 as

Σ̂N = Σβ − ΣβU

(
U>ΣβU −

{
U>X>diag

[
~φ′′(Y,XUU>µ̂)

]
XU

}−1
)−1

U>Σβ ,

which we have written as Σ̂ := Σβ − ΣβUWU>Σβ in Line 12 with W−1 = U>ΣβU −{
U>X>diag

[
~φ′′(Y,XUU>µ̂)

]
XU

}−1

.

Time complexity of Algorithm 1

We now prove the asserted time and memory complexities for each line of Algorithm 1.

Algorithm 1 begins with the computation of the M -truncated SVD of X> ≈ Udiag(λ)V . As discussed in Section 4.1,
U may be found in O(ND logM) time. At the end of this step we must store the projected data XU ∈ RN,M and the
left singular vectors, U ∈ RD,M . Which demands O(NM + DM) memory, and the matrix multiply for XU requires
O(NDM) time and is the bottleneck step of the algorithm. The matrix V need not be explicitly computed or stored.

The next stage of the algorithm is solving for µ̂ = arg maxβ log p̃(β|X,Y ). This is done in two stages: in Line 8
find γ∗ = arg maxγ∈RM log p̃U>β|X,Y (γ|X,Y ) as the solution to a convex optimization problem, and in Line 9 find
µ̂ as µ̂ = Uγ∗ + Ū Ū>ΣβU(U>ΣβU)−1γ∗. Beginning with Line 8, we note that the function log p̃(U>β|X,Y ) =
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log p(β) + log p̃(Y |X,β) + c
c
= logN (U>β|U>µβ , U>ΣβU) +

∑N
i=1 log p(yi|x>i UU>β) is a finite sum of functions

concave in β and therefore also in U>β. γ∗ may therefore be solved to a fixed precision in O(NM) time under the
assumptions of our theorem using stochastic optimization algorithms such as stochastic average gradient (Schmidt et al.,
2017). In our experiments we use more standard batch convex optimization algorithm (L-BFGS-B (Zhu et al., 1997)) which
takes at most O(N2M) time. This latter upper bound on complexity may be seen from observing each gradient evaluation
takes O(NM) time (the cost for the likelihood evaluation, since computing the log prior and its gradient is O(M2) after
computing U>ΣβU once, which takes O(DM2) time by assumption) and the number of iterations required can grow up to
linearly in the maximum eigenvalue of Hessian, which in turn grows linearly in N (Boyd & Vandenberghe, 2004).

The second step is computing µ̂ = Uγ∗ + Ū Ū>ΣβU(U>ΣβU)−1γ∗. Given γ∗, this may be computed in O(DM) time,
which one may see by noting that Ū Ū> (which we never explicitly compute) may be written as Ū Ū> = (I − UU>), and
finding µ̂ as µ̂ = Uγ∗ + ΣβU(U>ΣβU)−1γ∗ − UU>ΣβU(U>ΣβU)−1γ∗. By assumption, the structure of Σβ allows us
to compute U>ΣβU in O(DM2) time and matrix vector products with Σβ in O(D) time.

We now turn to the third stage of the algorithm, solving for the posterior covariance Σ̂, which is represented as an expression
of U , Σβ and W , defined in Line 11. Computing W requires O(DM) and O(NM2) matrix multiplications (since
we have precomputed XU ), and two O(M3) matrix inversions which comes to O(NM2 + DM) time. The memory
complexity of this step isO(NM) since it involves handlingXU . OnceW has been computed we may use the representation
Σ̂ = Σβ−ΣβUWU>Σβ as presented in Line 12. This representation does not entail performing any additional computation
(which is why we have written O(0)), but as this expression includes U , storing Σ̂ requires O(DM) memory.

Lastly, we may immediately see that computing posterior variances and covariances takes only O(M2) time as it involves
only indexing into Σβ and U and O(M2) matrix-vector multiplies.

F.2. Proof of Lemma F.1

We prove the lemma by constructing a rotation of the parameter space by the matrix of singular vectors [U, Ū ], in which we
have the prior

p

([
U>β
Ū>β

])
= N

([U>β
Ū>β

] ∣∣∣ [U>µβ
Ū>µβ

]
,

[
U>ΣβU, U

>ΣβŪ
Ū>ΣβU, Ū

>ΣβŪ

])
.

We have that

µ̂ : = arg max
β∈RD

log p̃(β|X,Y )

= [U Ū ] arg max
U>β∈RM ,Ū>β∈RD−M

log p̃
( [U>β
Ū>β

]
|X,Y )

= U arg max
U>β∈RM

(
log p̃(U>β|X,Y ) + Ū arg max

Ū>β∈RD−M
log p̃(Ū>β|U>β,X, Y )

)
= U arg max

U>β∈RM
log p̃(U>β|X,Y )+

Ū arg max
Ū>β∈RD−M

logN
(
Ū>β|Ū>ΣβU(U>ΣβU)−1U>β, ŪΣβŪ − ŪΣβU(U>ΣβU)U>ΣβŪ

)
= Uγ∗ + Ū Ū>ΣβU(U>ΣβU)−1γ∗.

In the second line we simply move to the rotated parameter space. In the third line, we use the chain rule of probability to
separate out two terms. To produce the fourth line, we note that since p̃(Y |X,β) = p(Y |XUU>β) = p̃(Y |X,U>β), that
Y and Ū>β are conditionally independent given U>β. We next note that though arg maxŪ>β∈RD−M log p(Ū>β|U>β)

depends on U>β, maxŪ>β∈RD−M log p(Ū>β|U>β) does not depend U>β. This allows us to use the definition of γ∗ to
arrive at the fifth line, as desired.

In the special case that Σβ is diagonal, this expression reduces to Uγ∗. This can be seen by recognizing that Ū>ΣβU is
then diag(0).
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F.3. Proof of Theorem 5.2

Our approach to proving Theorem 5.2 follows a similar approach to that taken to prove Theorem 4.1. In particular, we begin
by upper bounding the norm of the error of the gradients at the approximate MAP. Noting that the strong log concavity of
the exact posterior, which having been assumed to hold globally, must then also hold on {tµ̂ + (1 − t)µ̄|t ∈ [0, 1]}, we
obtain an upper-bound on ‖µ̂− µ̄‖2 by again applying Lemma E.1.

To begin, we first recall that the exact and LR-GLM posteriors may be written as

log p(β|X,Y ) = log p(β) +

N∑
n=1

φ(yn|x>n β)− logZ

and

log p̃(β|X,Y ) = log p(β) +

N∑
n=1

φ(yn, x
>
nUU

>β)− log Z̃

where φ(·, ·) is such that φ(y, a) = log p(y|x>β = a), and Z and Z̃ are the normalizing constants of the exact and
approximate posteriors. As a result, the gradients of these log densities are given as

∇β log p(β|X,Y ) = ∇β log p(β) +X>~φ′(Y,Xβ)

and
∇β log p̃(β|X,Y ) = ∇β log p(β) + UU>X>~φ′(Y,XUU>β),

where ~φ′(Y,Xβ) ∈ RN is such that for each n ∈ [N ], ~φ′(Y,Xβ)n = d
daφ(yn, a)|a=x>n β

.

And the difference in the gradients is

∇β log p(β|X,Y )−∇β log p̃(β|X,Y ) = X>~φ′(Y,Xβ)− UU>X>~φ′(Y,XUU>β). (F.1)

Appealing to Taylor’s theorem, we may write for any β that

φ′(yn, x
>
nUU

>β) = φ′(yn, x
>
n β) + (x>nUU

>β − x>n β)φ′′(yn, an)

for some an ∈ [x>nUU
>β, x>n β], where φ′′(y, a) := d2

da2φ(y, a).

Using this and introducing vectorized notation for φ′′ to match that used for ~φ′, we may rewrite the difference in the gradients
as

∇β log p(β|X,Y )−∇β log p̃(β|X,Y )

= X>~φ′(Y,Xβ)− UU>X>~φ′(Y,Xβ)− UU>X>
[
(XUU>β −X>β) ◦ ~φ′′(Y,A)

]
= Ū Ū>X>~φ′(Y,Xβ) + UU>X>

[
(XŪŪ>β) ◦ ~φ′′(Y,A)

]
,

where A ∈ RN is such that for each n ∈ [N ], An ∈ [x>nUU
>β, x>n β], and ◦ denotes element-wise scalar multiplication.

We can use this to derive an upper bound on the norm of the difference of the gradients as

‖∇β log p(β|X,Y )−∇β log p̃(β|X,Y )‖2 = ‖Ū Ū>X>~φ′ + UU>X>
[
(XŪŪ>β) ◦ ~φ′′

]
‖2

≤ ‖Ū Ū>X>~φ′‖2 + ‖UU>X>
[
(XŪŪ>β) ◦ ~φ′′

]
‖2

≤ λ̄1‖~φ′‖2 + λ1‖(XŪŪ>β) ◦ ~φ′′‖2
≤ λ̄1‖~φ′‖2 + λ1λ̄1‖Ū>β‖2‖~φ′′‖∞
= λ̄1

(
‖~φ′‖2 + λ1‖Ū>β‖2‖~φ′′‖∞

)
,

where we have written ~φ′ and ~φ′′ in place of ~φ′(Y,Xβ) and ~φ′′(Y,A), respectively, for brevity despite their dependence on
β.
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Next, let α be the strong log-concavity parameter of p(β|X,Y ). Lemma E.1 then implies that

‖µ̂− µ̄‖2 ≤
λ̄1

(
‖~φ′(Y,Xµ̂)‖2 + λ1‖Ū>µ̂‖2‖~φ′′(Y,A)‖∞

)
α

as desired, where for each n ∈ [N ], An ∈ [x>nUU
>µ̂, x>n µ̂].

F.4. Bounds on derivatives of higher order for the log-likelihood in logistic regression and other GLMs

We here provide some additional support for the claim that in Remark 5.3 that the higher order derivatives of the log-likelihood
function, φ, are well-behaved. For logistic regression (which we explore in detail below), for any y in {−1, 1} and a in R, it
holds that | ∂∂aφ(y, a)| ≤ 1 and | ∂

2

∂2aφ(y, a)| ≤ 1
4 . For Poisson regression with φ(y, a) = log Pois

(
y|λ = log(1+exp{a})

)
,

both | ∂∂a (y, a)| and | ∂
2

∂2aφ(y, a)| are bounded by a small constant factor of y. Additionally, in these cases | ∂
3

∂a3φ(y, a)| is
also well behaved, a fact relevant to Corollary 5.6. However, for alternative mapping functions for Poisson regression, e.g.
defining E[yi|xi, β] = exp{x>i β}, these derivatives will grow exponentially quickly with x>i β, which illustrates that our
provided bounds are sensitive to the particular form chosen for the GLM likelihood.

We now move to compute explicit upper bounds on the derivatives of the log likelihood in logistic regression. This produces
the constants mentioned above, and permits easy computation of upper bounds on the bounds on the approximation error of
LR-Laplace provided in Theorem 5.2 and Corollary 5.6. In particular the logistic regression mapping function (Huggins
et al., 2017) is given as

φ(yn, x
>
n β) = − log

(
1 + exp{−ynx>n β}

)
, (F.2)

where each yn ∈ {−1, 1}.

The first three derivatives of this mapping function and bounds on their absolute values are as follows:

φ′(yn, x
>
n β) :=

d

da
φ(yn, a)

∣∣
a=x>n β

= yn
exp{−yx>n β}

1 + exp{−ynx>n β}
(F.3)

Notably, ∀a ∈ R, y ∈ {−1, 1}, |φ′(y, a)| < 1 and

φ′′(yn, x
>
n β) : =

d2

da2
φ(y, a)

∣∣
a=x>n β

= −(1 + exp{x>n β})−1(1 + exp{−x>n β})−1. (F.4)

Furthermore, for any a in R and y in {−1, 1}, − 1
4 ≤ φ′′(y, a) < 0. This implies that the Hessian of the negative log

likelihood will be positive semi-definite everywhere. We additionally have

d3

da3
φ(y, a) = φ′′′(a) =

(
exp{a}(exp(−a)− 1)

)
(1 + exp{a})3

(F.5)

which for any a in R satisfies, − 1
6
√

3
≤ φ′′′(a) ≤ 1

6
√

3
.

F.5. Asymptotic inconsistency of the approximate posterior mean within the span of the projections

Consider a Bayesian logistic regression, in which

xi ∼ N
([

0
0

]
,

[
1 0
0 0.99

])
, β =

[
10

1000

]
, yi ∼ Bern

(
(1 + exp{x>i β})−1

)
.

In this setting, a rank 1 approximation of the design will capture only the first dimension of data (i.e. UN → U∗ = [1, 0]).

However the second dimension explains almost all of the variance in the responses. As such yi|U>∗ xi, β
d
≈ Bern(1/2) and

we will get U>∗ β|X,Y = β1|X,Y ≈ 0.0 under p̃.
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F.6. Proof of Corollary 5.6

Our proof proceeds via an upper bound on the (2, p̂)-Fisher distance between p̂ and p̄ (Huggins et al., 2018). Specifically,
the (2, p̂)-Fisher distance given by

d2,p̂(p̂, p̄) =

(∫
‖∇β log p̂(β)−∇β log p̄(β)‖22dp(β)

) 1
2

. (F.6)

Given the strong log-concavity of p̄, our upper bound on this Fisher distance immediately provides an upper-bound on the
2-Wasserstein distance (Huggins et al., 2018).

We first recall that p̂ and p̄ are defined by Laplace approximations of p̃(β|X,Y ) and p(β|X,Y ) respectively. As such we
have that

log p̂(β)
c
= −1

2
(β − µ̂)>

(
Σ−1
β − UU

>X>diag(~φ′′(Y,XUU>µ̂))XUU>
)
(β − µ̂)

where ~φ′′(Y,XUU>µ̂) is defined as in Algorithm 1 such that ~φ′′(Y,Xβ)i = d2

da2 log p(yi|x>β = a)|a=x>i β
, and

log p̄(β)
c
= −1

2
(β − µ̄)>

(
Σ−1
β −X

>diag(~φ′′(Y,Xµ̄))X
)
(β − µ̄).

Accordingly,

∇β log p̂(β) = −(β − µ̂)>
(
Σ−1
β − UU

>X>diag(~φ′′(Y,XUU>µ̂))XUU>
)

and

∇β log p̄(β) = −(β − µ̄)>
[
Σ−1
β −X

>diag(~φ′′(Y,Xµ̄))X
]

To define an upper bound on d2,p̂(p̂, p), we must consider the difference between the gradients,

∇β log p̂(β)−∇β log p̄(β) =− (β − µ̂)>
{

Σ−1
β − UU

>X>diag[~φ′′(Y,XUU>µ̂)]XUU>
}

+ (β − µ̄)>
{

Σ−1
β −X

>diag[~φ′′(Y,Xµ̄)]X
}

= (µ̂− µ̄)Σ−1
β + (β − µ̂)>UU>X>diag[~φ′′(Y,XUU>µ̂)]XUU>

− (β − µ̄)>X>diag[~φ′′(Y,Xµ̄)]X.

Appealing to Taylor’s theorem, we can rewrite ~φ′′(Y,XUU>µ̂) as

~φ′′(Y,XUU>µ̂) = ~φ′′(Y,Xµ̄) + (XUU>µ̂−Xµ̄) ◦ ~φ′′′(Y,A)

= ~φ′′(Y,Xµ̄) + (XUU>µ̂−Xµ̂+X(µ̂− µ̄)) ◦ ~φ′′′(Y,A)

= ~φ′′(Y,Xµ̄)−XŪŪ> ◦ ~φ′′′(Y,A) +X(µ̂− µ̄) ◦ ~φ′′′(Y,A)

= ~φ′′(Y,Xµ̄) +R,

where the first line follows from Taylor’s theorem by appropriately choosing each Ai ∈ [x>i UU
>µ̂, x>i µ̄], and in the fourth

line we substitute in R := −XŪŪ> ◦ ~φ′′′(Y,A) +X(µ̂− µ̄) ◦ ~φ′′′(Y,A).
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We now can rewrite the difference in the gradients as

∇β log p̂(β)−∇β log p̄(β) = (µ̂− µ̄)Σ−1
β

+ (β − µ̂)>UU>X>diag[~φ′′(Y,Xµ̄)]XUU>

+ (β − µ̂)>UU>X>diag(R)XUU>

− (β − µ̄)>X>diag(~φ′′(Y,Xµ̄))X

= (µ̂− µ̄)>(Σ−1
β − UU

>X>diag[~φ′′(Y,Xµ̄)]XUU>)

+ (β − µ̂)>UU>X>diag(R)XUU>

− (β − µ̄)>UU>X>diag(~φ′′(Y,Xµ̄))XŪŪ>

− (β − µ̄)>Ū Ū>X>diag(~φ′′(Y,Xµ̄))XUU>

− (β − µ̄)>Ū Ū>X>diag(~φ′′(Y,Xµ̄))XŪŪ>.

Which is obtained by first writing X>diag[~φ′′(Y,Xµ̄)]X in the fourth line as (UU>X> +

Ū Ū>X>)diag[~φ′′(Y,Xµ̄)](XUU> +XŪŪ>), multiplying through and rearranging the resulting terms.

Given this form of the difference in the gradients, we may upper bound its norm as

‖∇β log p̂(β)−∇β log p̄(β)‖2 ≤ ‖µ̂− µ̄‖2‖Σ−1
β − UU

>X>diag[~φ′′(Y,Xµ̄)]XUU>‖2
+ ‖β − µ̂‖2‖UU>X>diag(R)XUU>‖2
+ ‖β − µ̄‖2‖UU>X>diag[~φ′′(Y,Xµ̄)]XŪŪ>+

Ū Ū>X>diag[~φ′′(Y,Xµ̄)]XUU> + Ū Ū>X>diag[~φ′′(Y,Xµ̄)]XŪŪ>‖2
≤ ‖µ̂− µ̄‖2‖Σ−1

β − UU
>X>diag[~φ′′(Y,Xµ̄)]XUU>‖2

+ ‖β − µ̂‖2‖UU>X>diag(R)XUU>‖2
+ ‖β − µ̄‖2

{
‖Ū Ū>X>diag[~φ′′(Y,Xµ̄)]XŪŪ>‖2+

2‖Ū Ū>X>diag[~φ′′(Y,Xµ̄)]XUU>‖2
}

by the triangle inequality.

≤ ‖µ̂− µ̄‖2
{
‖Σ−1

β ‖2 + ‖Udiag(λ)V >‖2‖diag[~φ′′(Y,Xµ̄)]‖2‖V diag(λ)U>‖2
}

+ ‖β − µ̂‖2‖Udiag(λ)V >‖2‖diag(R)‖2‖V diag(λ)U>‖2
+ ‖β − µ̄‖2

{
‖Ūdiag(λ̄)V̄ >‖2‖diag[~φ′′(Y,Xµ̄)]‖2‖V̄ diag(λ̄)Ū>‖2+

2‖Ū>diag(λ̄)V̄ >‖2‖diag[~φ′′(Y,Xµ̄)]‖2‖V diag(λ)U>‖2
}

by again using the triangle inequality, and decomposing X> into Udiag(λ)V > + Ūdiag(λ̄)V̄ >.

≤ ‖µ̂− µ̄‖2
(
‖Σ−1

β ‖2 + λ2
1‖~φ′′‖∞

)
+ λ2

1‖β − µ̂‖2‖R‖∞ + (λ̄2
1 + 2λ1λ̄1)‖β − µ̄‖2‖~φ′′‖2,

where in the last line we have shortened ~φ′′(Y,Xµ̄) to ~φ′′ for convenience.

Next noting that ‖µ̄− µ̂‖2 ≤ λ̄1c for c := ‖~φ′(Y,Xµ̂)‖2+λ1‖Ū>µ̂‖2‖~φ′′(Y,A)‖∞
α , where α is the strong log concavity parameter

of p(β|X,Y ) (which follows from Theorem 5.2), we can see that ‖R‖∞ ≤ λ̄1r where r := (‖U>µ̂‖∞‖~φ′′′(Y,A)‖∞ +

λ1c‖~φ′′′(Y,A)‖∞). That r is bounded follows from the assumption that log p(y|x, β) has bounded third derivatives, an
equivalent to a Lipschitz condition on φ′′. We can next simplify this upper bound to

‖∇β log p̂(β)−∇β log p̄(β)‖2 ≤ λ̄1c[‖Σ−1
β ‖2 + λ2

1‖~φ′′‖∞] + λ2
1λ̄1r‖β − µ̂‖2 + λ̄1(λ̄1 + 2λ1)‖β − µ̄‖2‖~φ′′‖∞

= λ̄1

[
c(‖Σ−1

β ‖2 + λ2
1‖~φ′′‖∞) + λ2

1r‖β − µ̂‖2 + (λ̄1 + 2λ1)‖β − µ̄‖2‖~φ′′‖∞
]

≤ λ̄1

[
c(‖Σ−1

β ‖2 + λ2
1‖~φ′′‖∞) + λ2

1r‖β − µ̂‖2 + (λ̄1 + 2λ1)(‖µ̂− µ̄‖2 + ‖β − µ̂‖2)‖~φ′′‖∞
]

by the triangle inequality.
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≤ λ̄1

[
c(‖Σ−1

β ‖2 + λ2
1‖~φ′′‖∞) + λ2

1r‖β − µ̂‖2 + (λ̄1 + 2λ1)(λ̄1c+ ‖β − µ̂‖2)‖~φ′′‖∞
]

= λ̄1

[
c(‖Σ−1

β ‖2 + λ2
1‖~φ′′‖∞) + c(λ̄2

1 + 2λ1λ̄1)‖~φ′′‖∞ + (λ2
1r + (λ̄1 + 2λ1)‖~φ′′‖∞)‖β − µ̂‖2

]
= λ̄1

[
c(‖Σ−1

β ‖2 + (λ1 + λ̄1)2‖~φ′′‖∞) + (λ2
1r + (λ̄1 + 2λ1)‖~φ′′‖∞)‖β − µ̂‖2

]
.

Thus, taking the expectation of this upper bound on the norm squared over β with respect to p̂ we get

d2
2,p̂(p̂, p) ≤ Ep̂(β)

(
λ̄2

1

{
c
[
‖Σ−1

β ‖2 + (λ1 + λ̄1)2‖~φ′′‖∞
]

+
[
λ2

1r + (λ̄1 + 2λ1)‖~φ′′‖∞
]
‖β − µ̂‖2

}2
)

≤ 2λ̄2
1Ep̂(β)

{
c2
[
‖Σ−1

β ‖2 + (λ1 + λ̄1)2‖~φ′′‖∞
]2

+
[
λ2

1r + (λ̄1 + 2λ1)‖~φ′′‖∞
]2
‖β − µ̂‖22

}
since ∀a, b ∈ R, (a+ b)2 ≤ 2(a2 + b2)

= 2λ̄2
1

{
c2
[
‖Σ−1

β ‖2 + (λ1 + λ̄1)2‖~φ′′‖∞
]2

+
[
λ2

1r + (λ̄1 + 2λ1)‖~φ′′‖∞
]2

Ep̂(β)[‖β − µ̂‖22]

}
= 2λ̄2

1

{
c2
[
‖Σ−1

β ‖2 + (λ1 + λ̄1)2‖~φ′′‖∞
]2

+
[
λ2

1r + (λ̄1 + 2λ1)‖~φ′′‖∞
]2

tr(Σ̂)

}
.

Next noting that p̄ is strongly ‖Σ̄‖−1
2 log-concave, we may apply Theorem F.1, stated below, to obtain that

W2(p̂, p̄) ≤ ‖Σ̄‖2

√
2λ̄2

1

{
c2
[
‖Σ−1

β ‖2 + (λ1 + λ̄1)2‖~φ′′‖∞
]2

+
[
λ2

1r + (λ̄1 + 2λ1)‖~φ′′‖∞
]2

tr(Σ̂)

}
≤
√

2λ̄1‖Σ̄‖2
{
c
[
‖Σ−1

β ‖2 + (λ1 + λ̄1)2‖~φ′′‖∞
]

+
[
λ2

1r + (λ̄1 + 2λ1)‖~φ′′‖∞
]√

tr(Σ̂)

}
,

which is our desired upper bound.

Theorem F.1. Suppose that p(β) and q(β) are twice continuously differentiable and that q is α-strongly log concave. Then

W2(p, q) ≤ α−1d2,p(p, q),

where W2 denotes the 2-Wasserstein distance between p and q.

Proof. This follows from Huggins et al. (2018) Theorem 5.2, or similarly from Bolley et al. (2012) Lemma 3.3 and
Proposition 3.10.

F.7. Proof of bounded asymptotic error

We here provide a formal statement and proof of Theorem 5.7, detailing the required regularity conditions.

Theorem F.2 (Asymptotic). Assume xi
i.i.d.∼ p∗ for some distribution p∗ such that Ep∗ [xix>i ] exists and is non-singular

with diagonalization Ep∗ [xix>i ] = U>∗ diag(λ)U∗+ Ū>∗ diag(λ̄)Ū∗ such that min(λ) > max(λ̄). Additionally, for a strictly
concave (in its second argument), twice differentiable log-likelihood function φ with bounded second derivatives (in both
arguments) and some β ∈ RD, let yi|xi ∼ exp{φ(yi, x

T
i β)}. Also, suppose that E‖yi‖22 <∞. Then if p(β) is log-concave

and positive on RD, the asymptotic error (in N ) of the exact relative to approximate maximum a posteriori parameters,
µ̂ = limN→∞ µ̂N and µ̄ = limN→∞ µ̄N is finite (where µ̂N and µ̄N are the approximate and exact MAP estimates,
respectively, after N data-points), i.e., limn→∞ ‖µ̂N − µ̄N‖ exists and is finite.

Proof. Before beginning, let P denote a Borel probability measure on the sample space on which our random variables,
{xi} and {yi}, are defined such that these random variables are distributed as assumed according to P. In what follows we
demonstrate the asymptotic error is finite P-almost surely. To this end, it suffices to show that µ̂N

a.s.→ µ̂ and µ̄N
a.s.→ µ̄ for

some µ̂, µ̄ in RD.
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Strong convergence of the exact MAP (µ̄N
a.s.→ µ̄)

This follows from Doob’s consistency theorem (Van der Vaart, 2000, Theorem 10.10). The only nuance required in the
application of this theorem here is that we must accommodate the regression setting. However by constructing a single
measure P governing both the covariates and responses, this simply becomes a special case of the usual theorem for
unconditional models.

Strong convergence of the approximate MAP (µ̂N
a.s.→ µ̂)

In contrast to the strong consistency of µ̄N , showing convergence of µ̂N requires more work. This is because we cannot rely
on standard results such as Bernstein–Von Mises or Doob’s consistency theorem, which require correct model specification.
Since we have introduced the likelihood approximation p̃(y|x, β) 6= p(y|x, β), the vector µ̂N is the MAP estimate under a
misspecified model.

We demonstrate almost sure convergence in two steps; first we show that U>∗ µ̂N converges almost surely to some γ∗ ∈ RM ;
then we show that µ̂N = U∗U

>
∗ µ̂N + ŪN Ū

>
N µ̂N must converge as a result. Since UNU>N

a.s.→ U∗U
>
∗ (as follows from

entry-wise almost sure convergence of 1
NX

>X → Ep∗ [xix>i ] and the Davis–Kahan Theorem (Davis & Kahan, 1970)), this
guarantees strong convergence of µ̂N = UNU

>
N µ̂N + ŪN Ū

>
N µ̂N .

Part I: strong convergence of the projected approximate MAP, U∗µ̂N
a.s.→ γ∗

Let U∗ ∈ RD,M be the top M eigenvectors of Ep∗ [xix>i ], and recall that by assumption for any y, φ(y, xTi β) is a strictly
concave function of x>i β, in the sense that for any y and any b, b′ in R and t in (0, 1) with b 6= b′, φ(y, tb+ (1− t)b′) >
tφ(y, b)+(1−t)φ(y, b′). Then by Lemma F.2 we have that there is a unique maximizer γ∗ = arg maxγ∈RM E[φ(y, x>U∗γ)]

We next note that the Hessian of the expected approximate negative log likelihood with respect to γ is positive definite
everywhere,

∇2
γ − Ey∼p(y|x,β),x∼p∗ [φ(y, x>U∗γ)] = −E[

(
∇γφ′(y, x>U∗γ)

)
x>U∗] = −U>∗ E[xφ′′(y, x>U∗γ)x>]U∗ � 0

since the strict log concavity and twice differentiability of φ ensure that −E[xφ′′(y, x>U∗γ)x>] � 0.

Now consider any compact neighborhood K ⊂ RM containing γ∗ as an interior point. Then, by Lemma F.3 the set
F = {fγ : X × Y → R, (x, y) 7→ φ(y, x>U∗γ)|γ ∈ K} is P-Glivenko–Cantelli. As such supfγ∈F |

1
N

∑N
i=1 fγ(xi, yi)−

E[fγ(xi, yi)]|
a.s.→ 0, that is to say, the empirical average log-likelihood converges uniformly to its expectation across

all γ ∈ K. As a result, we have that for γN := arg maxγ∈K log p̃(U∗β = γ|X,Y ) = arg maxγ∈K
1
N

[
log p(UT∗ β =

γ) +
∑N
i=1 φ(yi, x

>
i U∗γ)

]
, γN

a.s.→ γ∗.

It remains in this part only to show that convergence of the approximate MAP parameter within this subset K implies
convergence of U>∗ µ̂, the approximate MAP parameter (across all of RM ). However, this follows immediately from the
strict log concavity of the posterior; because γ∗ ∈ K◦, for N large enough each γN ∈ K◦ and we may construct a
sub-level set such that γN ∈ CN ⊂ K such that ∀γ /∈ CN , log p(U>∗ β = γ) +

∑N
i=1 φ(yi, x

>
i U∗γ) < log p(U>∗ β =

γN ) +
∑N
i=1 φ(yi, x

>
i U∗γN ).

Part II: convergence of Ū∗Ū>∗ µ̂N + U∗γ

Using the result of Part I, we can write that µ̂N = U∗U
>
∗ µ̂N + Ū∗Ū

>
∗ µ̂N → U∗γ

∗ + Ū∗Ū
>
∗ µ̂N . However, since

Ū∗Ū
>
∗ β ⊥ X,Y |U>∗ β under P, convergence of U>∗ µ̂N → γ∗ implies convergence of arg maxŪ>∗ β p̃(Ū

>
∗ β|U>∗ β =

U>∗ µ̂N , X, Y ) = arg maxŪ>∗ β p̃(Ū
>
∗ β|U>∗ β = U>∗ ) to some Ū>∗ µ̂N since continuity of p(β) and p̃(Y |X,β) imply

continuity of the arg-max. Thus both µ̂N and µ̄N converge, guaranteeing convergence of the asymptotic error.

Lemma F.2. For any φ(·, ·) which is strictly concave in its second argument, if there is a global maximizer β∗ =
arg maxβ∈RD V (β) = Ex∼p∗,y∼p(y|x,β)[φ(y, x>β)], then there is a unique global maximizer,

γ∗ = arg max
γ∈RM

V (U∗γ)

Proof. We first note that V (·) must have bounded sub-level sets. Thus W (·) := V (U∗·) must also have bounded sub-level
sets since V −1([a,∞]) = {β|V (β) ≥ a} ⊃ {β|∃γ ∈ RM s.t. β = U∗γ and V (U∗γ) ≥ a} = U∗W

−1([a,∞]). Thus,
since W is strictly concave and has bounded sub-level sets, it has a unique maximizer.
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Lemma F.3. Let K ⊂ RM be compact and denote by X and Y the domains of the covariates and responses, respectively.
Then under the assumptions of Theorem F.2, the set F = {fγ : X × Y → R, (x, y) 7→ φ(y, x>Uγ)|γ ∈ K} is P-Glivenko–
Cantelli.

Proof. This result follows from Theorem 19.4 in (Van der Vaart, 2000), and builds from example 19.7 of the same reference;
in particular, the condition of bounded second derivatives of φ implies that for any fγ , fγ′ in F and x in X , y in Y , we have
|fγ(x, y) − fγ′(x, y)| ≤ C‖x‖22. The previous condition is sufficient to ensure finite bracketing numbers, and the result
follows. Notably, in keeping with example 19.7 we have that for all x, y and for all γ and γ′ in K,

|fγ(x, y)− fγ′(x, y)| = |
∫ x>Uγ

x>Uγ′
φ′(y, a)da|

= |
∫ x>Uγ

x>Uγ′
φ′(y, x>Uγ′) +

∫ a

x>Uγ′
φ′′(y, b)db da|

≤ ‖x>U(γ − γ′)φ′(y, x>Uγ′)‖2 +
1

2
‖x>U(γ − γ′)‖22 sup

a∈R
φ′′(y, a)

≤ ‖x>U‖2(‖y‖2 + ‖x>U‖2‖γ′‖2)φ′′max‖γ − γ′‖2 +
1

2
‖x>U‖22‖γ − γ′‖22φ′′max

≤
[3
2
‖x>U‖22diam(K)φ′′max + ‖x>U‖2‖y‖2φ′′max

]
‖γ − γ′‖2

≤ C(‖x>U‖22 + ‖x>U‖2‖y‖2)‖γ − γ′‖2,

(F.7)

where in the first and second lines we use the fundamental theorem of calculus, and in the fourth and fifth lines we rely on
the boundedness of the second derivatives of φ and that the compactness subsets of RM implies boundedness. In the final
line C is an absolute constant.

Finally, we note that EP‖x>U‖22 <∞ since EP‖x>U‖22 = EPx
>UU>x < EPx

>x = Tr(Ep∗xx>) <∞, and by Cauchy
Schwartz, EP‖x>U‖2‖y‖2 ≤

√
EP‖x>U‖22EP‖y‖22 ≤ ∞. This confirms (as in example 19.7 (Van der Vaart, 2000)) that

for all ε > 0, the ε-bracketing number of F is finite. By Theorem 19.4 of (Van der Vaart, 2000), this proves that F is
P-Glivenko-Cantelli.

F.8. Factorized Laplace approximations underestimate marginal variances

We here illustrate that the factorized Laplace approximation underestimates marginal variances. Consider for simplicity the
case of a bivariate Gaussian with

Σ =

[
a b
b c

]
,

for which the Hessian evaluated anywhere is

Σ−1 =
1

ac− b2

[
c −b
−b a

]
.

Ignoring off diagonal terms and inverting to approximate ΣN , as is done by a diagonal Laplace approximation, yields:

Σ̃ =

[
a− b2

c 0

0 c− b2

a

]
.

This approximation reports marginal variances which are lower than the exact marginal variances.

That this approximation underestimates marginal variances in the more general D > 2 dimensional case may be easily
seen from considering the block matrix inversion of Σ, with blocks of dimension 1 × 1, (D − 1) × 1, 1 × (D − 1) and
(D − 1)× (D − 1), and noting that the Schur complement of a positive definite covariance matrix will always be positive
definite.
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G. LR-MCMC
We provide the LR-MCMC algorithm for performing fast MCMC in generalized linear models with low-rank data approxi-
mations.

Algorithm 2 LR-MCMC for Bayesian inference in GLMs with low-rank data approximations.

1: Input: prior p(β), data X ∈ RN,D, rank M � D, GLM mapping φ, MCMC transition kernel q(·, ·), number of
MCMC iterations T . Time and memory complexities that are not included depend on the specific choice of MCMC
transition kernel.

2: Pseudo-Code 3: Time Complexity 4: Memory Complexity
5: Data preprocessing — M -Truncated SVD
6: U,diag(λ), V := truncated-SVD(X>,M) O(NDM) O(NM +DM)
7: XU = XU O(NM) O(NDM)

8: Propose β(t) ∈ RD, compute likelihood
9: β(t) ∼ q(β(t), β(t−1)) — —

10: Lt :=
∑N
i=1 φ(yi, x

>
i UU

>β(t)) + log p(β(t)) O(1) O(NM +MD)

11: Accept or Reject

12: Acceptance probability pA := min
(

1, LtLt−1

)
O(1) O(1)

13: Accept β(t) with probability pA O(1) O(1)

14: Repeat steps 3-6 for T iterations

The transition in Line 9 may additionally benefit from the LR-GLM approximation. In particular, widely used algorithms such
as Hamiltonian Monte Carlo and the No-U-Turn Sampler rely on many O(ND)-time likelihood and gradient evaluations,
the cost of which can be reduced to O(NM +DM) with LR-GLM. An implementation of this approximation is given in
the Stan model in Appendix A.3 with performance results in Figures A.3 and A.6.

H. LR-Laplace with non-Gaussian priors
As discussed in the main text, we can maintain computational advantages of LR-GLM even when we have non-Gaussian
priors. This admits the procedure provided in Algorithm 3.

In order for this more general LR-Laplace algorithm to be computationally efficient, we still require that the prior have
some properties which can accommodate efficiency. In particular Line 11 demands that the Hessian of the prior is computed
and inverted, as will true even in the high-dimensional setting when, for example, the prior factorizes across dimensions.
Additionally, properties of the prior such as log concavity will facilitate efficient optimisation in Line 8.

7To keep notation concise we use ~φ′′
µ̂ to denote ~φ′′(Y,XUU>µ̂)
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Algorithm 3 LR-Laplace for Bayesian inference in GLMs with low-rank data approximations and twice differentiable prior.
Time and memory complexities which are not included depend on the choice of prior and optimisation method, which can
be problem specific.

1: Input: twice differentiable prior p(β), data X ∈ RN,D, rank M � D, GLM mapping φ with φ′′ (see Eq. (5)
and Section 5.1)

2: Pseudo-Code 3: Time Complexity 4: Memory Complexity
5: Data preprocessing — M -Truncated SVD
6: U,diag(λ), V := truncated-SVD(XT ,M) O(NDM) O(NM +DM)

7: Optimize to find approximate MAP estimate (in D-dimensional space)
8: µ̂ := arg maxµ∈RD

∑N
i=1 φ(yi, xiUU

>µ) + log p(β = µ) — —

9: Compute approximate posterior covariance7

10: Σ̂−1 := −∇2
β log pβ(µ̂)− UU>X>diag(~φ′′µ̂)XUU> — —

11: K := [∇2
β log p(β)|β=µ̂]−1 — —

12: Σ̂ := −K+KU
(
[U>X>diag(~φ′′µ̂)XU ]−1+U>KU

)−1
U>K — —

13: Compute variances and covariances of parameters
14: Varp̂(βi) = e>i Σ̂ei — —
15: Covp̂(βi, βj) = e>i Σ̂ej — —


