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1. The Gradients with Respect to u
The objective function, when applying the polynomial ker-
nel, is
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where k denotes the polynomial kernel on Yv. The gradient
of the objective function, with respect to u:
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The gradient with respect to v is obtained similarly. The
dominating computational cost arises from the matrix-vector
product X - u which lead to O((p + ¢)n) time-complexity
per update where X € R™*P,

The objective function, when applying the Gaussian (RBF)
kernel, is
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where x is the vector of norms of examples of X and k
denotes the Gaussian kernel on Yv. The gradient of the
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objective function, with respect to u:
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The gradient with respect to v is obtained similarly. The
dominating computational cost arises from the matrix-vector
product X - u which lead to O((p + ¢)n) time-complexity
per update where X € R™*P,

2. Proof of Theorems 4.3

In general cases, pre-image x for is chosen such that the
squared distance of w, and ¢, (u) is minimized.
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And hence the bounds on pre-image errors are then defined
as
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Theorem 2.1. Let us assume that norm in H, and H, are
upper bounded by M, and M,, i.e.,
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Then,
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Proof. Form bound of norm in Hilbert spaces:
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AS prcca > 0, the correlation achieved by pre-images is also
positive. For positive ppreimage :

k*(T(w,)) "k (V(wy))
)

[|k* (a(w ))IIHk (v(wy)))ll
(( ))Tky(ff(wy))

K (ys,v) < M;.  (6)

Ppreimage

\/Z k‘ XZ, ) 2\/ z Yz7 ))2
)

k* (u(w ))Tk”(( y))
= nMZM?

Note that, there always exist a pair of solution a* and 3"
which gives optimal solution for KCCA and also satisfies

[K*a*|| = /nMZ and |[KYB*|| = v/nM (simple scal-
ing of optimal solution). Given such solution * and 3*
for KCCA, the corresponding pre-image solution G(w})

and v(w) is obtained by pluggmg the KCCA optimum
wi = Z i by (x;) and w = > B¢, (y;)into (3) (i.e.

equation (8) and (9) in main manuscript ).

The difference between the correlation found by KCCA and
by its pre-image u(w}) and v(w) is
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Hence from (8) we get,
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Hence using Lemma 4.2

Y
PgradKCCA > Ppreimage 2 Pkeca — ( + )



