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Abstract
A recent line of research termed unlabeled sens-
ing and shuffled linear regression has been ex-
ploring under great generality the recovery of
signals from subsampled and permuted measure-
ments; a challenging problem in diverse fields of
data science and machine learning. In this pa-
per we introduce an abstraction of this problem
which we call homomorphic sensing. Given a
linear subspace and a finite set of linear trans-
formations we develop an algebraic theory which
establishes conditions guaranteeing that points in
the subspace are uniquely determined from their
homomorphic image under some transformation
in the set. As a special case, we recover known
conditions for unlabeled sensing, as well as new
results and extensions. On the algorithmic level
we exhibit two dynamic programming based al-
gorithms, which to the best of our knowledge are
the first working solutions for the unlabeled sens-
ing problem for small dimensions. One of them,
additionally based on branch-and-bound, when
applied to image registration under affine trans-
formations, performs on par with or outperforms
state-of-the-art methods on benchmark datasets.

1. Introduction
In a recent line of research termed unlabeled sensing, it
has been established that uniquely recovering a signal from
shuffled and subsampled measurements is possible as long
as the number of measurements is at least twice the intrin-
sic dimension of the signal (Unnikrishnan et al., 2018). The
special case where the signal is fully observed but subject
to a permutation of its values is known as shuffled linear
regression (Hsu et al., 2017; Pananjady et al., 2018; Song
et al., 2018; Abid & Zou, 2018). In its simplest form, it
consists of solving a linear system of equations, with the
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entries of the right hand side vector permuted (Unnikrish-
nan et al., 2015; Tsakiris et al., 2018).

The unlabeled sensing or shuffled linear regression prob-
lems and their variations naturally arise in many ap-
plications in data science and engineering, such as 1)
record linkage for data integration (Lahiri & Larsen,
2005; Shi et al., 2018), a particularly important problem
in medical data analysis where publicly available health
records are anonymized, 2) image registration (Lian et al.,
2017), multi-target tracking (Poore & Gadaleta, 2006)
and pose/correspondence estimation (David et al., 2004;
Marques et al., 2009), 3) header-free communications in
Internet-Of-Things networks (Pananjady et al., 2017; Song
et al., 2018; Peng et al., 2019) and user de-anonymization
(Narayanan & Shmatikov, 2008; Keller et al., 2009),
4) acoustic wave field reconstruction (Dokmanić, 2019),
5) system identification under asynchronous input/output
samples (Balakrishnan, 1962), and many more, e.g., see
Unnikrishnan et al. 2018; Pananjady et al. 2018.

1.1. Prior-Art

Theory. Suppose that y = Π∗Ax∗ + ε ∈ Rm is a noisy
and shuffled version of some signal Ax∗, where x∗ ∈ Rn
is some unknown regression vector, Π∗ is some unknown
permutation, and ε is noise. What can be said about the
estimation of x∗ and Π∗ given y, A and the distribution of
ε? This shuffled linear regression problem has been a clas-
sic subject of research in the area of record linkage, where
predominant methods study maximum likelihood estima-
tors under the working hypothesis that an accurate estimate
for the probabilities of transpositions between samples is
available (Fellegi & Sunter, 1969; Lahiri & Larsen, 2005).
However, this is a strong hypothesis that does not extend to
many applications beyond record linkage.

Very recently important theoretical advances have been
made towards understanding this problem in greater gener-
ality. Specifically, Slawski & Ben-David 2019; Abid et al.
2017 and Hsu et al. 2017 have demonstrated that in the ab-
sence of any further assumptions, the maximum likelihood
estimator x̂ML given by

(Π̂ML, x̂ML) = argmin
Π,x

‖y −ΠAx‖2 , (1)

where Π ranges over all permutations, is biased. On the
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other hand, if the SNR is large enough, Pananjady et al.
2016; 2018 have asserted that Π̂ML = Π∗ with high proba-
bility. If Π∗ is sparse enough, i.e., only a small percentage
of entries of Ax∗ have been shuffled (this is the support
of Π∗), Slawski & Ben-David 2019 have shown that un-
der weaker SNR conditions the supports of Π̂ML,Π

∗ coin-
cide. Moreover, they provide well behaved error bounds
for ‖x̂ML − x∗‖2 as well as for ‖x̂RR − x∗‖2, where x̂RR is
the solution to the convex `1 robust regression problem

min
x,e
‖y −Ax−

√
me‖22 +mλ‖e‖1, λ > 0, (2)

in which the support of the sparse error e is meant to cap-
ture the support of the sparse permutation Π∗.

Another interesting line of work related more to algebraic
geometry rather than statistics, is that of Song et al. 2018,
which for the noiseless case (ε = 0) has proposed the use
of symmetric polynomials towards extracting permutation-
invariant constraints that x∗ ∈ Rn must satisfy. Such
a self-moment estimator had already been briefly investi-
gated by Abid et al. 2017 from a statistical point of view,
where the authors noted that in the presence of noise it
is unclear whether the resulting system of equations has
any solutions. Perhaps surprisingly, working with n non-
homogeneous polynomials of degrees 1, 2, . . . , n in n vari-
ables, the work of Tsakiris et al. 2018 has established that
regardless of the value of the noise ε and under the sole re-
quirement thatA is generic1, the polynomial system always
has a solution and in fact at most n! of them, thus proving
the existence of a purely algebraic estimator for x∗.

Much less is known for the more challenging and realistic
case of unlabeled sensing, where now y ∈ Rk consists of a
shuffled noisy subset of the entries ofAx∗ ∈ Rm, i.e., there
is no longer a 1-1 correspondence between y andAx∗. The
main theoretical finding up to date comes from the seminal
work of Unnikrishnan et al. 2018, according to which, in
the absence of noise, x∗ is uniquely recoverable from y and
A as long as 1) k ≥ 2n and 2) A is generic. Inspired by a
certain duality between compressed and unlabeled sensing,
a recovery condition for noisy data has further been given
by Haghighatshoar & Caire 2018 in terms of a restricted
isometry property. However, this approach is valid only for
the special case of y obtained by subsampling Ax∗ while
maintaining the relative order of the samples.

Algorithms. Towards computing a solution to the shuffled
linear regression problem, which can be solved by brute
force in O(m!), the algorithms presented by Hsu et al.
2017; Pananjady et al. 2017 are conceptually important but
applicable only for noiseless data or they have a complex-
ity of at least O(m7). When the ratio of shuffled data is
small, one may apply the `1 robust regression method of

1A rigorous definition of generic will be given in §2.1

(2) (Slawski & Ben-David, 2019). Other approaches use
alternating minimization or multi-start gradient descent to
solve (1) (Abid et al., 2017; Abid & Zou, 2018), an NP-
hard problem for n > 1 (Pananjady et al., 2018). Due to the
high non-convexity such methods are very sensitive to ini-
tialization. This is remedied by the algebraically-initialized
expectation-maximization method of Tsakiris et al. 2018,
which uses the solution to the polynomial system of equa-
tions mentioned above to obtain a high-quality initializa-
tion. This approach is robust to small levels of noise, effi-
cient for n ≤ 5, and is able to handle fully shuffled data; its
main drawback is its exponential complexity in n.

In the unlabeled sensing case, which may be thought of as
shuffled linear regression with outliers, the above methods
in principle break down. Instead, we are aware of only two
relevant algorithms, which nevertheless are suitable under
strong structural assumptions on the data. The O(nmn+1)
method of Elhami et al. 2017 applies a brute-force solu-
tion, which explicitly relies on the data being noiseless and
whose theoretical guarantees require a particular exponen-
tially spaced structure on A. On the other hand, Haghigh-
atshoar & Caire 2018 attempt to solve

min
S,x
‖y − SAx‖2 , (3)

via alternating minimization, with S in (3) being a selec-
tion matrix2. Their main algorithmic insight is to solve for
S given x via dynamic programming. However, their al-
gorithm works only for order-preserving selection matrices
S, a rather strong limitation, and seems to fail otherwise.
It is thus fair to conclude that, to the best of our knowl-
edge, there does not seem to exist a satisfactory algorithm
for unlabeled sensing, even for small values of n.

1.2. Contributions

Theory. In this work we adopt an abstract view of the
shuffled linear regression and unlabeled sensing problems,
which naturally leads us to a more general formulation that
we refer to as homomorphic sensing. In homomorphic
sensing one is given a finite set T of linear transformations
Rm → Rm (to be called endomorphisms) and a linear sub-
space V ⊂ Rm of dimension n, and asks under what condi-
tions the image τ(v) of some unknown v ∈ V under some
unknown τ ∈ T is enough to uniquely determine what v is.
This is equivalent to asking under what conditions the rela-
tion τ1(v1) = τ2(v2) implies v1 = v2 whenever τ1, τ2 ∈ T
and v1, v2 ∈ V . E.g., in shuffled linear regression these en-
domorphisms are permutations, while in unlabeled sensing
they are compositions of permutations with coordinate pro-

2An order-preserving selection matrix is a row-submatrix of
the identity matrix. A selection matrix is a row-permutation of an
order-preserving selection matrix. This is equivalent to a permu-
tation matrix composed by a coordinate projection.
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jections, and the unlabeled sensing theorem of Unnikrish-
nan et al. 2018 asserts that a sufficient condition for unique
recovery is that 1) the coordinate projections preserve at
least 2n coordinates and 2) V is generic.

The first theoretical contribution of this paper is a general
homomorphic sensing result (Theorem 1) applicable to ar-
bitrary endomorphisms, and thus of potential interest in a
broad spectrum of applications. For generic V , the key con-
dition asks that the dimension n of V does not exceed the
codimension of a certain algebraic variety associated with
pairs of endomorphisms from T . This in turn can be used to
obtain within a principled framework the unlabeled sensing
result of Unnikrishnan et al. 2018. Our second theoretical
contribution is a recovery result (Theorem 2) for generic
points in V (as opposed to all points), which for the unla-
beled sensing case says that the coordinate projections need
to preserve at least n+ 1 coordinates (as opposed to 2n).

Algorithms. Inspired by Haghighatshoar & Caire 2018;
Elhami et al. 2017 and Yang et al. 2016 we make three
algorithmic contributions. First, we introduce a branch-
and-bound algorithm for the unlabeled sensing problem
by globally minimizing (3). Instead of branching over
the space of selection matrices, which is known to be in-
tractable (Li & Hartley, 2007), our algorithm only branches
over the space of x ∈ Rn, relying on a locally optimal
computation of the selection matrix via dynamic program-
ming. Second, it is this dynamic programming feature that
also allows us to modify the purely theoretical algorithm
of Elhami et al. 2017 into a robust and efficient method
for small dimensions n. These two algorithms constitute
to the best of our knowledge the first working solutions for
the unlabeled sensing problem. Third, when customized
for image registration under an affine transformation, our
branch-and-bound algorithm is on par with or outperforms
state-of-the-art methods (Lian et al., 2017; Jian & Vemuri,
2011; Myronenko & Song, 2010) on benchmark datasets.

2. Homomorphic Sensing: Algebraic Theory
The main results of this section are Theorems 1 and 2.
We sketch the proofs wherever space allows and refer the
reader to Tsakiris 2019 for the complete arguments. All re-
sults in this section refer to the noiseless case; an analysis
for corrupted data is left to future research.

2.1. Preliminaries

For an integer k, [k] = {1, . . . , k}. For non-negative real
number α, bαc is the greatest integer k such that k ≤ α.

2.1.1. R VERSUS C

We work over the complex numbers C. This does not con-
tradict the fact that in this paper we are primarily inter-

ested in Rm, rather it facilitates the analysis. E.g., a ma-
trix T ∈ Rm×m may be diagonalizable over C but not over
R. This is the case with permutations, whose eigenvalues
are associated with the complex roots of unity. Hence our
philosophy is “check the conditions over C, then draw a
conclusion over R”; see Remark 1.

2.1.2. ABSTRACT LINEAR ALGEBRA

We adopt the terminology of abstract linear algebra (Ro-
man, 2008), since the ideas we discuss in this paper are
best delivered in a coordinate-free way. The reader who in-
sists on thinking in terms of matrices may safely replace
linear transformations, kernels and images by matrices,
nullspaces and rangespaces, respectively.

We work in Cm. For a subspace V we denote by dim(V)
its dimension. For subspaces V,W we say that “V,W do
not intersect” if V ∩W = 0. An endomorphism is a linear
transformation τ : Cm → Cm; an automorphism is an
invertible endomorphism. We denote by i the identity map
i(w) = w, ∀w ∈ Cm. If τ is an endomorphism, its kernel
ker(τ) is the set of all v ∈ Cm such that τ(v) = 0, and
its image im(τ) is the set of all τ(w) for w ∈ Cm. By
rank(τ) we mean dim(im(τ)). The preimage of τ(v) is
the set of all w ∈ Cm such that τ(v) = τ(w), i.e., the set
of all v + ξ, for all ξ ∈ ker(τ). If V is a linear subspace,
by τ(V) we mean the set of all vectors τ(v) for all v ∈
V . We denote by Eτ,λ the eigenspace of τ associated to
eigenvalue λ, i.e., the set of all v ∈ Cm such that τ(v) =
λv. For τ1, τ2 endomorphisms the generalized eigenspace
of the pair (τ1, τ2) of eigenvalue λ is the set of all w ∈
Cm for which τ1(w) = λτ2(w). By a projection ρ of Cm
we mean an idempotent (ρ2 = ρ) endomorphism. By a
coordinate projection we mean a projection that sets to zero
certain coordinates of Cm while preserving the rest.

2.1.3. ALGEBRAIC GEOMETRY

By an algebraic variety (or variety) of Cm we mean the
zero locus of a set of polynomials in m variables. The
study of such varieties is facilitated by the use of the Zariski
topology, in which every variety is a closed set. In partic-
ular, there is a well-developed theory in which topological
and algebraic notions of dimension coincide (Hartshorne,
1977). This allows us to assign dimensions to sets such
as the intersection of a variety with the complement of an-
other, called quasi-variety. A linear subspace S is an al-
gebraic variety and its linear-algebra dimension coincides
with its algebraic-geometric dimension. The union A =
∪i∈[`]Si of ` linear subspaces is also an algebraic variety
and dim(A) = maxi∈[`] dim(Si). For a variety Y which is
defined by homogeneous polynomials dim(Y) can be char-
acterized as the smallest number of hyperplanes through
the origin 0 that one needs to intersect Y with to obtain
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the origin. For Y a variety of Cm, we set codim(Y) =
m − dim(Y). The set of all n-dimensional linear sub-
spaces of Cm is itself an algebraic variety of C(m

n) called
Grassmannian and denoted by Gr(n,m). By a generic sub-
space V of dimension n we mean a non-empty open subset
U ⊂ Gr(n,m) in the Zariski topology of Gr(n,m). Such
a U is dense in Gr(n,m) and if one endows Gr(n,m) with
a continuous probability measure, then U has measure 1
(Bürgisser & Cucker, 2013). Hence the reader may safely
think of a generic subspace as a random subspace. When
we say “for a generic V property P is true”, we mean that
the set of all V for which property P is true contains a
non-empty Zariski open subset of Gr(n,m). Hence for a
randomly drawn V property P will be true with probability
1. We will make repeated use of the following fact:
Lemma 1. Let Y be a variety defined by homogeneous
polynomials and V a generic linear subspace. Then

dim(Y ∩ V) = max{dim(V)− codim(Y), 0}. (4)

A property of the Zariski topology that we need is that the
intersection of finitely many non-empty open sets of an ir-
reducible space (such as Gr(n,m)) is open and non-empty.

2.2. Formulation and first insights

Let V ⊂ Cm be a linear subspace of dimension n and
let T be a finite set of endomorphisms of Cm. Let v be
some point (vector) in V . Suppose that we know the im-
age τ(v) ∈ Cm of v for some unspecified τ ∈ T . Can we
uniquely recover v from knowledge of V, T and τ(v)?
Example 1. In shuffled linear regression T consists of the
m! permutations on them coordinates of Cm. In unlabeled
sensing T consists of the set of all possible combinations
of permutations composed with coordinate projections. In
both cases V is the range-space of some matrixA ∈ Cm×n
and v = Ax for some x ∈ Cn. The meaning of A and
x may vary depending on the application. E.g., in signal
processing/control systems x may be the impulse response
of some linear filter, while in image registration x may rep-
resent the parameters of some affine transformation.

The above question motivates the following definition.
Definition 1. Let V ⊂ Cm be a subspace and T a finite set
of endomorphisms of Cm. We say that “v1 ∈ V is uniquely
recoverable in V under T ” if whenever τ1(v1) = τ2(v2) for
some τ1, τ2 ∈ T and v2 ∈ V , then v1 = v2. If this holds
for every v ∈ V , we have “unique recovery in V under T ”.

Remark 1. Let T be a set of endomorphisms of Rm. These
can also be viewed as endomorphisms of Cm (Theorem
2.29 of Roman 2008). Let V be a subspace of Rm with ba-
sis v1, . . . , vn and VC = SpanC(v1, . . . , vn) the subspace
of Cm generated by the basis of V . Then unique recovery
in VC under T implies unique recovery in V under T .

To build some intuition about the notion of unique recovery
in V under T , consider first the case where T = {i, τ}with
i the identity map and τ some automorphism. As a first
step, we characterize the purely combinatorial condition of
Definition 1 given in terms of points by the geometric con-
dition of the next proposition given in terms of subspaces.

Lemma 2. Let τ be any automorphism of Cm and let V be
any linear subspace. Then we have unique recovery in V
under {i, τ} if and only if V ∩ τ(V) ⊂ Eτ,1.

Proof. (Necessity) Suppose that V ∩ τ(V) 6⊂ Eτ,1. Then
there exists some v1 ∈ V ∩ τ(V) not inside Eτ,1. Note
that this also implies that v1 6∈ Eτ−1,1. Since v1 ∈ τ(V)
there exists some v2 ∈ V such that v1 = τ(v2). Since
v1 6∈ Eτ−1,1 we must have that v1 6= τ−1(v1) = v2. Hence
v1 = τ(v2) with v1 6= v2. (Sufficiency) Suppose that v1 =
τ(v2) for some v1, v2 ∈ V , whence v1 ∈ V ∩ τ(V). By
hypothesis v1 ∈ Eτ,1. Hence τ(v1) = v1. Hence τ(v1) =
τ(v2). Since τ is invertible, v1 = v2.

Notice that condition V∩τ(V) ⊂ Eτ,1 of Lemma 2 prevents
V ∩ τ(V) from intersecting Eτ,λ for any λ 6= 1. Hence,
a necessary condition for unique recovery is V ∩ τ(V) to
not intersect Eτ,λ6=1. Notice that V ∩ τ(V) ∩ Eτ,λ = 0 if
and only if V ∩ Eτ,λ = 0. This places a restriction on the
dimension of V , for if dim(V) > codim(Eτ,λ) then V,Eτ,λ
will necessarily intersect. Hence, a necessary condition for
unique recovery in V under {i, τ} is

dim(V) ≤ min
λ6=1

codim Eτ,λ. (5)

Since the algebraic-geometric dimension of a finite union
of linear subspaces is the maximum among the subspace
dimensions (§2.1.3), condition (5) is equivalent to

dim(V) ≤ codim
(
∪λ6=1 Eτ,λ

)
. (6)

Then for a generic V satisfying condition (6), Lemma 1
guarantees that V ∩

(
∪λ 6=1 Eτ,λ

)
= 0.

2.3. Recovery under diagonalizable automorphisms

It is not hard to show that when τ is diagonalizable and
n = dim(V) is small enough compared to m, condition (6)
is also sufficient for unique recovery in V under {i, τ}3:

Lemma 3. Let τ be a diagonalizable automorphism of
Cm and V generic subspace, dim(V) ≤ bm/2c. We have
unique recovery in V under {i, τ} if and only if (6) is true.

3Lemma 3 (with a different proof) is the main insight of the
parallel and independent work of Dokmanić 2019. That work
studies the same problem as the present paper, but focuses only
on diagonalizable automorphisms. On the other hand, it has the
advantage that it considers countably many automorphisms, while
here we only consider finitely many.
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Proof. (⇒) By Lemma 2 V ∩ τ(V) ⊂ Eτ,1. Hence V
does not intersect Eτ,λ for every λ 6= 1. This implies (6).
(⇐) Suppose first that dim(Eτ,1) ≤ m − n. The subset
X of Gr(n,m) on which V ∩ τ(V) = 0 contains the open
subset Uτ on which dim(V + τ(V)) = 2n. Then Uτ is
non-empty. To see this, note that there exist 2n linearly in-
dependent eigenvectorsw1, . . . , w2n of τ such that no more
than n of them correspond to the same eigenvalue. Order-
ing thewi such that eigenvectors corresponding to the same
eigenvalue are placed consecutively, we then define vi =
wi + wi+n, ∀i ∈ [n]. Then V = Span(v1, . . . , vn) ∈ Uτ .

Next, suppose that dim(Eτ,1) > m− n. Since n ≤ bm/2c
we have dim(Eτ,1) ≥ n. Suppose that v1 = τ(v2) for
v1, v2 ∈ V . Let B be a basis of Cm on which τ is
represented by a diagonal matrix T ∈ Cm×m, and let
V ∈ Cm×n and V ξ1, V ξ2 ∈ Cm be the corresponding rep-
resentations of a basis of V , and of v1, v2 respectively, with
ξ1, ξ2 ∈ Cn. Then the equation v1 = τ(v2) is equivalent
to V ξ1 = TV ξ2. Since dim(Eτ,1) ≥ n we may assume
without loss of generality that the first n diagonal elements
of T are equal to 1. Letting V1 ∈ Cn×n be the top n × n
submatrix of V , this implies that V1ξ1 = V1ξ2. Then V1

is invertible on a non-empty open subset U′τ of Gr(n,m),
on which v1 = v2. Thus V ∩ τ(V) ⊂ Eτ,1, ∀V ∈ U′τ . In
conclusion, there is an open set U = Uτ or U = U′τ , such
that for any V ∈ U we have V ∩ τ(V) ⊂ Eτ,1, and so we
are done by Lemma 2.
The extension to multiple automorphisms follows from
Lemma 3 and the fact that the intersection of finitely many
non-empty open sets of Gr(n,m) is non-empty and open:

Proposition 1. Let T be a finite set of automorphisms of
Cm such that for any τ1, τ2 ∈ T we have that τ−1

1 τ2 is di-
agonalizable. Let V be a generic subspace with dim(V) ≤
bm/2c. We have unique recovery in V under T if and only
if (6) is true for every τ = τ−1

1 τ2 with τ1, τ2 ∈ T .

Even though the invertibility and diagonalizability require-
ment of Proposition 1 may seem too strong, it is satisfied
by our canonical example where T is the set of m! permu-
tations on the m coordinates of Cm. In fact, more is true:

Proposition 2. Let T be the permutations on the m co-
ordinates of Cm. Then dim(Eπ,λ) ≤ m − bm/2c, ∀π ∈
T , ∀λ 6= 1. Hence, for generic subspace V with dim(V) ≤
bm/2c we have unique recovery in V under T .

Proof. This follows from basic structural facts about per-
mutations. Let π ∈ T be a permutation. Then π is the prod-
uct of c ≥ 1 disjoint cycles, say π = π1 · · ·πc. Suppose
that cycle πi cycles mi coordinates, i.e., it has length mi.
Since the cycles are disjoint we have m =

∑c
i=1mi. Now,

each cycle is diagonalizable with mi eigenvalues equal to
themi complex roots of unity, i.e., the roots of the equation
xmi = 1. Since the cycles are disjoint, the dimensions of

the eigenspaces of π are counted additively across cycles.
Hence for λ 6= 1 the dimension of Eπ,λ is at most equal to
the number of cycles of length at least 2. But the number of
such cycles is at most bm/2c. Hence dim(Eπ,λ) ≤ bm/2c.
But bm/2c ≤ m− bm/2c, i.e., dim(Eπ,λ) ≤ m− bm/2c.
The rest of the statement is a corollary of Proposition 1.

2.4. Recovery under arbitrary endomorphisms

2.4.1. UNIQUE RECOVERY FOR ALL POINTS

The arguments that led to Proposition 1 relied heavily on
the invertibility of the endomorphisms in T . This is be-
cause in that case unique recovery in V under {τ1, τ2} is
equivalent to unique recovery in V under {i, τ−1

1 τ2}, where
i is the identity map. It was this feature that helped us un-
derstand the homomorphic sensing property of Definition
1 in terms of V intersecting its image τ−1

1 τ2(V). In turn,
the key objects controlling this intersection turned out to
be the eigenspaces of τ = τ−1

1 τ2 corresponding to eigen-
values different than 1, as per Lemma 3, whose proof how-
ever made explicit use of the diagonalizability of τ . As a
consequence, generalizing Proposition 1 to arbitrary endo-
morphisms for which τ1 might not even be invertible, let
alone τ−1

1 τ2 diagonalizable, is not straightforward.

Example 2. In unlabeled sensing, a permutation composed
with a coordinate projection is in general neither invert-
ible nor diagonalizable. For example, consider a cycle π of
length 3, a coordinate projection ρ onto the first two coor-
dinates, and their composition ρπ:

π =

0 0 1
1 0 0
0 1 0

 , ρ =

1 0 0
0 1 0
0 0 0

 , ρπ =

0 0 1
1 0 0
0 0 0

 .
First, rank(ρπ) = 2 so that ρπ is not invertible. Secondly,
ρπ is nilpotent, i.e., (ρπ)3 = 0, and so the only eigenvalue
of ρπ is zero. This means that ρπ is similar to a 3×3 Jordan
block of eigenvalue 0, i.e., ρπ is far from diagonalizable.

We proceed by developing two devices. The first one is a
generalization of Lemma 3 and overcomes the challenge of
the potential non-diagonalizability of the endomorphisms.

Lemma 4. Let V be a generic subspace with dim(V) ≤
bm/2c, and τ any endomorphism of Cm for which (6) is
true. Then we have unique recovery in V under {i, τ}.

Proof. (Sketch) The arguments are similar in spirit with
those in the proof of Lemma 3 but technically more in-
volved. Let n = dim(V). The difficult part is when
dim(Eτ,1) ≤ m − n, where we prove the existence a non-
empty open set U of Gr(n,m), such that for every V ∈ U
we have dim(V + τ(V)) = n + min{n, rank(τ)}, which
is the maximal dimension that the subspace V + τ(V) can
have. In analogy with the diagonalizable case, this can be
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done by working with the Jordan canonical form of τ and
constructing a V = Span(v1, . . . , vn) ∈ U for which the vi
are suitably paired (generalized) eigenvectors of τ .

Our second device overcomes the challenge of potential
lack of invertibility. We need some notation. Let τ1, τ2
be endomorphisms of Cm and let ρ be a projection onto
im(τ2). Define the variety Yρτ1,τ2 as the set of w ∈ Cm for
which ρτ1(w) and τ2(w) are linearly dependent, i.e.,

Yρτ1,τ2 =
{
w : dim

(
Span(ρτ1(w), τ2(w))

)
≤ 1
}
. (7)

This is indeed a variety because if τ1, τ2, ρ are represented
by matrices T1, T2, P , then Yρτ1,τ2 is defined by the van-
ishing of all 2 × 2 minors of the matrix [PT1w T2w],
which are quadratic polynomials in w. If w ∈ Yρτ1,τ2
then there exists some λw ∈ C such that either τ2(w) =
λwρτ1(w) or ρτ1(w) = λwτ2(w). Hence Yρτ1,τ2 is the
union of all generalized eigenspaces of the endomorphism
pairs (ρτ1, τ2) and (τ2, ρτ1). Note that ker(ρτ1 − τ2)
is the generalized eigenspace corresponding to eigenvalue
1, while ker(ρτ1), ker(τ2) are the generalized eigenspaces
of (ρτ1, τ2), (τ2, ρτ1) respectively, corresponding to eigen-
value 0. In analogy with the automorphism case of Lemma
2 where the eigenspace of eigenvalue 1 was irrelevant for
unique recovery, it turns out that in the general case the
same is true for the generalized eigenspaces of eigenvalue
1 and 0. Removing their union

Zρτ1,τ2 = ker(τ2) ∪ ker(ρτ1) ∪ ker(ρτ1 − τ2), (8)

from Yρτ1,τ2 yields the quasi-variety

Uρτ1,τ2 = Yρτ1,τ2 \ Zρτ1,τ2 . (9)

Uρτ1,τ2 plays an analogous role with ∪λ6=1Eτ,λ when τ is
an automorphism. More precisely, in analogy with (6), the
next theorem shows that the condition that controls homo-
morphic sensing in general is

dim(V) ≤ codim
(
Uρτ1,τ2

)
. (10)

Theorem 1. Let T be a finite set of endomorphisms of Cm
such that for every τ ∈ T we have rank(τ) ≥ 2n, for some
n ≤ bm/2c. Then for a general subspace V of dimension
n, we have unique recovery in V under T as long as for
every τ1, τ2 ∈ T there is a projection ρ onto im(τ2) such
that for Uρτ1,τ2 defined in (9) condition (10) is true.

Proof. (Sketch) The key idea for the case T = {τ1, τ2}
is to view V as a generic n-dimensional subspace of a
generic k-dimensional subspace H, where k = rank(τ2).
Then τ2|H is an isomorphism from H onto im(τ2), and so
unique recovery in V under {τ1, τ2} follows from unique
recovery in V under {i|H, τH}, with τH =

(
τ2|H

)−1
ρτ1|H

endomorphism of H. By Lemma 4 we are done if

dim
(
EτH,λ

)
≤ k − n, ∀λ 6= 1. Let τH(w) = λw, then

τ2
(
τ2|H

)−1
ρτ1(w) = λτ2(w). Now, τ2

(
τ2|H

)−1
ρ = ρ,

thus ρτ1(w) = λτ2(w). Hence, EτH,λ ⊂
(
Uρτ1,τ2 ∩ H

)
and the rest follows from dimension considerations.

In unlabeled sensing the endomorphisms in T have the
form ρπ, where π is a permutation and ρ is a coordi-
nate projection. Then as per Theorem 1 if dim(V) ≤
codim

(
Uρ2ρ1π1,ρ2π2

)
one has unique recovery in V under

{ρ1π1, ρ2π2}. Furthermore, via a combinatorial algebraic-
geometric argument we obtain a convenient lower bound
on codim

(
Uρ2ρ1π1,ρ2π2

)
:

Proposition 3. Let π1, π2 be permutations on the m co-
ordinates of Cm and ρ1, ρ2 coordinate projections. For
Uρ2ρ1π1,ρ2π2

defined in (9) we have

brank(ρ2)/2c ≤ codim
(
Uρ2ρ1π1,ρ2π2

)
. (11)

As a consequence of Theorem 1 and Proposition 3 one has
unique recovery in the unlabeled sensing case as long as the
dimension of V does not exceed half the number of the co-
ordinates preserved by each coordinate projection. This is
precisely the result of Unnikrishnan et al. 2018 which they
obtained by attacking the problem directly via ingenious
yet complicated combinatorial arguments. Even though our
proof is not necessarily less complicated, it has the advan-
tage of using a framework that generalizes relatively eas-
ily. For example, one may consider entry-wise sign corrup-
tions on top of coordinate projections and permutations. In
such a case, it is not hard to show that for the same con-
dition as for unlabeled sensing one has unique recovery up
to a sign. In general, even though analytically computing
codim

(
Uρτ1,τ2

)
may be challenging, performing this com-

putation in an algebraic geometry software environment
such as Macaulay2 is in principle straightforward.

2.4.2. UNIQUE RECOVERY FOR GENERIC POINTS

Often the requirement that every v ∈ V is uniquely recov-
erable is unnecessarily strict. Instead, it may be of inter-
est to ask whether unique recovery holds true for a generic
v ∈ V . In such a situation a less demanding technical anal-
ysis gives unique recovery under much weaker conditions:

Theorem 2. Let T be a finite set of endomorphisms of Cm.
Then a generic point v inside a generic subspace V of di-
mension n is uniquely recoverable in V under T as long
as 1) rank(τ) ≥ n + 1 for every τ ∈ T , and 2) no two
endomorphisms in T are a scalar multiple of each other.

Proof. (Sketch) Let V ∈ Cm×n be a basis of V .
If τ1(v1) = τ2(v2) then τ2(v2) ∈ τ1(V) and so
rank([T1V T2V ξ]) ≤ n for ξ ∈ Cn with v2 = V ξ. The
proof then proceeds by exhibiting, for τ1 6= τ2, a V and a ξ
for which rank([T1V T2V ξ]) = n + 1. This implies that
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for generic V and v2 ∈ V , τ1(v1) = τ2(v2) for v1 ∈ V only
when τ1 = τ2. In that case v1 − v2 ∈ ker(τ1), and Lemma
1 implies that v1 − v2 = 0.

A consequence of Theorem 2 is the unique recovery of a
generic vector in the unlabeled sensing case as soon as the
coordinate projections preserve at least n+ 1 entries:

Corollary 1. Let T be the set of endomorphisms of Cm
such that every τ ∈ T has the form τ = ρπ, where π is
a permutation and ρ a coordinate projection. Then for a
generic subspace V of dimension n, and a generic v ∈ V ,
we have unique recovery of v in V under T , as long as
rank(ρ) ≥ n+ 1 for every ρπ ∈ T .

3. Algorithms and Application
3.1. Branch-and-bound for unlabeled sensing

In this section we propose a globally optimal method for
the unlabeled sensing problem, by minimizing (3) via a
dynamic-programming based branch-and-bound scheme.
Both ingredients are standard, and we just describe how
to combine them; see Emiya et al. 2014; Yang et al. 2016
for transparent discussions of branch-and-bound in related
contexts. Set f(x, S) = ‖y − SAx‖2, with x ∈ Rn and
S a selection matrix. As branching over the space of se-
lection/permutation matrices S is known to be inefficient
(Li & Hartley, 2007), the crucial aspect of our approach is
to branch only over the space of x, while relying on a lo-
cal computation of the optimal S, say Sx, given x. Here is
where dynamic programming comes into play: Haghigh-
atshoar & Caire 2018 showed that if there exists an order-
preserving Sx such that f(x, Sx) = minS ‖y − SAx‖2,
then Sx can be computed via dynamic programming4 at
a complexity O(mk). At first sight this does not gen-
eralize to any y,A, x as none of the minimizers over S
is expected to be order-preserving. However, if we order
y,Ax in descending order to obtain say y↓, (Ax)↓, then 1)
there is an order-preserving selection matrix S′x such that∥∥y↓ − S′x(Ax)↓

∥∥
2

= minS
∥∥y↓ − S(Ax)↓

∥∥
2
, and 2) Sx

can be easily obtained from S′x. In conclusion, given x we
can compute Sx inO(mk); this is in sharp contrast to other
linear assignment algorithms such as the Hungarian algo-
rithm, most of which have complexity O(m3) (Burkard
et al., 2009). Finally, our strategy becomes that of com-
puting an upper bound of f in a hypercube with center x0

via alternating minimization between x and S, initialized
at x0. Computing a tight lower bound ` of f for a given hy-
percube is challenging and our choice here is a crude one:
` = ‖y − Sx0

Ax0‖2 − σ1(A)ε, where ε is half the hyper-
cube diagonal and σ1(A) is the largest singular value of A.
We refer to this as Algorithm-A.

4That such an assignment problem can be solved via dynamic
programming was already known by Aggarwal et al. 1992.

3.2. A robust version of Elhami et al. 2017

It turns out that the dynamic programming trick of §3.1 is
also the key to a robust version of the theoretical algorithm
of Elhami et al. 2017: we randomly select a sub-vector ȳ
of y of length n, and for each Ai out of the m!/(m − n)!
many n × n matrices that can be made by concatenating
different rows of A in any order we let xi = A†i ȳ. We then
use dynamic programming to select the xi with the lowest
assignment error minS ‖y − SAxi‖2. This is an algorithm
of complexity O(kmn+1), we call it Algorithm-B.

3.3. Evaluation on synthetic data

We compare the proposed 1) Algorithm-A of §3.1 and
2) Algorithm-B of §3.2 to other state-of-the-art methods
(§1.1), using normally distributed A, x, ε with n = 3,m =
100 and σ = 0.01 for the noise. For shuffled linear regres-
sion (k = m) we compare with 3) Slwasky19 that solves
(2), 4) Tsakiris18 which is the algebraic-geometric
method of Tsakiris et al. 2018 and 3) Abid18 which
performs alternating minimization on (1) via least-squares
and sorting (Abid & Zou, 2018)5. For unlabeled sens-
ing (k ≤ m) we compare with 4) Haghighatshoar18
(Haghighatshoar & Caire, 2018). As seen from Fig. 1 the
proposed methods perform uniformly better and often by a
large margin than the other methods, when tested in their
robustness against the percentage of shuffled data, outlier
ratio and noise level. In particular, we see that for the un-
labeled sensing problem of Figs. 1b-1d Algorithm-A
and Algorithm-B are the only working solutions. En-
couraging as these results may be, we do note that an im-
portant weakness of these methods is their scalability: for
Algorithm-B this is more of an inherent issue due to its
brute-force nature, while for Algorithm-A it is due to its
naive lower bounding scheme: the consequence of it being
far from tight manifests itself at higher dimensions (n ≥ 4)
or large outlier ratios (k � m), in which the method be-
comes too slow: it runs6 in 1sec for k = m = 100,
30sec for k = 80 and 5min for k = 50. In contrast,
Algorithm-B is immune to k and runs in about 40sec.

3.4. Application to image registration

Registering point sets P,Q between two images is a clas-
sical problem in computer vision. Assuming that P,Q are
related by an affine transformation T and that each point
in P (model set) has a counterpart in Q (scene set) (Lian
et al., 2017), jointly searching for the affine transformation
and the registration can be done by minimizing the func-

5The soft-EM algorithm of Abid & Zou 2018 consistently fails
in our experiment, thus we do not include it in the figure.

6In this experiment Algorithm-A stops splitting a hyper-
cube when a depth 6 for that hypercube has been reached. Run on
an Intel(R) i7-8650U, 1.9GHz, 16GB machine.
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Figure 1: Relative error vs. % of shuffled data, outlier ratio
(1 − k/m) and noise level (σ). n = 3,m = 100, k =
80, σ = 0.01, 1000 trials. Proposed algorithms in red.

tion F (T, S) = ‖PT − SQ‖F, where Q ∈ Rm×2, P ∈
Rk×3, T ∈ R3×2, with homogeneous coordinates used for
P , and S is a selection matrix. This is a matrix version
of the unlabeled sensing objective function (3). Our con-
tribution here is to adjust algorithm of §3.1 to solve the
image registration problem. This involves branching over a
6-dimensional space to compute T , i.e., n = 6. This does
not contradict the remark of the previous section regarding
scalability: the key here is that each point correspondence
imposes two constraints on T (as opposed to one constraint
in the general case), so that, loosely speaking, the effective
outlier ratio is 1− 2k/m (as opposed to 1− k/m). As we
will soon see, this has a crucial effect on performance. Fi-
nally, as dynamic programming is not applicable to obtain
S given T , we employ a standard linear assignment algo-
rithm of complexity O(m3) (Jonker & Volgenant, 1987).
We refer to this algorithm as Algorithm-C.

We compare 1) Algorithm-C with state-of-the-art im-
age registration techniques, i.e., 2) CPD (Myronenko &
Song, 2010), 3) GMMREG (Jian & Vemuri, 2011), and 4)
APM (Lian et al., 2017), using a subset of the benchmark
datasets used by Lian et al. 2017. Since APM is the most
competitive among these last three, we let it run to conver-
gence with a tolerance parameter of 0.1 and set its running
time as a time budget for our method; CPD and GMMREG are
local methods and they run very fast. When the affine trans-
formation is a rotation (Fig. 2a) CPD, GMMREG only work
for small angles, while they fail for general affine transfor-
mations (Figs. 2b-2c). On the other hand, Algorithm-C
performs comparably to APM with the following twist in
Fig. 2c: when the outlier ratio is small, APM converges
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Figure 2: Image registration using the synthetic benchmark
dataset The Chinese Character (Chui & Rangarajan, 2003)
(2a-2c,2e-2f,100 trials) and the same collection of real im-
ages used in Lian et al. 2017 (2d). Proposed method in red.

very quickly resulting to an inadequate time budget for our
method. Conversely, when the outlier ratio is large, APM’s
accuracy becomes inadequate while it is slow enough for
our method to perform even better than for fewer outliers.
These running times for APM are shown in Fig. 2e where
the same experiment is run for noiseless data: APM still
uses a tolerance of 0.1 while to make a point we set the tol-
erance of our method to zero and let it terminate. As seen in
Figs. 2e-2f, our method terminates significantly faster than
APM for large outlier ratios, suggesting that its branch-and-
bound structure may have an advantage over that of APM.

Acknowledgement
The first author is grateful to Dr. Aldo Conca for first not-
ing and sharing the phenomenon of Lemmas 2 and 3. We
also thank Dr. Laurent Kneip for suggesting the case study
of image registration under general affine transformations.



Homomorphic sensing

References
Abid, A. and Zou, J. Stochastic em for shuffled lin-

ear regression. Technical report, arXiv:1804.00681v1
[stat.ML], 2018.

Abid, A., Poon, A., and Zou, J. Linear regression with
shuffled labels. Technical report, arXiv:1705.01342v2
[stat.ML], 2017.

Aggarwal, A., Bar-Noy, A., Khuller, S., Kravets, D., and
Schieber, B. Efficient minimum cost matching using
quadrangle inequality. In Annual Symposium on Foun-
dations of Computer Science, pp. 583–592, 1992.

Balakrishnan, A. On the problem of time jitter in sampling.
IRE Transactions on Information Theory, 8(3):226–236,
1962.

Bürgisser, P. and Cucker, F. The geometry of numerical
algorithms. Springer Science & Business Media, 349,
2013.

Burkard, R. E., Dell’Amico, M., and Martello, S. Assign-
ment Problems. Springer, 2009.

Chui, H. and Rangarajan, A. A new point matching al-
gorithm for non-rigid registration. Comput. Vis. Image
Underst., 89(2-3):114–141, 2003.

David, P., DeMenthon, D., Duraiswami, R., and Samet, H.
Softposit: Simultaneous pose and correspondence deter-
mination. International Journal of Computer Vision, 59
(3):259–284, 2004.
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