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Abstract

This paper presents gradKCCA, a large-scale
sparse non-linear canonical correlation method.
Like Kernel Canonical Correlation Analysis
(KCCA), our method finds non-linear relations
through kernel functions, but it does not rely on
a kernel matrix, a known bottleneck for scaling
up kernel methods. gradKCCA corresponds to
solving KCCA with the additional constraint that
the canonical projection directions in the kernel-
induced feature space have preimages in the orig-
inal data space. Firstly, this modification allows
us to very efficiently maximize kernel canonical
correlation through an alternating projected gradi-
ent algorithm working in the original data space.
Secondly, we can control the sparsity of the pro-
jection directions by constraining the `1 norm of
the preimages of the projection directions, facili-
tating the interpretation of the discovered patterns,
which is not available through KCCA. Our empir-
ical experiments demonstrate that gradKCCA out-
performs state-of-the-art CCA methods in terms
of speed and robustness to noise both in simulated
and real-world datasets.

1. Introduction
Canonical correlation analysis (CCA) (Hotelling, 1935;
1936) discovers multivariate relations in two-view datasets,
by finding linear combinations of variables, the canonical
projections, that produce maximum correlation between the
two views (Uurtio et al., 2018b).

The standard CCA model has been extended to a non-linear
setup by kernel methods (Bach & Jordan, 2002; Hardoon
et al., 2004; Chu et al., 2013; Lopez-Paz et al., 2014; Wang
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& Livescu, 2016; Uurtio et al., 2018a) and deep learning
(Andrew et al., 2013). The advantages of kernelizing the
CCA problem, or applying a deep neural network, include
the possibility to uncover non-linear multivariate relations.
However, the non-linear CCA formulations generally come
at the expense of losing the information of which of the vari-
ables in the original data matrices are relevant, and typically
produce dense models, which hinders interpretability and
predictive performance when the underlying relations are
sparse. For kernel-based CCA, the quadratic size of the ker-
nel matrix in the number of examples also makes scaling up
to big data challenging, although this can be solved through
approximations such as random Fourier features (Lopez-
Paz et al., 2014) and Nyström approximation (Uurtio et al.,
2018a).

This paper proposes a new KCCA variant, named grad-
KCCA, that is designed for sparse non-linear canonical
correlation analysis in large datasets. The contributions of
the paper are the following:

• A new model for kernel-based non-linear CCA that
maximizes canonical correlation in the kernel-induced
feature spaces through the gradients of the preimages
of the projection directions, without relying on a ker-
nel matrix. A sparsity-inducing variant of the model
is achieved through controlling the `1 norms of the
preimages of the projection directions.

• A theoretical analysis of the new model compared to
KCCA showing that in the training set, gradKCCA
correlation can be bounded between the correlation of
KCCA and the correlation achieved by an approximate
preimage for KCCA.

• An efficient alternating projected gradient algorithm
that has the time-complexity ofO((p+q)n) per epoch,
where n is the number training examples and p and q
are the numbers of variables in the two views.

• An experimental study including several non-linear
CCA variants demonstrating (a) the superior speed and
scalability of the method on big data, (b) tolerance
to high amounts of irrelevant variables, (c) predictive
performance in line with the state-of-the-art on large
real world datasets.
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2. Background
In the following, we briefly review the main approaches pro-
posed for non-linear canonical correlation analysis. These
methods will be experimentally compared to our proposed
method in Section 5.

Notation. Matrices will be denoted by bold upper-case
letters (e.g. X, Y for data matrices) and vectors by bold
lower-case letters. I denotes the identity matrix, 1 a is a
vector of all ones, ‖.‖p denotes the lp norm, and 〈, 〉 denotes
inner product. Multiplication and entry-wise multiplication
are denoted by · and � respectively. We denote sets with
non-bold upper-case letters (e.g. X and Y for the spaces for
data points).

2.1. Canonical Correlation Analysis (CCA)

Canonical correlation analysis (Hotelling, 1935; 1936) finds
related variables in two-view datasets. Let the two views be
given by X ∈ Rn×p and Y ∈ Rn×q, where n, p, and q are
the sample size and the numbers of variables in X and Y
respectively. The related variables are determined from the
entries of the coefficient vectors u ∈ Rp and v ∈ Rq that
satisfy

max
u,v

〈Xu,Yv〉
||Xu||2||Yv||2

. (1)

In general, the non-convex problem in (1) can be solved
through the singular value decomposition (SVD), or in the
form of a standard or generalized eigenvalue problem (Uur-
tio et al., 2018b).

The standard techniques work well when the underlying
statistical patterns are linear and there are fewer variables
than examples. However, it is not possible to model non-
linear correlations well using standard CCA.

2.2. Kernel Canonical Correlation Analysis (KCCA)

Similarly to the original CCA problem (1), kernel CCA
(KCCA) (Bach & Jordan, 2002; Hardoon et al., 2004) is
solved through an eigenvalue problem. The n examples are
transformed to Hilbert spaces φx : X ∈ Rn×p 7→ Hx
and φy : Y ∈ Rn×q 7→ Hy where φ denotes a fea-
ture map. The similarities between the observations in
the Hilbert spaces are given by symmetric positive semi-
definite kernels Kx

i,j = Kx(xi,xj) = 〈φx(xi), φx(xj)〉Hx

and Ky
i,j = Ky(yi,yj) = 〈φy(yi), φy(yj)〉Hy

where
i, j = 1, 2, . . . , n, x ∈ Rp for view X, and y ∈ Rq for
view Y respectively. The kernel canonical correlation is
then measured through

max
α,β

ρkcca =
〈Kxα,Kyβ〉
‖Kxα‖2‖Kyβ‖2

(2)

where α and β are the coefficient vectors to be optimized
by KCCA.

The computation of the kernel matrices in KCCA becomes
costly at large sample sizes. Matrix decomposition ap-
proaches such as the incomplete Cholesky decomposition
(Bach & Jordan, 2002; Hardoon et al., 2004) and the partial
Gram-Schmidt orthogonalization (PGSO) (Hardoon et al.,
2004) have been proposed to speed up the computations.
When applying the PGSO in KCCA, every KCCA projec-
tion is computed as the span of a subset of the projections
of a set of training examples that are selected by performing
PGSO of the training vectors in the feature space.

2.3. Randomized Non-Linear CCA (RCCA)

The kernel computations of KCCA can also be approxi-
mated by random Fourier features (Rahimi & Recht, 2008),
as proposed by (Lopez-Paz et al., 2014). In randomized non-
linear CCA (RCCA) the kernels are approximated by ran-
dom Fourier features. For example, as explained in (Lopez-
Paz et al., 2014), the examples in view X ∈ Rn×p 7→
z(X) ∈ Rn×m through the following map

w1,w2, . . . ,wm ∼ P(w)

zi = [cos(w>i x1 + bi), . . . , cos(w
>
i xn + bi)]

where z ∈ Rn for i = 1, 2, . . . ,m and, when the approx-
imated kernel is Gaussian, P(w) is a multivariate normal
distribution, where w ∈ Rd. bi is sampled from a uniform
distribution U [0, 2π]. The m denotes the number of random
Fourier features. The approximated kernel matrix K ≈ K̂
is given by

K̂ =
1

m
z(X)z(X)> =

1

m

m∑
i=1

ziz
>
i .

The kernel canonical correlations are found through the gen-
eralized eigenvalue problem, as in KCCA. In (Lopez-Paz
et al., 2014), RCCA was shown to converge to KCCA solu-
tion when the number of random Fourier features increases.

2.4. Kernel Non-Linear Orthogonal Iterations (KNOI)

The approximation of RCCA to KCCA relies on the dimen-
sionality of the random Fourier feature space. In some cases,
a sufficiently good approximation may require a large num-
ber of features. This incurs high memory requirements to
solve the CCA problem in the random Fourier feature space.
A memory-efficient stochastic optimization algorithm of
RCCA was proposed in (Wang & Livescu, 2016). The ap-
proach was named kernel non-linear orthogonal iterations
(KNOI). KNOI employs ideas from the Augmented Approx-
imate Gradient (AppGrad) (Ma et al., 2015) and Nonlinear
Orthogonal Iterations (NOI) (Wang et al., 2015) techniques.
The idea of KNOI is to update the CCA projections in small
mini-batches, using a convex combination of the previous
and current estimates. The estimates are then applied to
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update the cross-view least squares regression problems. In
(Wang & Livescu, 2016), KNOI was shown to outperform
RCCA in terms of test correlation and running time, with
GPU support.

2.5. Deep Canonical Correlation Analysis (DCCA)

Large-scale CCA problems can also be solved using deep
neural networks. The deep learning methods apply the stan-
dard SVD technique to compute the maximal correlation
between the outputs of two neural networks. In deep CCA
(DCCA), (Andrew et al., 2013), the n observations, xi ∈ Rp
and yi ∈ Rq for i = 1, 2, . . . , n, are transformed several
times through a neural network. At every layer, an obser-
vation, for example x, is transformed by h = s(Sx + b),
where S ∈ Routput×input is a matrix of weights, b ∈ Routput

is a vector of bias, and s : R 7→ R is generally a non-
linear function applied to every entry. The aim is to learn
the optimal parameters S and b for both views such that
the correlation between the transformed observations is
maximized. Let Hx ∈ Routput×n and Hy ∈ Routput×n de-
note the matrices that have the final transformed output
vectors in their columns. Let H̃x = Hx − 1

nHx1 de-
note the centered data matrix and let Ĉxy = 1

m−1H̃xH̃
T
y ,

Ĉxx = 1
m−1H̃xH̃

T
x + rxI, and Ĉyy = 1

m−1H̃yH̃
T
y + ryI

where rx and ry are regularization constants, denote the
cross-covariance and within-set covariance matrices. The
correlation of the kth components is the kth singular value
of the matrix

T = Ĉ−1/2xx ĈxyĈ
−1/2
yy .

2.6. CCA through Hilbert-Schmidt Independence
Criterion (SCCA-HSIC)

Recently, as another direction of research, the Hilbert-
Schmidt Independence Criterion (HSIC) (Gretton et al.,
2005) has been proposed as a dependence metric for the
CCA projections (Chang et al., 2013; Uurtio et al., 2018a).
The sparse non-linear variant, named SCCA-HSIC, solves
the following optimization problem (Uurtio et al., 2018a):

max
u,v

trace(K̂uK̂v)
(n−1)2

s.t. ‖u‖1 ≤ sx
‖v‖1 ≤ sy (3)

where the values of the associated kernel matrices are given
by Ku

ij = 〈uTxi,uTxi〉 and Kv
ij = 〈vTyi,vTyi〉. K̂u

and K̂v denote centered kernel matrices. Due to the O(n2)
size of the kernel matrices, SCCA-HSIC is approximated
for large-scale experiments by the Nyström approximation
of the kernel matrices (Williams & Seeger, 2001; Zhang
et al., 2018).

3. gradKCCA: A method for sparse
non-linear CCA

In this paper, we consider solving a KCCA problem with the
additional constraint that the projection directions wx ∈ Hx
and wy ∈ Hy need to have preimages in the original data
spaces, that is, φ−1x (wx) ∈ Rp and φ−1y (wy) ∈ Rq. This
requirement can alternatively be expressed as requiring the
existence of a such u ∈ Rp that φx(u) = wx (resp. v ∈ Rq
s.t. φ(v) = wy). The resulting CCA problem is written as
an optimization over the variables u ∈ Rp,v ∈ Rq:

ρ = max
u,v

∑n
i=1〈φx(xi), φx(u)〉 · 〈φy(yi), φy(v)〉

‖(〈φx(xi), φx(u)〉)ni=1‖2‖(〈φy(yi), φy(v)〉)ni=1‖2
(4)

Replacing the inner products with kernel functions
kx(x, z) = 〈φx(x), φx(z)〉, ky(y, z) = 〈φy(y), φy(z)〉
and denoting the resulting score vectors as kx(u) =
(kx(xi,u))

n
i=1 and ky(v) = (ky(yi,v))

n
i=1 we can write

(4) as

ρgradKCCA = max
u,v

kx(u)>ky(v)

‖kx(u)‖2‖ky(v)‖2
(5)

Note that the optimization problem (5) is the same as CCA
(1) and KCCA (2) when kx and ky are the linear kernel func-
tions. When kx and ky are non-linear kernels, the model
constrains the projection directions to lie on the image of
the feature map (see Section 4 for details). In terms of com-
putation, (5) differs from KCCA by the time and space com-
plexity of evaluating and maintaining the model, which is
linear in the number of examples for gradKCCA, compared
to the quadratic complexity of KCCA, while still allowing
us to measure non-linear correlations in high-dimensional
kernel-induced feature spaces.

We regularize the objective (5) by constraining the `P norm
(with P = 1, 2) of u and v. Hence, with regularization, the
final optimization problem is as follows

ρgradKCCAreg = max
u,v

ρ(u,v) :=
kx(u)Tky(v)

‖kx(u)‖2‖ky(v)‖2
s.t.‖u‖Pu

≤ su and ‖v‖Pv
≤ sv (6)

where su and sv are user-defined positive scalars. The
solution to (6) results in sparse projection vectors by setting
Pu = 1 and/or Pv = 1. When the values of su and sv are
decreased the sparsity increases.

To maximize the correlation in (5), we use an alternating
projected gradient approach (Algorithm 1). The algorithm
computes the gradients∇ρu = ∂ρ(u,v)

∂u (resp. ∇ρv) of the
correlation ρgradKCCA with respect to u and v in alternating
fashion. Each gradient computation entails computing the
gradients of the kernel function∇uk

x(u) between the train-
ing data and the current u, (See Supplementary material),
which can be done in time O((p + q)n) time per epoch,
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where p and q are the numbers of variables in the two views,
in the case of polynomial and RBF kernels. In addition,
for large-scale data, a mini-batch approach can be used to
facilitate optimization.

Algorithm 1 gradKCCA
1: Input: X, Y, M (components), R (repetitions),
δ (convergence limit), Px and Py (norms of u and v)
sx and sy (l1 or l2 norm constraints for u and v),
dx and dy (hyperparameters for kx and ky)

2: Output: U, V
3: for all m = {1, 2, . . . ,M} do
4: for all r = {1, 2, . . . , R} do
5: Initialize umr and vmr
6: Compute kx(u), ky(v)
7: repeat
8: Compute ρold = ρ(u,v)

9: Compute∇ρu = ∂ρ(u,v)
∂u

10: Update umr =
∏
‖.‖Px≤sx

(umr + γ∇u)
(The step size γ determined by line search)

11: Re-compute kx(u)

12: Compute∇ρv = ∂ρ(u,v)
∂v

13: Update vmr =
∏
‖.‖Py≤sy

(vmr + γ∇v)

(The step size γ determined by line search)
14: Re-compute ky(v)
15: Compute ρcurrent = ρ(u,v)
16: until |ρold − ρcurrent|/|ρold + ρcurrent| < δ
17: ρr = ρcurrent, ur = umr, vr = vmr
18: end for
19: Select r∗ = argmaxr ρr
20: Store U(:,m) = ur∗ , V(:,m) = vr∗

21: Deflate X(m), Y(m) by U(:,m) and V(:,m)
22: end for
23: Return: U, V

In Algorithm 1, the `1 or `2 norm constraints are imple-
mented as follows. Let

∏
‖.‖P≤s(u) denote the projection

of u onto an `p norm ball. We solve∏
‖.‖P≤s

(u) = min
uproject

‖uproject − u‖2

s.t. ‖uproject‖P ≤ s

When P = 2,
∏
‖.‖P≤s(u) = su

‖u‖2 . When P = 1, we
follow the method of `1 ball projection described in (Duchi
et al., 2008).

The local convergence of Algorithm 1 follows from the the-
ory presented in (Iusem, 2003). The step size of Algorithm
1 is found by Armijo line search, as described in Equations
(13) and (14) in (Iusem, 2003). Following (Iusem (2003),
Theorem 2), we claim that Algorithm 1 generates two se-
quences {u1,u2, . . . ,uk, . . . } and {v1,v2, . . . ,vk, . . . }
such that for all k, ||uk||Px ≤ sx and ||vk||Py ≤ sy,

all step sizes γk are well-defined. If ∇ρu(uk) 6= 0
then 〈∇ρu(uk),Proj(uk + γk∇ρu(uk)) − uk > 0 and if
ρv(vk) 6= 0, then 〈∇ρv(vk),Proj(vk + γk∇ρv(vk)) −
vk > 0. Hence, at every step, the objective function is
increasing if the gradient is nonzero. Assuming a locally
concave function ρ(u,v), Algorithm 1 stops at some iter-
ation k, in which case (u,v) is a solution to Problem 6,
or it generates infinite sequences {u1,u2, . . . ,uk, . . . } and
{v1,v2, . . . ,vk, . . . } that converge to a solution (u∗,v∗)
of the problem.

3.1. Finding multiple canonical vectors

Given up to the mth estimate of canonical projection
{u1,u2, . . . ,um} and {v1,v2, . . . ,vm}, the following or-
thogonal canonical projection vectors can be obtained by
solving (6) for um+1 and vm+1 with additional constraint
that {u1,u2, . . .um+1} and {v1,v2, . . . ,vm+1} are mu-
tually orthogonal. In Algorithm 1, deflation (Mackey,
2009) is applied to obtain multiple multivariate relations.
As an example for u, upon finding the mth estimate
for um from the current data matrix X(m), the follow-
ing orthogonal projection vector u(m+1) can be obtained

by solving X(m+1) = X(m) − umuT
mX(m)T

uT
mum

. The same
procedure is applied on v. In this way, the resulting
sets of vectors {u1,u2, . . .} and {v1,v2, . . .} are mutu-
ally orthogonal. An alternative approach for finding or-
thogonal projection directions, is to look for uncorrelated
projections (Hardoon et al., 2004). These can obtained
by solving (6) for um+1 and vm+1 with additional con-
straint that the score vectors {kx(u1), . . . ,k

x(um)} and
{ky(v1), . . . ,k

y(vm)} are mutually orthogonal.

Instead of using the successive formulation of Algorithm 1,
we can join the successive sub-problems into one and solve
(7) for matrices U ∈ Rp×M and V ∈ Rq×M which contains
M vectors (u1,u2, . . . ,uM ) and (v1,v2, . . . ,vM ).

max
U,V

M∑
i=1

kx(ui)
>ky(vi)

||kx(ui)||||ky(vi)||

s.t. kx(ui)
Tkx(uj) = 0, ∀i, j, i 6= j

ky(vi)
Tky(vj) = 0, ∀i, j, i 6= j

kx(ui)
Tky(vj) = 0, ∀i, j, i 6= j (7)

The non-linear equality constraints in (7) are considerably
harder to solve than (6) with the deflation approach. One
can soften constraints by adding them to the objective func-
tion using the concept of penalty method and then solve
the unconstrained problem by gradient descent. We leave
following this direction for future work.
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4. Relation between gradKCCA and KCCA
Let α∗ and β∗ be the optimal solution of KCCA (2). Then
the optimal canonical vectors (Kuss & Graepel, 2003) are

w∗x =
∑
i

α∗iφx(xi) ∈ L(φx,X) ⊆ Hx and

w∗y =
∑
i

β∗iφy(yi) ∈ L(φy,Y) ⊆ Hy.

where L(φx,X) and L(φy,Y) are spaces spanned by fea-
ture maps corresponding to training samples only.

Let u∗ and v∗ be the optimum solution for (5) and hence
φx(u

∗) and φy(v
∗) are the optimal canonical vectors.

Please note that, φx(u∗) (resp. φy(v
∗)) does not neces-

sarily lie within the span L(φx,X) (resp. L(φy,Y)) of the
training data in view X (resp. view Y).

First we show that KCCA (2) correlation ρkcca upper-bounds
the correlation found by gradKCCA (5), ρgradKCCA.

Lemma 4.1. ρgradKCCA ≤ ρkcca

Proof. Considering the above notations, in general φx(u∗)
or φy(v∗) may not lie in L(φx,X) and L(φy,Y). If
φx(u

∗) /∈ L(φx,X), φx(u∗) can be split into the following
two components

φx(u
∗) = φx(u

∗)‖ + φx(u
∗)⊥

where φx(u
∗)‖ ∈ L(φx,X)) and φx(u

∗)⊥ is orthogo-
nal L(φx,X), that is, 〈φx(u∗)⊥, φ(xi)〉 = 0 for any
i = 1, . . . , n. The score vector kx(u∗) satisfies

kx(u∗) =
[
〈φx(xi), φx(u∗)〉

]n
i=1

=[
〈φx(xi), φx(u∗)‖〉

]n
i=1

+
[
〈φx(xi), φx(u∗)⊥〉

]n
i=1

=
[
〈φx(xi), φx(u∗)‖〉

]n
i=1

+ 0.

In other words, the orthogonal part has no contribution
to the score vector kx(u∗). An analogous fact holds true
for the score vector ky(v∗). Consequently, the value of
the canonical correlation ρgradKCCA is also not affected
by the parts orthogonal to the span. Hence there exist
some α and β such that φx(u∗)‖ =

∑
iαiφx(xi) and

φy(v
∗)‖ =

∑
i β
>φy(yi) that achieve the same correlation

as gradKCCA. Since KCCA (2) returns the optimal α∗ and
β∗ the claim follows.

We note that above the dual variables for gradKCCA were
used only as a proof technique, neither them nor the kernel
matrix is needed in gradKCCA optimization.

Since for non-linear maps φx, L(φx,X) does not in general
exactly coincide with the image of the feature map φx, it

may be that some vectors in wx ∈ L(φx,X) and wy ∈
L(φy,Y), the preimages φ−1x (wx) and φ−1x (wy) do not
not exist (Weston et al., 2004). In these cases, in general
the (approximate) preimage x for is chosen such that the
squared distance of wx and φx(u) is minimized.

ũ(wx) = arg min
u∈Rp

‖wx − φx(u)‖2 (8)

ṽ(wy) = arg min
v∈Rq

‖wy − φy(v)‖2 (9)

The correlation achieved by computing the preimage and
mapping back to the feature space is given by

ρpreimage =
kx(ũ(wx))

>ky(ṽ(wy))

||kx(ũ(wx))||||ky(ṽ(wy)))||
(10)

This preimage gives a lower-bound on ρgradKCCA:
Lemma 4.2. ρgradKCCA ≥ ρpreimage

Proof. Follows from the fact that (5) gives the the maximum
correlation for all u ∈ Rp and v ∈ Rq, including u =
ũ(wx) and v = ṽ(wy)

This preimage can be efficiently computed from an optimal
KCCA solution. Namely, substituting the KCCA optimum
w∗x =

∑
i α
∗
i φx(xi) into (8) we obtain

ũ(w∗x) = argmin
u
||
∑
i

α∗i φ(xi)− φ(u)||2 =

= argmin
u

(||
∑
i

α∗i φ(xi)||2 − 2〈
∑
i

α∗i φ(xi), φ(u)〉

+ ||φ(u)||2)

= argmin
u

α∗TKxα∗ − 2α∗Tkx(u) + kx(u,u)

which can be solved by e.g. by gradient descent on u. We
use this approach in our experiment section to compute
preimages for KCCA, and name it as KCCApreimage.

Using the above preimage problem, we can further bound
the distance of gradKCCA from the KCCA optimum. Let
us define the bounds on preimage errors as

BX = max
wx∈L(φx,X)

‖wx − φx(ũ(wx))‖2

BY = max
wy∈L(φy,Y)

‖wy − φx(ṽ(wy))‖2. (11)

Theorem 4.3. Let us further assume that norm inHx and
Hy are upper bounded by Mx and My , that is,

∀φx(u) ∈ Hx, ‖φx(u)‖ ≤Mx

and ∀φy(v) ∈ Hy , ‖φy(v)‖ ≤My . (12)

Then,

ρgradKCCA ≥ ρpreimage ≥ ρkcca − (
By
My

+
Bx
Mx

)

Proof. See Section 2 in the Supplementary Material.
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5. Experiments
5.1. Predictive performance

We assess the performance of gradKCCA, and compare it
with KCCA, DCCA, RCCA, KNOI and SCCA-HSIC, in
terms of robustness to noise and scalability. In the experi-
ments, we test two different sets of input relations, mono-
tone algebraic relations and non-monotone trigonometric
relations. For the monotone algebraic relations, we use
the linear kernel for gradKCCA and KCCA. For the non-
monotone trigonometric relations we use the quadratic ker-
nel for both. The code is available on https://github.
com/aalto-ics-kepaco/gradKCCA.

For the other kernel-based methods, that is RCCA, KNOI,
and SCCA-HSIC, we only apply the Gaussian kernel, which
is a requirement for SCCA-HSIC due to its universality
(Gretton et al., 2008), and which has been applied previously
together with random Fourier features for RCCA and KNOI
(Lopez-Paz et al., 2014; Wang & Livescu, 2016).

Experiments on monotone relations. In the experi-
ments, where the linear kernels are tested for gradKCCA
and KCCA, we apply the following monotone algebraic
relations. We generate polynomial relations of the form
f(x) = xd, where x ∈ R+ and d = 1, 2, 3, that is linear,
quadratic, and cubic relations, respectively. We also gen-
erate a transcendental relation, the exponential relation, of
the form f(x) = exp(x), where x ∈ R+. We consider a
two-to-two relation, that is, the two first columns of Y and
X satisfy y1+y2 = f(x1+x2)+ξ where ξ ∼ N (0, 0.05)
denotes a vector of normal distributed noise. The variables
in the columns of X and Y are generated from a random
uni-variate uniform distribution, x1,x2, . . . ,xp ∼ U [0, 1]
and y3,y4, . . . ,yq ∼ U [0, 1].

Experiments on non-monotone relations. As non-
monotone relations, we generate the following trigonometric
relations that cannot be approximated using a linear kernel.
Let every entry of θ ∈ Rn ∼ U [−2π, 2π]. The variables, in
the columns of X and Y, are generated by

X =
(
sin x2

a + ξ x2 · · · θp
)

Y =
(
cos x2

b + ξ cos x2

c + ξ · · · θq
)

where x2 denotes the second variable in view X and ξ ∼
N (0, 0.05) denotes a vector of normal distributed noise. In
the X view, the first and second variables are related, and
the first and second variables in the Y view are related with
the second variable of X view. We generate three different
variants of this setting. In the first relation, we put a = −2,
b = 3, and c = 4. In the second relation, we put a = −2,
b = −4, and c = −6. In the third relation, we put a = −0.5,
b = 2, and c = −2.

Hyperparameter settings. In all of the experiments, we
randomly select 500 examples from the simulated training
dataset for hyperparameter tuning by repeated nested cross-
validation. For gradKCCA and SCCA-HSIC, we tune the `1
sparsity constraints. For KCCA, we tune the regularization
hyperparameters. For DCCA, we tune the neural network
structure, that is the number of layers and the number of
hidden units. For RCCA and KNOI, we tune the number of
random Fourier features.

Evaluation metrics. We assess the performances of the
methods in terms of test correlation, F1 score, and Area
Under the Curve (AUC). The test correlations are computed
using (5), where the learned u and v are applied on test
examples.

For gradKCCA, SCCA-HSIC and KCCApreimage, we assess
the correctness of u and v using the F1 score and AUC. For
KCCApreimage, we use the output of the preimage algorithm
as the predicted u and v. F1 score is defined as F1 =

2TP
2TP+FP+FN , where TP, FP, and FN denote the true positives,
false positives, and false negatives respectively. In our case,
the labels refer to the zero/non-zero coefficient values in the
estimated u and v and the respective ground truth vectors.
For the computations of the two metrics, the estimated u
and v are binarized such that all entries less than or equal to
0.05 are put to zero and all the rest to 1.

5.1.1. VARYING THE GROUND TRUTH SPARSITY

We evaluate the robustness of gradKCCA, KCCApreimage,
KCCA, DCCA, KNOI and SCCA-HSIC when the sparsity
of the ground truth, that is the number of noise variables,
increases. We do not include RCCA in these small-scale
experiments since it results in the same kernel canonical cor-
relation as KCCA at a sufficient number of random Fourier
features.

For every multivariate function, given in Section 5.1, we
repeat the following scheme 10 times. We generate two data
matrices X and Y of sizes n×p and n×q, where n = 1000.
The dimensions tested are p = q = {5, 10, 50, 100}.

Monotone relations. The results are shown in Figure 1.
Since a linear kernel function is applied, gradKCCA and
KCCA perform similarly, in terms of training and test cor-
relation. The F1 score and AUC show that gradKCCA is
slightly more robust to noise than KCCA. This could be
due to the constraint that the projection direction lies on the
image of the feature map. DCCA, KNOI, and SCCA-HSIC
do not tolerate noise as well as gradKCCA and KCCA. For
KNOI, this could be explained by the stochastic approx-
imation algorithm that uses mini-batches of the training
examples.

https://github.com/aalto-ics-kepaco/gradKCCA
https://github.com/aalto-ics-kepaco/gradKCCA
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Figure 1. Experiment 5.1.1 on monotone relations. DCCA,
KNOI, and KCCA and gradKCCA, KCCApreimage, and SCCA-
HSIC are shown on upper and lower rows respectively.

Non-monotone relations. The results are shown in Fig-
ure 2. In terms of test correlations, the quadratic kernel grad-
KCCA and SCCA-HSIC perform equally well. However,
gradKCCA is more accurate than SCCA-HSIC in identify-
ing the related variables in terms of F1 score. As has been
shown in Section 4, in the case of higher degree kernels,
the canonical correlation using the computed the preimages
of KCCA is lower than the kernel canonical correlation.
KCCA, DCCA and KNOI are shown not to be tolerant to
irrelevant noise variables in this context.
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Figure 2. Experiment 5.1.1 on non-monotone relations. See the
caption of Figure 1.

5.1.2. VARYING THE SAMPLE SIZE

In the scalability experiments, we compare gradKCCA with
the large-scale CCA variants, that is DCCA, RCCA, KNOI,
and Nyström approximated SCCA-HSIC. For every multi-
variate function, given in Section 5.1, we repeat the follow-
ing scheme five times. We generate two data matrices X and

Y of sizes n×p and n×q, where n = {103, 104, 105, 106}.
The number of inducing variables for the Nyström ap-
proximated SCCA-HSIC is set to {0.7, 0.1, 0.05} for the
first three sample sizes respectively. The dimensions are
p = q = 10.

Monotone relations. The results are shown in Figure 3.
In terms of training and test (kernel) canonical correlations,
gradKCCA, RCCA, and DCCA perform equally well. How-
ever, in terms of running time gradKCCA outperforms all
the methods. SCCA-HSIC is the slowest method, and is not
run for one million examples.
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Figure 3. Experiment 5.1.2 on monotone relations. The perfor-
mances of gradKCCA, DCCA, RCCA, KNOI, and SCCA-HSIC
are shown when the sample sizes n = {103, 104, 105, 106} are
tested. Due to the slow computation time, SCCA-HSIC is only run
until 105.

Non-monotone relations. The results are shown in Fig-
ure 4. As in the experiment on monotone relations, grad-
KCCA is the fastest method. DCCA and KNOI extract
non-monotone relations better at larger sample sizes. In
contrast to the previous experiment, gradKCCA is better
in extracting the relations than SCCA-HSIC, which is seen
both in terms of test correlation and F1 score.
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Figure 4. Experiment 5.1.2 on non-monotone relations. See the
caption of Figure 3.

5.2. Real-world datasets

We evaluate the performances of gradKCCA, DCCA,
RCCA, KNOI, and SCCA-HSIC in terms of the training
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Table 1. MNIST dataset.

ρTRAIN ρTEST TIME (S)

GRADKCCA 0.955 ± 0.001 0.952 ± 0.001 56 ± 6
DCCA 0.941 ± 0.010 0.943 ± 0.003 4578 ± 203
RCCA 0.949 ± 0.001 0.949 ± 0.010 78 ± 13
KNOI 0.950 ± 0.001 0.950 ± 0.005 878 ± 62
SCCA-HSIC 0.912 ± 0.020 0.934 ± 0.006 5611 ± 193

and test correlation of the first CCA component and com-
putation time on the publicly available MNIST handwritten
digits (LeCun, 1998) and MediaMill (Snoek et al., 2006)
datasets. We extract the first component 10 times to obtain
an average. We tune the hyperparameters in similar manner
as in Section 5.1.

MNIST handwritten digits. The MNIST handwritten
digits dataset contains 60 000 training and 10 000 testing im-
ages of handwritten digits. As in (Andrew et al., 2013), we
analyze the relations of the left and right halves of images
of the handwritten digits. Every image consists of 28× 28
matrix of pixels. Every pixel represents a grey scale value
ranging from one to 256. The 14 left and right columns are
separated to form the two views, making 392 features in
each view.

The training and test correlations of the views, and compu-
tation times, are given in Table 1. gradKCCA outperforms
in terms of speed, and finds a test correlation of highest
value. KNOI is the second best in terms of test correlation,
and RCCA the third best, with the second fastest compu-
tation time. The complexity of RCCA is O((m2

x +m2
y)n)

where mx and my are dimensions of the randomized fea-
ture map and the complexity of calculating feature maps
are O(pmxn) and O(qmyn). This explains why RCCA is
slower than gradKCCA in practice.

MediaMill dataset. The MediaMill dataset consists of
43907 examples that correspond to keyframes taken from
video shots. Every keyframe is represented by 120 visual
features and 101 text annotations, or labels, respectively.

The training and test correlations between the visual and
annotation views, together with the computation times, are
given in Table 2. As in the MNIST experiment, gradKCCA
is the fastest. RCCA is the second best in terms of speed
and KNOI is the second best in terms of test correlation.

6. Discussion
Our experiments showed that the gradKCCA model is or-
ders of magnitude faster to optimize than competing non-
linear CCA models. On real-world datasets, gradKCCA
obtained top predictive performance, and again proved to

Table 2. MediaMill Dataset.

ρTRAIN ρTEST TIME (S)

GRADKCCA 0.666 ± 0.004 0.657 ± 0.007 8 ± 4
DCCA 0.643 ± 0.005 0.633 ± 0.003 1280 ± 112
RCCA 0.633 ± 0.001 0.626 ± 0.005 23 ± 9
KNOI 0.652 ± 0.001 0.645 ± 0.003 218 ± 73
SCCA-HSIC 0.627 ± 0.004 0.625 ± 0.002 1804 ± 143

be the fastest method by a large margin. In our experiments
with artificial data, we also showed that gradKCCA is very
robust to a large amount respect to irrelevant, noise variables
in the data. Also, the method obtains good performance al-
ready with modest amount of data, compared to several of
the competing methods.

The gradKCCA model can be seen as a variant of KCCA
that gives access to the preimages of the canonical projection
directions. Our results in Section 4 show that the correla-
tions on the training set are upper bounded by KCCA and
lower-bounded by correlations that are obtained after taking
the preimage of the KCCA solution. In our experiments,
these relations were generally seen to translate to the test
set as well. Thus, gradKCCA can be seen to give a good
compromise in situations where the model’s interpretation
in terms of relevant variables is of interest.

The general approach used here that removes the need to
maintain a kernel matrix by moving the optimization to the
preimage space is not limited to CCA models. We envision
that many other kernel methods could be scaled up to big
data using the same principle. On the other hand, it is clear
that the new model puts more burden for finding a good
kernel so that the requirement of the kernel space model
having an exact preimage does not become too restrictive.

7. Conclusions
In this paper, we have put forward a new method for find-
ing canonical correlations in paired datasets. The proposed
method, gradKCCA, adapts KCCA by requiring the projec-
tion directions in the feature space to have preimages in the
original space. This modeling choice has the by-product that
a kernel matrix does not need to be computed or maintained.
This allows fast optimization through gradient approaches,
which scales up to big datasets effortlessly. Moreover due
the approach, the sparsity projection directions can be con-
trolled which gives the method robustness against irrelevant
variables.
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