Sublinear Space Private Algorithms Under the Sliding Window Model

Jalaj Upadhyay '

Abstract

The Differential privacy overview of Apple states,
“Apple retains the collected data for a maximum of
three months.” Analysis on recent data is formal-
ized by the sliding window model. This begs the
question: what is the price of privacy in the slid-
ing window model. In this paper, we study heavy
hitters in the sliding window model with window
size w. Previous works of Chan et al. (2012) es-
timates heavy hitters incur an error of order fw
for a constant # > 0. In this paper, we give an ef-
ficient differentially private algorithm to estimate
heavy hitters in the sliding window model with
O(w?/*) additive error and using O(y/w) space.

1. Introduction

Many real-world applications involve processing time-
evolving data. For example, consider a health agency track-
ing the spread of flu, or a network service provider mon-
itoring the traffic to be able to allocate resources and pre-
empt congestion, or a recommendation system following the
trending events to be able to better serve the users. Given the
temporal, streaming nature of data, a primary requirement
from a computational perspective is to enable analysis in
real time using small space. Furthermore, these systems
often rely on highly sensitive, private data and therefore,
privacy is of utmost concern in such applications. The fo-
cus, therefore, in this paper, is to study sublinear space
algorithms for private analysis of temporal data.

Several computing models have been studied for processing
temporal data. Perhaps, the most popular and the simplest of
all is the streaming model, wherein, at every time epoch new
data is received and processed but the output is produced
only at the end of the stream. This model has been studied
extensively in many privacy-preserving data analysis appli-
cations (Mir et al., 2011; Blocki et al., 2012; Upadhyay,

"Department of Computer Science, Johns Hopkins University,
Baltimore, MD - 21218. Correspondence to: Jalaj Upadhyay
<jalaj@jhu.edu>.

Proceedings of the 36" International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

2014a;b; Joseph et al., 2018). A related model that has been
studied with privacy considerations is that of continual re-
lease model, where the output is produced continually at
every time epoch as the data streams, in Chan et al. (2011);
Dwork et al. (2010a). Both these models consider the entire
stream of data useful (and hence, also referred to as the un-
bounded stream models). This is in contrast with the sliding
window model where the goal is to maintain a fixed length
window over the stream and process queries based on the
most recent data (Datar et al., 2002).

In this paper, we are primarily interested in the sliding win-
dow model since many real-world applications (including
the ones listed above) value recent data more than the his-
torical data. For example, Apple retains the data collected
from a user for a maximum of three months, anything older
than that is perhaps considered stale from the perspective
of making recommendations (Apple, 2017; Thakurta et al.,
2017a;b). A secondary motivation stems from privacy con-
cerns — naturally, if Apple retains only recent data for any
user, it limits the exposure to private data. From an algorith-
mic perspective, this poses an interesting question regarding
the privacy-vs-utility tradeoff since working with a sliding
window allows one to reclaim the privacy budget at every
epoch. Therefore, given a fixed privacy budget, one can give
a stronger privacy guarantee for a shorter sliding window
but at the expense of less accurate analysis.

Unlike privacy in the unbounded streaming model, privacy
in the sliding window model has largely been unexplored.
The only private algorithm in the sliding window model,
that we are aware of, is due to Chan et al. (2012) for finding
heavy hitters, i.e., returning a list of elements in a stream that
occur more than a certain number of times. The algorithm
of Chan et al. (2012) incurs an additive error of Aw (for
a constant # > 0) over a sliding window of size w, and
requires O(w) space. We, on the other hand, are interested
in sublinear space algorithm with o(w) additive error.

The requirement of sublinear space is very natural. For
example, consider network monitoring with a high-speed
router working at 100 Gbps line speed. At every epoch, one
of the objectives is to identify the IP address that injects the
highest traffic to the network. A trivial solution to this prob-
lem requires 10! bits of space. However, in the scenario
of high-speed routers, where on-chip memory is expensive

Sublinear Space Private Algorithms Under the Sliding Window Model

and multiple queries are made continuously, it is prohibitive
to use 10'! bits of memory for each query.

Our main contribution in this paper is a differentially private
algorithm for finding heavy hitters in the sliding window
model with space complexity o(w), and an additive error
guarantee of o(w) over the entire window.

1.1. Formal Problem Description

We first give an abstraction of problem description before
stating the specific problem we study in this paper. For
this, we fix the following notations. The stream consists of
elements from a set . We use % (and %, respectively) to
denote the domain (range, respectively) of the function to
be evaluated. We use id € % to denote the initialization
value. We use N (i, 02) to denote a Gaussian distribution
with mean p and variance o2 and Lap(b) to denote a mean
zero Laplace distribution with scale b. For a vector x, we
use the notation a;(z) to denote its i-th coordinate.

An algorithm in the streaming model takes the following
as input: (update function) U : ¥ x ¥ — ¥; (evaluation
function) f : ¥ — R; and (stream) a sequence ()24,
where s; € <.

The update function defines how the stream should be
interpreted to define the input to the desired evaluation
function. For an update function, we denote its output
on a subsequence of stream (sy,...,8m) bY Z[pm] =
U (Syy U(S—1, - - - U(Sp,id))...) € V. The goal of a
streaming algorithm is to evaluate f(x[; 4) at any time .

Let’s consider a simple example to make the setup clear.
An important problem from both numerical linear algebra
perspective as well as learning theory, is the problem of
principal component analysis.

Example 1 (Principal component analysis). Suppose
% = RLY = R, g = R&E and
U(z1,... 2) = > ;2] . Let || - || p denotes the Frobe-
nius norm of the matrix. Then f(U(x1,...,2¢)) =

¢
uut =S] ’
F

i

argming craxk

The streaming model do not lend themselves to settings
where the data are time-sensitive. In such settings, recent
data are considered more accurate than data that arrived
prior to a certain time window.

To model such settings, Datar et al. (2002) introduced the
sliding window model. An algorithm in the sliding window
model also takes the size of window w as input. The ob-
jective of the algorithm is to output f(z[_.11,) at any
time ¢, where z(;_ 11,4 € % is formed by the last w up-
dates. More formally, we define the sliding window model
of computation as follows.

Definition 1. Given a paramter w for the size of window,

an input stream of updates, and a function of interest f(-),
a randomized algorithm in the sliding window model yields
a (T, «, B, T) accurate estimate if, in every execution, with
probability at least 1 — (3, simultaneously, forall1 <t < T,
after processing a prefix (x1,...,x), the current output
contains an estimate, f*, such that | f* — f(xj—w41,9)| <
af(Ti—wi1,e) + 7

We use differential privacy as the notion of privacy. At a high
level, differential privacy requires that the output distribution
of computation on two “adjacent” dataset does not differ by
“much.” In the context of the sliding window, the dataset is
given as a stream and notion of adjacent streams dictates
what is private and what is not private. In this paper, the
dataset is represented in the form of a vector.

We consider two streams as adjacent if they differ in a single
time epoch in the current window by at most one. More
precisely, we consider two streams S = {s1,..., s} and
S' = {s},...,s}} adjacent at time ¢ if the resulting n-
dimensional vector x and 2’ formed by the last w updates
differ in at most one entry by 1. That is, there is an 1 <
i < msuch that |a;(z) — a;(z’)] < 1 and aj(z) = a;(z’)
for j # <. This can be seen as the extension of event-level
privacy (Dwork et al., 2010a; Chan et al., 2011) to the
sliding window model. We now give the formal definition
of differential privacy.

Definition 2 (Differential privacy). Let 9 : X* — R be a
randomized algorithm. M is e-differentially private if for

every adjacent streams S and S’ and every measurable set
6 C R, Pr(S) € 6] < e*Pr[M(S’) € €6].

As mentioned earlier, one of the main problems studied
in this paper is that of a heavy hitter defined by Cormode
& Muthukrishnan (2005). They considered (¢, p)-heavy
hitter, where we are required to output all elements whose
frequency is at least ¢ |||, and not output any element
whose frequency is less than (¢ — p) ||z||,, where is the
vector formed by the stream. An equivalent definition of
heavy hitters also used in the literature is as follows:

Definition 3 ((¢, 7)-sliding heavy hitters). Given a publicly
known bounded universe % = {1, ..., u} and a stream of
input (x1)¢>1, where each x; € {0, 1}“6}”, the problem of
(¢,7v)-heavy hitters is to return all 1 < i < w such that
ai(x) > (L + Q)vllz|, at time T, where x := Zle x4,
along with the estimates of their frequency. Further, it
should not output any 1 < j < w with aj(z) < (1 —
cC)v ||z||, for some constant ¢ > 0.

It is easy to see that by setting ¢ and p appropriately,
the above formulation is equivalent to the one considered
by Cormode & Muthukrishnan (2005).

As one can observe, we use the set-up similar to Chan et al.
(2012). In our set up, the universe and the individuals are

Sublinear Space Private Algorithms Under the Sliding Window Model

separate. Every update can be seen as a user reporting an
element of the universe. That is, we consider the underlying
universe is publicly known. As such revealing the identity
of the heavy hitter does not reveal the identity of the user.
Our results are easily extendable to the setting where more
than one users contribute to an update.

Our Contributions. Current state-of-the-art non-private
algorithms in the sliding window model uses the smooth
histogram framework of Braverman & Ostrovsky (2010)
(see Section 2 for formal definition). A natural question is
whether we can extend this framework to differential privacy.
We give a counterexample showing that one cannot extend
this framework to the private setting even for a single release
of the output without incurring a prohibitively large additive
error (Claim 1). On the positive side, we give an algorithm
to estimate heavy hitters with accuracy O(w?/ /<) over the
entire window (Theorem 4 and Theorem 5) that uses space
sublinear in w. This significantly improves the previous
result by Chan et al. (2012), which incurs fw additive error
(for a constant § > 0). We then show that dependence of
space on w is inevitable for a constant multiplicative ap-
proximation by giving a space lower bound for estimating
heavy-hitters by any differentially private algorithm (Theo-
rem 6). The lower bound on the space is for the case when
we produce the output just once.

Challenges of the Sliding Window Model. It is not clear
if existing techniques used in privacy-preserving algorithms
can be used in the sliding window model. There are two
techniques used in the previous works to deal with data in
the streaming model: private version of Bentley & Saxe
(1980)’s method and random projection based method. The
private version of Bentley & Saxe (1980)’s static to dynamic
data-structure transformation has been a key component of
many previous works (Chan et al., 2011; 2012; Dwork et al.,
2010a). Unfortunately, the construction of Bentley & Saxe
(1980) does not allow “automatic” deletion that happens in
the sliding window model (once a stream element is expired).
One can still use the construction to output an estimate in
the window of size w at the expense of using O(N) space,
where N is the total length of the stream. However, this is
highly undesirable when N > w. In concise, it is unclear
if we can use techniques based on Bentley & Saxe (1980)
to provide even O(w) space sliding window algorithm.

Another workhorse of low-space differentially private algo-
rithms is randomized projections (Arora et al., 2018; Bassily
& Smith, 2015; Bassily et al., 2017; Blocki et al., 2012;
2013; Kenthapadi et al., 2012; Liu et al., 2006; Upadhyay,
2013; 2018). All these techniques use linear sketches. How-
ever, once an input has been sketched, there is no way we
can find out its influence on the sketch at a later point if we
do not store the update. Since the sliding window has auto-

matic deletion and not stream based deletion, it is unclear
how to update the sketch due to the automatic deletion of
the update that lies beyond the current window.

Finally, one may argue that we can use existing non-private
algorithms in the sliding window model for heavy hitters
and then produce a private estimate of their output. The only
known (non-private) algorithm, that we are aware of, for
heavy hitters in the sliding window model is that by Braver-
man et al. (2018b). However, while their algorithm can be
used to estimate heavy hitters once, it is not clear how to
extend it to estimate heavy hitters continually over the entire
window because of some of the subroutines used in their
algorithm.

Our Approach. Our approach is different from previous
algorithms. At a high level, at any time 7', we store a set
of time-stamps that is defined using a known algorithm in
the sliding window model for estimating frequency moment,
F1. Suppose these time stamps are t; < to < --- <tz =T.
We privately compute F; of the vector formed during the
time interval [¢1, T'] (say this is £*). We use the checkpoints
corresponding to the time stamps ?;,...,%s to execute s
independent instances of private COUNT-MIN algorithm,
say C'My,...,CM,. These invocations results in a set
of s vectors, vy, ...,vs. Here v; is the vector formed by
executing COUNT-MIN sketch on the n-dimensional vector
formed during the time interval [t;,T]. To compute the
heavy hitter in the updates formed during the time interval
[T —w+1,T), we use the private estimation of the norm, i.e.,
£* with the sketch generated by the private COUNT-MIN
instance C'M;. The analysis requires a delicate balance
due to the combination of streaming algorithm and sliding
window algorithm as well as the noise required to preserve
privacy. The linearity of COUNT-MIN and estimation of /1
norm allows us to extend the result to continual observation
over the entire window.

We believe this approach of combining techniques in the
sliding window model along with the techniques in the
streaming model of computation can be used to give private
algorithms for many other practically important functions.

2. Prior related work

Without any space constraints, one can compute any com-
putable function exactly in space O(w) using the generic
transformation based on the technique of Bentley & Saxe
(1980). However, such algorithms are infeasible in the prac-
tical setting discussed in Section 1. Therefore, one primary
objective in the sliding window model is to perform the
computation using o(w) space.

There are two main techniques that yield sublinear space
algorithms in the sliding window model, one is the expo-
nential histogram based approach for subadditive functions

Sublinear Space Private Algorithms Under the Sliding Window Model

and the other is the smooth histogram based approach for
(at, B)-smooth functions. Our algorithms use the smooth
histogram framework for estimating certain functions of the
streamed vector. To understand the framework, we first need
the definition of a smooth function.

Let A, B, C be a subsequence of the stream such that B is a
subsequence of A and C' follows A. By abusing the notation,
we denote by f(A) the computation of the function f on the
variable formed due to the updates in the subsequence A.

Definition 4 (Smooth Function). A function f : X* — R
is (a1, ag)-smooth (with 0 < ag < a1 < 1) if it has the
following properties: (a) m < f(A) < poly(w) for
any subsequence A; (b) f(B) < f(A) for B C A; and
(c) For any subsequence A, B and C such that B C C, if
(I—a2)f(A) < f(B), then (1—a1) f(AUC) < f(BUC).

The smooth histogram data structure maintains a number of
“checkpoints” throughout the data stream. Each checkpoint
corresponds to a sketch of all the elements observed from
the time of the checkpoint until the most recently arrived
element. The most recent element received influences all the
sketches in the smooth histogram. A checkpoint is created
with the arrival of each new element and checkpoints are
discarded when their corresponding sketches get “too close”
to the next checkpoint. Braverman & Ostrovsky (2010)
constructed a smooth histogram data structure for smooth
functions and showed the following.

Theorem 1 (Braverman & Ostrovsky (2010)). Let a be
the desired approximation parameter. Let f : %X — R be
an (aq, ag)-smooth function for ay and ay some function
of a.. Let w be the sliding window parameter and (d;)$2,
be a data stream. Assume that there exists an algorithm
in the insertion only model that computes the function f
within (1 — a, 1 + «) factor using Sy space and U update
time. Then there is an efficient algorithm that computes the
Sunction f(-) in the sliding window model using O(O%2 (Sr+
log w) log w) space and O(Q%Uf log w) operations.

A direct corollary of Theorem 1 is the estimation of #; norm.
Braverman & Ostrovsky (2010) maintain s = O(log w)
checkpoints to estimate frequency moment of a stream
within (1 — «,1 + «) factor. The output of their algo-
rithm is ¢ := Hf”[tl.,t” 10 where xp, 4 is the vector formed
between the first checkpoint and the current time. We refer
the interested readers to Braverman & Ostrovsky (2010) for
more details. They showed the following result.

Lemma 1 (Braverman & Ostrovsky (2010)). There is
a sliding window algorithm that on input a stream that
forms a vector x in the current window and approxima-
tion parameter «, outputs an estimate { € R such that
(1—a)t <||lz|l; < (1 + a)f at time t. The space required
by this algorithm is O(% log wlog(1/p)).

Our algorithm uses an instantiation of COUNT-MIN algo-

rithm by Cormode & Muthukrishnan (2005). We use the
following result:

Theorem 2 ((Cormode & Muthukrishnan, 2005)). For a
stream x, let aq,(x) be the actual frequency of element
¢i and Gy, (x) is the frequency estimated by COUNT-MIN
algorithm executed with parameters (v, (/4, 3). Then with
probability at least 1 — (3, it outputs all elements q; with
frequency agq,(x) > (1 4 ¢)vllz|, such that |aq,(x) —
ag; (2)] < $7C I,

In the context of privacy, Dwork et al. (2010a) were the
first to study the continual observation model within the
framework of differential privacy. They gave a matching up-
per and lower bound on the achievable accuracy for a large
class of functions; however, they do not place any space
restriction. Further, their bound does not address the setting
where we may be willing to allow a small multiplicative
approximation.

3. Sliding Window and Privacy

In view of Theorem 1, one may ask whether such reduction
works even with privacy, i.e., can we just take the off-the-
shelf algorithm for (a1, e)-smooth functions and privatize
it. Unfortunately, this is not the case as we show next.
Following is a simple example when the sensitivity of a
smooth function can be arbitrarily large.

Example 2 (Frequency moment). Consider the problem of
privately computing the p-th frequency moment, Fj,(x) :=
lzl|}, of an input stream x := (xy)i>1 with integer
entries. Braverman & Ostrovsky (2010) showed that
F,(x) is (o, o® /p?)-smooth for p > 1. Consider two
adjacent streams S = (x1, -, ,2¢) and S’ =
(x1,--- .25, ,z). Fy(-) on the last w inputs for the
streams S and S’ would be

Fp = ||z} Fy = (ai(z) + 1)" + [[2]]] — (ai(2))",
where x is the vector formed by the last w updates. The
sensitivity of this function is |F, — F}| = (a;(z) + 1)P —
a;(x)P, which can be arbitrariliy large if the vector has
entries in the set of natural numbers, N.

In fact, the following claim based on a standard packing
argument shows that we can have an arbitrary large addi-
tive error. A detailed proof appears in the supplementary
material.

Claim 1. Lete < 1 and p > 2'*¢. Consider a set of data

streams iL‘El) :E(p) € RY such that

t—w41,t)7 "V t—w1,1]

4 4
‘Fp(33ft1w+1]) - Fp(‘rft—)w-&-l]” >¢

for some &. Any e-differentially private algorithm for com-
puting F,(-) must add noise at least £ /4.

Sublinear Space Private Algorithms Under the Sliding Window Model

Therefore, in addition to the smoothness, we require some
additional assumption. One such assumption that is com-
mon in the literature of differential privacy is that is that of
Lipschitzness. Making these assumptions, we can privately
compute the /5 and /1 norm of the streamed vector in the
sliding window (see supplementary material).

Theorem 3. Let (x4);>1 be the stream. For a window of size
w, let x be the vector formed by last w updates. Then there
is an efficient e-differentially private algorithm in the sliding
window model that uses O(é log w) space and outputs an

estimate Zl at any time t such that, with probability at least
1= B, B = llally | < allall, + 0O (Llog(1/8) -

3.1. Private Heavy Hitter in the Sliding Window Model

‘We now turn our attention to privately estimate the heavy
hitters in the sliding window model. Chan et al. (2012) also
studied this problem under event-level privacy as studied in
this paper. Let & be the universe from which the elements
are picked. They consider that every update x; increases the
count of one element in the universe by one. In the vector
notation, every update is a vector z; € {0, 1}‘%| and we are
interested in a |% | dimensional vector formed by the last
w updates. In this set-up, their algorithm incur an additive
error fw for a constant § > 0.

In this section, we first present an algorithm with space
requirement sublinear in w while providing accuracy for
one-time release of the estimate (Theorem 4). We then show
that we can improve the total additive error to be sublinear
in w over the entire window while using sublinear space
(Theorem 5). We show the following result for Algorithm 1.

Theorem 4. Let (x;);>1 be the streamed vector with
T € {071}‘9”. For a window of size w, let x =
Tlt—w+1,1] be the vector formed by last w updates, i.e.,

P Z?:T_w_H 4. Let p = % and ¢ = (1 + (),
k= O(é) Then the following holds:

1. PRIVATE-L1-HEAVY (described in Algorithm 1) is
e-differentially private in the sliding window model.

2. PRIVATE-L1-HEAVY satisfies the following with prob-
ability at least 1 —3: If ag,(x) > (14+Q)v ||z||,, then
(gi, aq;(x)) € LIST, then

g () — 4 (@)] < 2 laf + 0 (i log (Z)) |

Further, LIST does not include any element
j € A{l,...,n} such that its frequency x; <
(1 — %) vzl — (2 = 22¢)ym for 11 as in Algo-
rithm 1; and (b)

Algorithm 1 PRIVATE-L1-HEAVY ((x;)¢>1; w;€; (7, ¢, B)

Require: A stream ((z;);>1 with z, € R, COUNT-MIN
algorithm for estimating heavy hitter in the streaming
model, window size w, privacy parameter €, parameters
(7, ¢, B8) for COUNT-MIN algorithm.

Ensure: LIST := {(q1,aq,(x)), ..., (qk, Gg, (x))} of esti-
mates of heavy hitters, where k < 1/~.

1: Maintain checkpoints 1, . . ., ts and corresponding es-
timates of Hz[u] ||1 e ||a:[s7t] H1 using the sliding
window algorithm of Braverman & Ostrovsky (2010)
for 1 norm with o = (/2 as an approximation parame-

ter. Here s = O(¢ logwlog(1/8)). Setk = O(3).

2: Compute ||Z}; 4|, = ||ziq, + Lap(2/e) forall 1 <
1 < s.

3. Execute COUNT-MIN with parameters

(7,¢/4,8) on x;4 to compute a list L :=

{(q1,aq,(2)), - -, (ak, g, (2))}-
4: Update: LIST < LIST U {g;,aq, (x)} if Gg,(z) >

((1 T e ﬁ), where Gy, () = Gy, (z) +

Lap(2/¢) and 71 := O (L1log(1/B)).
5: Output LIST.

3. The space required by PRIVATE-LI1-HEAVY is
(0] (% log wlog®(k/fB) log n) and the update time
per new input is O(% log w log?(k/B)).

We note that the multiplicative approximation in the fre-
quency estimate of heavy hitter is the same as in Cormode
& Muthukrishnan (2005) (see Theorem 2). The cost of
privacy is in the form of additive error in the estimate of
the frequencies of heavy hitters and in the guarantee for
rejecting elements that have low frequencies. The cost of
the algorithm in the sliding window is in the form of an
5 = O(% logwlog(5/k)) factor increase in the space re-
quirement.

To compare with the non-private sliding window algorithm
for heavy hitters by Braverman et al. (2018b), we achieve
the same space bound (see Theorem 3 in Braverman et al.
(2018b)) and more flexibility in the approximation parame-
ter than their result. Our algorithm is arguably simpler than
theirs while affording us to extend easily to the continual
observation over the entire window (see Theorem 5). How-
ever, their algorithm is more general than ours. That is, their
algorithm can estimate Ip-heavy hitters for 0 < p < 2.

For the accuracy bound, note that we can pick ¢ and y to be
a small constant. In particular, we can pick p = (v = 1=
for a small constant £ > 0 that would lead to a sublinear in
w accuracy bound while making sure that the space required
is also sublinear in w. This is in contrast with the non-private
algorithm of Braverman et al. (2018b).

Sublinear Space Private Algorithms Under the Sliding Window Model

As a final remark, we note that all the constructions in this
paper can be extended to the case when z; € NI, where
N denotes the set of natural numbers. However, for the ease
of presentation, we only present it for binary vector.

Proof. We first give the correctness proof. Let z :=
Tt—w+1, De the vector formed by the window. Let
||:c[17t]| Lo "‘T[S1t]|‘1 be the value of the norm of the
checkpoints and ||§[1,t] Hl ey Hf[s,t] H , be the private esti-
mates of these vectors. Then, with probability at least 1 — /3,
Vi € s [Zpall,| <7

il =

The correctness proof now relies on two lemmata: Lemma 2
which states that the heavy elements are included in LIST
and Lemma 3 which guarantees that non-heavy elements
are discared with high probability.

{(q1, a0, (2)); - - (ak; ag, (2))}
be the true list of heavy hitters, L =
{(g1,8q, (2)), ..., (qi, Gq, (z))} be the list of heavy hitters
(and their estimated frequency) returned by the COUNT-
MIN algorithm, and L := {(q1,aq, (%)), - - -, (qk, g, (T)) }
be the private computation of the heavy hitters. Then
if ag, > (14 Q)yllzlly, then (i, aq,(x)) € LIST with
probability at least 1 — 2.

Lemma 2. Let L =

Proof. We prove Lemma 2 using two claims. Claim 2 guar-
antees that heavy elements are returned in Step 2 of the algo-
rithm and Claim 3 asserts that these elements are included
in LIST. The proofs of these claims rely on Theorem 2 and
the approximation guarantee of Lemma 1.

Claim 2 (Heavy hitters are included in L). If ag,(xz) >
(1+C) |||, then q; € L with probability at least 1 — 3/ k.

Proof. First note that the output, ¢, by the algorithm
of Braverman & Ostrovsky (2010) is z(; 4. Therefore, z[; 4
is such that

(1 =) [Jzpgll, < Nzl <

Moreover, by the construction of Braverman & Ostrovsky
(2010), the window starts after the first checkpoint and
before the second check-point. That is z is a subsequence of
x[1,4- Therefore, if ag, (z) > (1 + {)v ||=||,, then we have
the following set of inequalities:

Qg (x[l,t]) > Qg; (Z‘) > (1 + C)'Y Hle
> 1+ —a)y|lzpgl, -
Since o = (/2 and ¢ < 1/2, we have

A+ [zpall,- @

¢ ¢ ¢
(1+0(1-¢/2) = (1+3-5) = (14+5).
This implies aq, (z[1,4) > (14 ¢/4)7 ||z ||1 and using
Theorem 2, it will be detected with probablity at least 1 —
B/k. This completes the proof of the Claim 2. O

(1+0(1-a) =

Claim 3 (Heavy hitters are included in LIST). If ag, (z) >
¢ ||x||;, then the algorithm includes g; in LIST with proba-
bility at least 1 — B /k.

Proof. Using equation (1), if a4, ()
we have the following:

Z (L+Q)y [zl then

ag, (z(1,0) 2 ag, (Tpy) —p Hz[Lt] ||1 (Theorem 2)
> ag,(z) —p Hff[l,t] Hl (by definition)
> a4(@) = - -5 el (Lemma 1)

> (146 g) el

; < = .
Since =55 > 0 and [[Zgfl, < [lrpall, + 70 <
((1;[2;’ lz|l; + 71, we have that g; is included in LIST with
probability at least 1 — 3. Claim 3 follows. O

Combining Claim 2 and Claim 3 completes the proof of
Lemma 2 O

Claim 4. If (¢;,aq,(x)) € LIST, then |ag, (x) — aq, (z)| <

3 ||1CEH 1 + T2 with probability at least 1 — 3/ k, where 15 :=
O (g log(l/ﬁ)) .

Proof. Using triangle inequality, we have |ag, ()

g, ()] < lag, (2)=ag, (2) |+, (2) ~ag, (x)] < % |l +
7o with probability at least 1 — 3/k. O

We next prove that with high probability, elements that do
not occur with considerable frequency are not included.

Lemma 3 (Non-heavy elements are not included). Algo-
rithm 1 does not include any element with frequency smaller
than (1 — c1Q)y ||zl — (2 — L3¢)yr with probability at

least 1 — .

Proof. Let (aq (2),...,aq (), (@, (x),...,aq,(x)),
and (ag, (), ..., aq, (x)) be as before. Let ¢ = (1 + ¢)y
and p = 3¢v. Then (1-¢/2)y = (1+()v—5¢y = ¢ —p.

We want to prove that no element ¢; is included in LIST if

its frequency is below (¢ —3p) ||zl|, — (2¢ — Zp)71.
If ¢; was included in LIST, then we have
g, (21,,4) > (6 — p)(|| Tyt]|, — 7). Thatis,
30 14
g (T(,) = Qg (Tpey 1) — Hx[tlxt]Hl

0)thlﬂnl (6 pm

2) Izie.all = 0= o

(
< 5p
<52) e all, - <2¢>

Sublinear Space Private Algorithms Under the Sliding Window Model

with probability at least 1 — 3/k. Further, we have the
following:

2], = aq (@) + Y (@),

J#q

i all, = aq @p,a) + D aj(@p, 0)-
J#qi

Now using equation (1), [|z|; > (1 — a) ||z, 4 ||1 . Com-
bined with a;(xp,) — aj(r) > 0, this implies that
Qg; (J?) 2 g, (‘r[tht]) - g ||x[7517t] ||1 - That s,

) 7
@)= (6= =) ol - (26~) m

17p -
= (- 6> ”ﬂﬁ[tl,t]Hl - (2¢ — 2) -

> 0= 30)lel, - (20- 2)

This completes the proof of Lemma 3 by putting the value
of ¢ and p. O

Combining Lemmata 2 and 3 with Claim 4 completes the
proof of accuracy guarantee of Theorem 4.

For the privacy proof, recall that we consider event level
privacy and the universe size is publicly known. Every user
at a time epoch picks an element in the universe; thereby,
contributing a counter of one to the frequency x;. As such,
preserving the privacy of an event (or user if a user is re-
stricted to contribute just once) means preserving the pri-
vacy of the estimates of the heavy hitters. Note that we
use a private estimate of ||z||,. This is reminiscent of the
Numeric- Sparse algorithm (Dwork & Roth, 2014). The
privacy proof follows just like Numeric-Sparse algorithm
using the fact that every entry of the COUNT-MIN can
change by at most 1 under the adjacency relation considered
in this paper. For the space bound, Cormode & Muthukrish-
nan (2005) showed that any instance of COUNT-MIN uses
O(% log(1/5)log(|%¢])) space. Using Lemma 1, the total
space required is s - O (v~ log(1/3) log(|%|)) as required.
The update time follows from the fact that the update algo-
rithm of Braverman & Ostrovsky (2010) is O(s) and that of
every COUNT-MIN sketch is O(log(1/5)).

This completes the proof of Theorem 4. O

Theorem 4 assumes that the estimate of the frequencies of
heavy hitters is produced just once. However, there are
scenarios when we would like to estimate the frequencies of
heavy hitters more than once. The following result follows
as a simple corollary to Theorem 4 and the composition
theorem of differential privacy (Dwork & Roth, 2014).

Corollary 1. Let x be as in Theorem 4. Suppose Algo-
rithm 1 releases the estimate of heavy hitters at most r
times. Let p = 34; and ¢ = (1 + (). Algorithm 1 is
e-differentially private in the sliding window model, and
it outputs LIST = {(q1,a1(x)), ..., (qrar(x))} in each of

the release such that with probability at least 1 — O(f3),

(@) = a0 ()] < p el +0 (L 10s(1/5))

forall ag,(x) > ¢||z|,. Further, it does not include any
element q; such that its frequency aq, (x) < (¢—3p) ||x||, —
(2¢ — %p)ﬁ for 11 as in Algorithm 1 and a universal con-
stant c1. Furtheremore, the space required by Algorithm 1

is O (% log wlog®(1/) log |95|) and the update time per
new input is O(% log wlog®(1/3)).

3.2. Private Heavy Hitter Over the Entire Window

To reduce the additive error over the entire window, we
divide the window into equal disjoint sub-windows of size
v/w and run the first three steps of Algorithm 1 on each
of the sub-window. We then output the list by using the
aggregate of all the \/w COUNT-MIN sketches and the esti-
mate of the norms of the vector formed by the partitioned
window. Here, we exploit the linearity of COUNT-MIN
sketch and ¢/, norm. We present the details of this algorithm
in the supplementary material. We refer to this algorithm
as PRIVATE-HEAVY. Using the analysis as in Section 3.1
and the result of Chan et al. (2011) (that is, every estimate
requires evaluation of \/w sub-windows and every element
occurs exactly 1/w times over all the estimates — correspond-
ing to the sub-window it is in), we arrive at the following
result.

Theorem 5. Let (x1):>1 be the streamed vector with x; €
{0, 1}‘?}CI and x = Z?:T_w_H xy. Let p = % and ¢ =
1+, k= O(é) Then the following holds:

1. PRIVATE-HEAVY is e-differentially private algorithm
in the sliding window model.

2. It outputs LIST = {(q1,Zq,), - - -, (qr, Tq,) } sSuch that,
with probability at least 1 — O(f), simultaneously
over the entire window, following holds: For all x4, >

(1+C)7 |||, where x4, is the value of q;-th coordinate
inx,

- 3¢y w3/4

o=) < 25 el + 0 (= o(w/9))

Further, LIST does not include any element q; such
that x4, < (1 - g) ylal, — o

— log(w/B))

3. The space required by PRIVATE-HEAVY is
0 (@ logwlogQ(w/6)> .

Sublinear Space Private Algorithms Under the Sliding Window Model

Algorithm 2 PRIVATE-HEAVY ((z,):>1;w; €;7y; B k)

Require: A stream (z;);>1, where z; € R, COUNT-MIN
algorithm for estimating heavy hitter in the streaming
model, window size w, privacy parameter €, parameters
(7, ¢, B8) for COUNT-MIN .

Ensure: LIST := {(q1, a4 (7)), ..., (g, ar(x))}.

1: Divide the window in to /w smaller window,
Wi, Wa, ..., W s,

2: fori=1...,y/wdo

3: Maintain checkpoints ¢y, ..

(4) . 2™

|, [s.4]

sliding window algorithm of Braverman & Ostro-

vsky (2010) for ¢; norm in the window W; with

.,ts and correspond-

ing estimates of Hx

ey

using the
1

a = (/2 as an approximation parameter. Here
s= O(%logwlog(l/ﬁ)). Setk =1/~.
. ~(4) _ (i)
4. Compute ‘ J][j7t]H1 = ‘ x[j’t]Hl +

Lap(2y/wlogW/e) forall1 < j < s.
5: Form COUNT-MIN sketch of xg)t] forl1 <j<s
with parameters (v, /4, 5/k) to form a vector y[(;’)t].
6: Privatize b}(fi)adding Lap(2y/w/e) to each entry of

the vector Y-

7: end for
8: Compute ||Zj1 4|, = >,

Let the resulting vector be z[(;)t].

~(1) —
, m[lvt]Hf Use yp1,5) =
Zi y[(i')ﬂ, the combined COUNT-MIN, to construct

alist I = {(q1,81(x)),.. ., (qr,Gk(x))} of es-
timated non-private heavy hitters. Let L =

{(q1,a1(x)), - .., (qr, ar(x))}.

9: Include: (g;,aq, (x)) in' LIST if @y (z) >
(=97 [70all, — 0 (22 108(1/9))).

10: Output LIST.

To make a fair comparison with Chan et al. (2012), we set
p= ﬁ and ¢ = O(1). When ||z||, = Q(w®/*), this gives
a non-trivial accuracy guarantee. In particular, in the setting
of Chan et al. (2012), we achieve non-trivial accuracy in
O(+/w) space if ﬁ fraction of the updates are non-zero.

3.3. Space Lower Bound for Single Output

In the previous section, we gave an efficient differentially
private algorithm for heavy hitters in the sliding window
model using sublinear space. A natural question one can
ask is whether it is possible to estimate heavy hitters in
space independent of window size? We show that it is not
the case and we need at least O(logw) space even if we
want a constant multiplicative approximation. We do this
by reducing the problem of computing private heavy hitter
in the sliding window model to one-way communication
complexity of augmented index problem (AIND):

Definition 5 (Augmented Index Problem (AIND)). Alice
has a string x € {0,1}" and Bob has an index i € [p] along
with x1, ..., x;. The players wish to compute the value of
x;, the i-th coordinate of x.

Miltersen et al. (1995) showed that solving the AIND using
one round of communication is hard, even if the players
have shared randomness, requires €2(p) bits. We show a
reduction showing that if we can estimate heavy hitters in
space 0(% log w), then it can be used to solve AIND with
communication O(p) for appropriate choice of p, thereby
contradicting the result of Miltersen et al. (1995). This gives
us the following theorem; a detailed proof can be found in
the supplementary material.

Theorem 6. Any differentially private algorithm that re-
turns the ((,7,2/3, w)-heavy hitters in the sliding window

model requires <) % logw) bits.

4. Discussion and Future Work

Our technique gives a new way to design and analyse dif-
ferentially private algorithm in the sliding window model
to give a non-trivial accuracy bound while using just o(w)
space. This significantly improves the best known result for
heavy hitters. We also showed a lower bound on the space
required by differentially private algorithm in the sliding
window model.

Our results pose several interesting open questions. One
important question is to understand the optimal space re-
quirement of private heavy hitter algorithm simultaneously
over the entire window. Another question is to understand
whether we can improve the accuracy guarantee to be poly-
logarithmic in w.

Acknowledgements. This research was supported in part
by NSF BIGDATA grants 1IS-1546482 and I1S-1838139,
and DARPA award W911NF1820267. The author would
like to thank Raman Arora for discussion and his useful
feedback on the presentation of the paper. The author would
like to thank Nikita Ivkin for helpful discussions and di-
recting to the paper of (Braverman et al., 2018b). A part
of the idea came during a discussion on matrix multiplica-
tion with David Woodruff and Samson Zhou on a different
project (Braverman et al., 2018a)..

References

Apple. Differential privacy, overview https:
//images.apple.com/privacy/docs/
Differential_Privacy_Overview.pdf.
2017.

Arora, R., Braverman, V., and Upadhyay, J. Differentially
private robust low-rank approximation. In Advances in

https://images.apple.com/privacy/docs/Differential_Privacy_Overview.pdf
https://images.apple.com/privacy/docs/Differential_Privacy_Overview.pdf
https://images.apple.com/privacy/docs/Differential_Privacy_Overview.pdf

Sublinear Space Private Algorithms Under the Sliding Window Model

Neural Information Processing Systems, pp. 4137-4145,
2018.

Bassily, R. and Smith, A. Local, private, efficient protocols
for succinct histograms. In Proceedings of the forty-
seventh annual ACM symposium on Theory of computing,
pp. 127-135. ACM, 2015.

Bassily, R., Nissim, K., Stemmer, U., and Thakurta, A. G.
Practical locally private heavy hitters. In Advances in
Neural Information Processing Systems, pp. 2288-2296,
2017.

Bentley, J. L. and Saxe, J. B. Decomposable searching
problems i. static-to-dynamic transformation. Journal of
Algorithms, 1(4):301-358, 1980.

Blocki, J., Blum, A., Datta, A., and Sheffet, O. The johnson-
lindenstrauss transform itself preserves differential pri-
vacy. In Foundations of Computer Science (FOCS), 2012
IEEE 53rd Annual Symposium on, pp. 410-419. IEEE,
2012.

Blocki, J., Blum, A., Datta, A., and Sheffet, O. Differentially
private data analysis of social networks via restricted sen-
sitivity. In Proceedings of the 4th conference on Innova-
tions in Theoretical Computer Science, pp. 87-96. ACM,
2013.

Braverman, V. and Ostrovsky, R. Effective computations
on sliding windows. SIAM J. Comput., 39(6):2113-2131,

2010. doi: 10.1137/090749281. URL https://doi.

org/10.1137/090749281.

Braverman, V., Drineas, P., Upadhyay, J., and Zhou, S.
Numerical linear algebra in the sliding window model.
arXiv preprint arXiv:1805.03765, 2018a.

Braverman, V., Grigorescu, E., Lang, H., Woodruff, D. P,,
and Zhou, S. Nearly optimal distinct elements and
heavy hitters on sliding windows. arXiv preprint
arXiv:1805.00212, 2018b.

Bun, M., Nelson, J., and Stemmer, U. Heavy hitters and
the structure of local privacy. In Proceedings of the 35th
ACM SIGMOD-SIGACT-SIGAI Symposium on Principles
of Database Systems, pp. 435-447. ACM, 2018.

Chan, T. H., Shi, E., and Song, D. Private and con-
tinual release of statistics. ACM Trans. Inf. Syst. Se-
cur, 14(3):26:1-26:24, 2011. doi: 10.1145/2043621.
2043626. URL http://doi.acm.org/10.1145/
2043621.2043626.

Chan, T.-H. H., Li, M., Shi, E., and Xu, W. Differen-
tially private continual monitoring of heavy hitters from
distributed streams. In International Symposium on Pri-
vacy Enhancing Technologies Symposium, pp. 140-159.
Springer, 2012.

Cormode, G. and Muthukrishnan, S. An improved data
stream summary: the count-min sketch and its applica-
tions. Journal of Algorithms, 55(1):58-75, 2005.

Datar, M., Gionis, A., Indyk, P., and Motwani, R. Main-
taining stream statistics over sliding windows. SIAM
J. Comput., 31(6):1794-1813, 2002. doi: 10.1137/
S0097539701398363. URL https://doi.org/10.
1137/S0097539701398363.

Dwork, C. and Roth, A. The algorithmic foundations of
differential privacy. Foundations and Trends®) in Theo-
retical Computer Science, 9(3—4):211-407, 2014.

Dwork, C., Naor, M., Pitassi, T., and Rothblum, G. N. Dif-
ferential privacy under continual observation. In Proceed-
ings of the 42nd ACM Symposium on Theory of Comput-
ing, STOC 2010, Cambridge, Massachusetts, USA, 5-8
June 2010, pp. 715-724, 2010a. doi: 10.1145/1806689.
1806787. URL http://doi.acm.org/10.1145/
1806689.1806787.

Dwork, C., Naor, M., Pitassi, T., Rothblum, G. N., and
Yekhanin, S. Pan-private streaming algorithms. In ICS,
pp. 66-80, 2010b.

Erlingsson, U., Pihur, V., and Korolova, A. Rappor:
Randomized aggregatable privacy-preserving ordinal re-
sponse. In Proceedings of the 2014 ACM SIGSAC con-
ference on computer and communications security, pp.
1054-1067. ACM, 2014.

Hsu, J., Khanna, S., and Roth, A. Distributed private heavy
hitters. In International Colloquium on Automata, Lan-
guages, and Programming, pp. 461-472. Springer, 2012.

Joseph, M., Roth, A., Ullman, J., and Waggoner, B. Local
differential privacy for evolving data. arXiv preprint
arXiv:1802.07128, 2018.

Kenthapadi, K., Korolova, A., Mironov, 1., and Mishra, N.
Privacy via the johnson-lindenstrauss transform. arXiv
preprint arXiv:1204.2606, 2012.

Liu, K., Kargupta, H., and Ryan, J. Random projection-
based multiplicative data perturbation for privacy pre-
serving distributed data mining. IEEE Transactions on
knowledge and Data Engineering, 18(1):92—-106, 2006.

Miltersen, P. B., Nisan, N., Safra, S., and Wigderson, A. On
data structures and asymmetric communication complex-
ity. In STOC, pp. 103-111. ACM, 1995.

Mir, D., Muthukrishnan, S., Nikolov, A., and Wright, R. N.
Pan-private algorithms via statistics on sketches. In Pro-
ceedings of the thirtieth ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems, pp. 37-48.
ACM, 2011.

https://doi.org/10.1137/090749281
https://doi.org/10.1137/090749281
http://doi.acm.org/10.1145/2043621.2043626
http://doi.acm.org/10.1145/2043621.2043626
https://doi.org/10.1137/S0097539701398363
https://doi.org/10.1137/S0097539701398363
http://doi.acm.org/10.1145/1806689.1806787
http://doi.acm.org/10.1145/1806689.1806787

Sublinear Space Private Algorithms Under the Sliding Window Model

Thakurta, A. G., Vyrros, A. H., Vaishampayan, U. S.,
Kapoor, G., Freudiger, J., Sridhar, V. R., and Davidson,
D. Learning new words, March 14 2017a. US Patent
9,594,741.

Thakurta, A. G., Vyrros, A. H., Vaishampayan, U. S.,
Kapoor, G., Freudinger, J., Prakash, V. V., Legendre,
A., and Duplinsky, S. Emoji frequency detection and
deep link frequency, July 11 2017b. US Patent 9,705,908.

Upadhyay, J. Random Projections, Graph Sparsification,
and Differential Privacy. In ASIACRYPT (1), pp. 276-295,
2013.

Upadhyay, J. Differentially private linear algebra in the
streaming model. arXiv preprint arXiv: 1409.5414, 2014a.

Upadhyay, . Randomness efficient fast-johnson-
lindenstrauss transform with applications in differen-
tial privacy and compressed sensing. arXiv preprint
arXiv:1410.2470, 2014b.

Upadhyay, J. The price of privacy for low-rank factorization.
In Advances in Neural Information Processing Systems,
pp. 4180-4191, 2018.

