
Characterization of Convex Objective Functions and Optimal Expected
Convergence Rates for SGD

Marten van Dijk 1 Lam M. Nguyen 2 Phuong Ha Nguyen 1 Dzung T. Phan 2

Abstract
We study Stochastic Gradient Descent (SGD)
with diminishing step sizes for convex objective
functions. We introduce a definitional framework
and theory that defines and characterizes a core
property, called curvature, of convex objective
functions. In terms of curvature we can derive a
new inequality that can be used to compute an op-
timal sequence of diminishing step sizes by solv-
ing a differential equation. Our exact solutions
confirm known results in literature and allows us
to fully characterize a new regularizer with its
corresponding expected convergence rates.

1. Introduction
It is well-known that the following stochastic optimization
problem

min
w∈Rd

{F (w) = E[f(w; ξ)]} , (1)

where ξ is a random variable obeying some distribution can
be solved efficiently by stochastic gradient descent (SGD)
(Robbins & Monro, 1951). The SGD algorithm is described
in Algorithm 1.

If we define fi(w) := f(w; ξi) for a given training set
{(xi, yi)}ni=1 and ξi is a random variable that is defined by
a single random sample (x, y) pulled uniformly from the
training set, then empirical risk minimization reduces to

min
w∈Rd

{
F (w) =

1

n

n∑
i=1

fi(w)

}
. (2)
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Algorithm 1 Stochastic Gradient Descent (SGD) Method

Initialize: w0

Iterate:
for t = 0, 1, 2, . . . do

Choose a step size (i.e., learning rate) ηt > 0.
Generate a random variable ξt.
Compute a stochastic gradient∇f(wt; ξt).
Update the new iterate wt+1 = wt − ηt∇f(wt; ξt).

end for

Problem (2), which can also be solved by gradient descent
(GD) (Nesterov, 2004; Nocedal & Wright, 2006), has been
discussed in many supervised learning applications (Hastie
et al., 2009). As an important note, a class of variance
reduction methods (Le Roux et al., 2012; Defazio et al.,
2014; Johnson & Zhang, 2013; Nguyen et al., 2017) has
been proposed for solving (2) in order to reduce the compu-
tational cost. Since all these algorithms explicitly use the
finite sum form of (2), they and GD may not be efficient
for very large scale machine learning problems. In addition,
variance reduction methods are not applicable to (1). Hence,
SGD is an important algorithm for very large scale machine
learning problems and the problems for which we cannot
compute the exact gradient. It is proved that SGD has a
sub-linear convergence rate with convergence rate O(1/t)
in the strongly convex cases (Bottou et al., 2016; Nguyen
et al., 2018; Gower et al., 2019), and O(1/

√
t) in the gen-

eral convex cases (Nemirovsky & Yudin, 1983; Nemirovski
et al., 2009), where t is the number of iterations.

In this paper we derive convergence properties for SGD
applied to (1) for many different flavors of convex objective
functions F . We introduce a new notion called ω-convexity
where ω denotes a function with certain properties (see Def-
inition 1). Depending on ω, F can be convex or strongly
convex, or something in between, i.e., F is not strongly con-
vex but is “better” than “plain” convex. This region between
plain convex and strongly convex F will be characterized by
a new notion for convex objective functions called curvature
(see Definition 3).

Convex and non-convex optimization are well-known prob-
lems in the literature (see e.g. (Schmidt et al., 2016; Defazio
et al., 2014; Schmidt & Roux, 2013; Reddi et al., 2016)).
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The problem in the middle range of convexity and non-
convexity called quasi-convexity has been studied and ana-
lyzed (Hazan et al., 2015). Convex optimization is a basic
and well studied primitive in machine learning. In some ap-
plications, the optimization problems may be non-strongly
convex but may have specific structure of convexity. For
example, a classical least squares problem with

fi(w) = (aTi w − bi)2

is convex for some data parameters ai ∈ Rd and bi ∈ R.
When an `2-norm regularization ‖w‖2 is employed (ridge
regression), the regularized problem becomes strongly con-
vex. Group sparsity is desired in some domains, one can
add an `2,1 regularization

∑
i ‖w[i]‖ (Wright et al., 2009).

This problem is no longer strongly convex, but it should be
“stronger” than plain convex.

To the best of our knowledge, there are no specific results or
studies in the middle range of convexity and strong convex-
ity. In this paper, we provide a new definition of convexity
and study its convergence analysis.

In our analysis, the following assumptions are required.1

Assumption 1 (L-smooth). f(w; ξ) is L-smooth for every
realization of ξ, i.e., there exists a constant L > 0 such that,
∀w,w′ ∈ Rd,

‖∇f(w; ξ)−∇f(w′; ξ)‖ ≤ L‖w − w′‖. (3)

Assumption 1 implies that F is also L-smooth.

Assumption 2 (convex). f(w; ξ) is convex for every real-
ization of ξ, i.e., ∀w,w′ ∈ Rd,

f(w; ξ)− f(w′; ξ) ≥ 〈∇f(w′; ξ), (w − w′)〉.

Assumption 2 implies that F is also convex.

We assume that f(w; ξ) is L-smooth and convex for every
realization of ξ. Then, according to (Nesterov, 2004), for
all w,w′ ∈ Rd,

‖∇f(w; ξ)−∇f(w′; ξ)‖2

≤ L〈∇f(w; ξ)−∇f(w′; ξ), w − w′〉. (4)

The requirement of existence of unbiased gradient estima-
tors, i.e., Eξ[∇f(w; ξ)] = ∇F (w), for any fixed w is in
need for applying SGD to the general form (1).

Contributions and Outline.

1- Our convergence analysis of SGD for convex objective
functions is based on a new recurrence on the expected
convergence rate stated in Lemma 1 (Sec. 2). As a side

1Here and in the remainder of the paper ‖ · ‖ stands for the
2-norm.

result this recurrence is used to show in Theorem 1 (Sec. 2)
that, for convex objective functions, SGD converges with
probability 1 (almost surely) to a global minimum (if one
exists). The w.p.1 result is an adaptation of the w.p.1 result
in (Nguyen et al., 2018) for the strongly convex case.

2- We introduce a new framework and define ω-convex ob-
jective functions in Definition 1 (Sec. 3) and the curvature
of convex objective functions in Definition 3 (Sec. 3). We
show how strongly convex and “plain” convex objective
functions fit this picture, as extremes on either end (curva-
ture 1 and 0, respectively).

3- In Theorem 2 we introduce a new regularizer G(w), for
w ∈ Rd, with curvature 1/2. It penalizes small ‖w‖ much
less than the 2-norm ‖w‖2 regularizer and it penalizes large
‖w‖ much more than the 2-norm ‖w‖2 regularizer. This
allows us to enforce more tight control on the size of w
when minimizing a convex objective function.

4- By using the recurrence of Lemma 1 (Sec. 2) and a new
inequality for ω-convex objective functions, we are able to
analyze the expected convergence rate of SGD in Sec. 4.
We characterize the expected convergence rate as a solution
to a differential equation. Our analysis matches existing
theory; for strongly convex F we obtain a 2-approximate
optimal solution and for “plain” convex F with no curvature
we obtain an optimal step size of order O(t−1/2). For the
new regularizer we get a precise expression for the optimal
step size and expected convergence rates.

2. Convex Optimization
In convex optimization we only assume that f(w; ξ) is L-
smooth and convex for every realization of ξ. Under these
assumptions, the objective function F (w) = Eξ[f(w; ξ)] is
also L-smooth and convex. However, the assumptions are
too weak to guarantee a unique global minimum for F (w).
For this reason we introduce

W∗ = {w∗ ∈ Rd : ∀w∈Rd F (w∗) ≤ F (w)}

as the set of all w∗ that minimize F (.). The set W∗ may
be empty implying that there does not exist a global min-
imum. If W∗ is not empty, it may contain many vectors
w∗ implying that a global minimum exists but that it is not
unique.

Assumption 3 (global minimum exists). Objective function
F has a global minimum.

This assumption implies that

∀w∗∈W∗ ∇F (w∗) = 0 and
∃Fmin

∀w∗∈W∗ F (w∗) = Fmin.
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With respect toW∗ we define

N = sup
w∗∈W∗

Eξ[‖∇f(w∗; ξ)‖2].

Assumption 4 (finite N ). We assume N is finite.

Without explicitly stating, each of the lemmas and theorems
in the remainder of this paper assume Assumptions 1, 2, 3,
and 4.

For the recursively computed values wt, we define

Yt = inf
w∗∈W∗

‖wt − w∗‖2 and Et = F (wt)− F (w∗).

These quantities measure the convergence rate towards one
of the global minima.

Lemma 1. Let Ft be a σ-algebra which contains
w0, ξ0, w1, ξ1, . . . , wt−1, ξt−1, wt. Assume ηt ≤ 1/L. For
any given w∗ ∈ W∗, we have

E[Yt+1|Ft] ≤ E[Yt|Ft]− 2ηt(1− ηtL)Et + 2η2
tN. (5)

The proof of Lemma 1 is presented in supplemental mate-
rial A. Moreover, an immediate application is given by the
next theorem (its proof is in supplemental material B).

Theorem 1. Consider SGD with step size sequence such
that

0 < ηt ≤
1

L
,

∞∑
t=0

ηt =∞ and
∞∑
t=0

η2
t <∞.

Then, the following holds w.p.1 (almost surely)

F (wt)− F (w∗)→ 0,

where w∗ is any optimal solution of F (w).

We note that the convergence w.p.1. in (Nguyen et al., 2018)
only works in the strongly convex case while our above
theorem holds for the case where the objective function is
general convex.

3. Convex Flavors
We define functions

a(w) = F (w)− F (w∗) = F (w)− Fmin (6)

and
b(w) = inf

w∗∈W∗
‖w − w∗‖2. (7)

Notice that a(w) = 0 if and only if w ∈ W∗ and b(w) = 0
if and only if w ∈ W∗.

We introduce a new definition based on a(w) and b(w)
which characterizes a multitude of convex flavors of ob-
jective functions:

Definition 1 (ω-convex). Let a : Rd → [0,∞) and b :
Rd → [0,∞) be smooth functions. Let ω : [0,∞)→ [0,∞)
be ∩-convex (i.e. ω′′(ε) < 0) and strictly increasing (i.e.,
ω′(ε) > 0). Let B ⊆ Rd be a convex set (e.g., a sphere or
Rd itself) such that, first,

ω(a(w)) ≥ b(w) for all w ∈ B

and, second, a(w) = 0 implies both b(w) = 0 and w ∈ B.
Then we call the pair of functions (a, b) ω-separable over
B.

If objective function F gives rise to a pair of functions (a, b)
as defined by (6) and (7) which is ω-separable over B, then
we call F ω-convex over B.

The objective function being ω-convex is a subcase of the
Error Bound Condition (see Equation (1) in (Bolte et al.,
2017)) which only requires ω to be non-decreasing (i.e.,
ω′(·) ≥ 0). The Holderian Error Bound (HEB) (also called
Local Error Bound, Local Error Bound Condition, or Lo-
jasiewicz Error bound) is a subcase of the Error Bound Con-
dition where ω(ε) = cεp where c > 0 and p ∈ (0, 2] (see
Definition 1 of (Xu et al., 2016) where the reader should
notice that b(w) in (7) represents the squared Euclidean
distance implying that ω in our notation is the square of the
ω in Equation (6) of (Xu et al., 2016)). When p = 1, HEB
becomes the Quadratic Growth Condition (Drusvyatskiy &
Lewis, 2018); in particular, strong convex objective func-
tions satisfy the Quadratic Growth Condition (see also our
Lemma 3).

It turns out that our ω-convex notion and HEB are different
as they are not a subclass of each other, but they do have an
intersection: Notice that for p ∈ (1, 2], ω(ε) = cεp is not ∩-
convex and does not satisfy Definition 1, hence HEB is not a
subclass of ω-convexity. Also ω-convexity is not a subclass
of HEB; for example, our special case of ω-convexity as
defined in Definition 3 and later studied in the rest of the
paper is different from HEB (only r =∞ in Lemma 9 and
Theorem 3 reflects HEB). HEB and ω-convexity intersect
for ω(ε) = cεp with p ∈ (0, 1]. The results in this paper
imply that p ∈ (0, 1] corresponds to the range of plain
convex to strong convex objective functions for which we
analyze the expected convergence rates of SGD with optimal
step sizes (given the recurrence of Lemma 1). To the best
of our knowledge there is no existing work on analyzing
the convergence of SGD with this ω-convex notion or with
HEB.

We list a couple of useful insights (proofs are in supplemen-
tal material C.1):

Lemma 2. Let a : Rd → [0,∞) and b : Rd → [0,∞)
be smooth functions and let B ⊆ Rd such that a(w) = 0
implies b(w) = 0 and w ∈ B.
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For ε ≥ 0, we define

δ(ε) = sup
p:Ep[a(w)]≤ε

Ep[b(w)],

where p represents a probability distribution over w ∈ B.

Assuming δ(ε) <∞ for ε ≥ 0, δ(·) is ∩-convex and strictly
increasing with δ(0) = 0. Furthermore,

1. The pair of functions (a, b) is δ-separable over B.

2. The pair of functions (a, b) is ω-separable over B if
and only if ω(ε) ≥ δ(ε) for all ε ≥ 0.

The lemma shows that δ is the “minimal” function ω for
which (a, b) is ω-separable over B.

The lemma also shows that a(w) and b(w) are not separable
over B for any function ω(·) if and only if δ(ε) = ∞ for
ε > 0. This is only possible if B is not bounded within
some sphere (e.g., B = Rd). If B is bounded, then there
always exists a function ω(·) such that a(w) and b(w) are
ω-separable over B (e.g., ω(x) = δ(x) as defined above).

For convex objective functions, we see in practice that the
type of distributions p in the definition of δ(·) can be re-
stricted to having their probability mass within a bounded
sphere B of w vectors. In the analysis of the convergence
rate this corresponds to assuming all wt ∈ B (see next sec-
tion). As discussed above this makes δ(ε) finite and we are
guaranteed to be able to apply the definitional framework as
introduced here.

The relationship towards strongly convex objective func-
tions is given below.
Definition 2 (µ-strongly convex). The objective function
F : Rd → R is called µ-strongly convex, if for all w,w′ ∈
Rd,

F (w)− F (w′) ≥ 〈∇F (w′), (w − w′)〉+
µ

2
‖w − w′‖2.

For w′ ∈ W∗, ∇F (w′) = 0. So, for a µ-strongly con-
vex objective function f , F (w) − F (w∗) ≥ µ

2 ‖w − w∗‖
2

for all w∗ ∈ W∗ (notice that W∗ has exactly one vector
w∗ representing the global minimum). This implies that
2
µa(w) ≥ b(w) for (a, b) defined by (6) and (7):
Lemma 3. If objective function F is µ-strongly convex,
then F is ω-convex over Rd for function ω(x) = 2

µx.

We will show that existing convergence results for strongly
convex objective functions can be derived from assuming
the weaker ω-convexity property for appropriately selected
ω as given in the above lemma.

In order to prove bounds on the expected convergence rate
for any ω-convex objective function, we will use the follow-
ing inequality:

Lemma 4. Let a : Rd → [0,∞) and b : Rd → [0,∞) be
smooth functions and assume they are ω-separable over B
for some ∩-convex and strictly increasing function ω and
convex set B ⊆ Rd. Let p be a probability distribution over
B. Then, for all 0 < x,

Ep[b(w)]

ω′(x)
≤ (

ω(x)

ω′(x)
− x) + Ep[a(w)].

Proof. Since ω(a(w)) ≥ b(w) for all w ∈ B,

Ep[b(w)] ≤ Ep[ω(a(w))].

Since ω(·) is ∩-convex,

Ep[ω(a(w))] ≤ ω(Ep[a(w)]).

Since ω is ∩-convex and strictly increasing, for all x > 0
and y > 0, ω(y) ≤ ω(x) + ω′(x)(y − x). Substituting
y = Ep[a(w)] yields

ω(Ep[a(w)]) ≤ ω(x) + ω′(x)[Ep[a(w)]− x].

Combining the sequence of inequalities, rearranging terms,
and dividing by ω′(x) proves the statement.

When applying Lemma 4 we will be interested in bounding
ω(x)
ω′(x) − x from above while maximizing 1

ω′(x) . That is, we
want to investigate the behavior of

v(η) = sup{ 1

ω′(x)
:
ω(x)

ω′(x)
− x ≤ η}.

Notice that the derivative of ω(x)
ω′(x) − x is equal to

−ω(x)ω′′(x)
ω′(x)2 ≥ 0, and the derivative 1

ω′(x) is equal to
−ω′′(x)
ω′(x)2 ≥ 0. This implies that v(η) is increasing and is

alternatively defined as

v(η) =
1

ω′(x)
where η =

ω(x)

ω′(x)
− x. (8)

Corollary 1. Given the conditions in Lemma 4 with v(η)
defined as in (8), for all 0 < η,

v(η)Ep[b(w)] ≤ η + Ep[a(w)].

We are able to use this corollary to provide upper bounds on
the expected convergence rate if v(η) has a “nice” form as
given in the next definition and lemma.

Definition 3. For h ∈ (0, 1], r > 0, and µ > 0, define

ωh,r,µ(x) =

{ 2
µh (x/r)h, if x ≤ r, and
2
µh + 2

µ ((x/r)− 1), if x > r.

We say functions a(w) and b(w) are separable by a function
with curvature h ∈ (0, 1] over B if for some r, µ > 0 they
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are ωh,r,µ-separable over B. We define objective function
F to have curvature h ∈ (0, 1] over B if its associated
functions a(w) and b(w) are ωh,r,µ-separable over B for
some r, µ > 0.

The proof of the following lemma is in supplemental mate-
rial C.2.

Lemma 5. For v(η) defined as in (8) and ω = ωh,r,µ,

v(η) = βhη1−h with β =
µ

2
h−h(1− h)−(1−h)rh,

for 0 ≤ η ≤ r.

If set B is bounded by a sphere, then the supremum sa and
sb of values a(w) and b(w), w ∈ B, exist (since a(w) and
b(w) are assumed smooth and continuous everywhere). If
sb > 0, then trivially, for h ∈ (0, 1],

hη

sb
Ep[b(w)] ≤ η + Ep[a(w)].

In other words a linear function v(η) = βh · η for some
constant β > 0 (e.g., the one of Lemma 5 for h ↓ 0) does not
give any information. Nevertheless taking the limit h ↓ 0
will turn out useful in showing that, for convex objective
functions with no curvature, a ηt = O(t−1/2) diminishing
step size is optimal in the sense that the asymptotic behavior
of the expected convergence rate cannot be improved.

Concluding the above discussions, convex objective func-
tions can be classified in different convex flavors: either
having a curvature h ∈ (0, 1] (where h = 1 is implied by
strong convexity) or having no such curvature. In the latter
case we abuse notation and say that the objective function
has ”curvature h = 0”. With this extended definition, any
convex objective function has a curvature h ∈ [0, 1] over B
and, by Corollary 1 and Lemma 5, there exist constants β
and r such that, for 0 ≤ η ≤ r,

βhη1−hEp[b(w)] ≤ η + Ep[a(w)] (9)

for distributions p over B.

In supplemental material C.3 we show the following ex-
ample which introduces a new regularizer which makes a
convex objective function have curvature h = 1/2 over Rd:

Theorem 2. Let

F (w) = H(w) + λG(w)

be our objective function where λ > 0, H(w) is a convex
function, and

G(w) =

d∑
i=1

[ewi + e−wi − 2− w2
i ].

Then, F is ω-convex over Rd for ω(x) = 2
µhx

h with h =

1/2 and µ = λ
9d . The associated v(η) as defined in (8) is

equal to

v(η) = βhη1−h with β =
µ

2
h−h(1− h)−(1−h) = µ,

for µ ≥ 0.

Function G(w) is of interest as it severely penalizes large
|wi| due to the exponent functions, while for small |wi| the
corresponding term in the sum ofG(w) is very small (in fact,
we subtract w2

i in order to make it smaller; if we would not
have subtracted the w2

i , then G changes into G(w) + ‖w‖2
which is strongly convex). This has the possibility to force
the global minimum to smaller size when compared to, e.g.,
G(w) = ‖w‖ or G(w) = ‖w‖2. The price of moving away
from using G(w) = ‖w‖2 is moving away from having a
strong convex objective function, i.e., the curvature over Rd
is reduced from h = 1 to h = 1/2. In the next section we
show that this leads to a slower expected convergence rate.

4. Expected Convergence Rate
We notice that wt is coming from a distribution determined
by the randomness used in the SGD algorithm when com-
puting w0, ξ0, w1, ξ1, . . . , wt−1, ξt−1. Let us call this distri-
bution pt. Then,

E[Et] = E[F (wt)− F (w∗)]

= Ept [F (w)− F (w∗)] = Ept [a(w)]. (10)

Since distribution pt determines wt, we also have

E[Yt] = E[ inf
w∗∈W∗

‖wt − w∗‖2]

= Ept [ inf
w∗∈W∗

‖w − w∗‖2] = Ept [b(w)]. (11)

Both Ept [a(w)] and Ept [b(w)] measure the expected con-
vergence rate. In practice we want to get close to a
global minimum and therefore Ept [a(w)] is preferred since
a(wt) = F (wt)− F (w∗).

For ηt ≤ 1
2L , Lemma 1 shows

E[Yt+1|Ft] ≤ E[Yt|Ft]− ηtEt + 2η2
tN.

After taking the full expectation and rearranging terms this
gives

ηtE[Et] ≤ E[Yt]− E[Yt+1] + 2η2
tN. (12)

By assuming F is ω-convex over B and pt has zero probabil-
ity mass outside B, application of Lemma 4 and Corollary 1
after substituting (10) and (11) gives

v(η)E[Yt] ≤ η + E[Et].
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The right hand side can be upper bounded by using (12):

ηtv(η)E[Yt] ≤ ηtη + ηtE[Et]

≤ ηtη + E[Yt]− E[Yt+1] + 2η2
tN.

After reordering terms and using η = ηt we obtain the
recurrence:

Lemma 6. If F is ω-convex over B and pt has zero prob-
ability mass outside B (or equivalently the SGD algorithm
never generates a wt outside B), then for ηt ≤ 1

2L ,

E[Yt+1] ≤ (1− v(ηt)ηt)E[Yt] + (2N + 1)η2
t , (13)

where v(ηt) is defined by (8).

We notice that if the SGD algorithm has proceeded to the
t-th iteration, then we know that, due to finite step sizes
during the iterations so far, the SGD algorithm has only been
able to push the starting vector w0 to some wt within some
bounded sphere Bt around w0. So, if F is ω-convex over Bi
for 1 ≤ i ≤ t, then we may apply the above recurrence up
to iteration t. Of course, ideally we do not need to assume
this and have B = Rd as in Theorem 2.

Assumption 5 (B-bounded). Until sufficient convergence
has been achieved, the SGD algorithm never generates a wt
outside B.

In supplemental material D we prove the following lemmas
that solve recurrence (13).

Lemma 7. Suppose that the objective function is ω-convex
over B and let v(η) be defined as in (8). Let n(·) be a
decreasing step size function representing n(t) = ηt ≤ 1

2L .
Define

M(t) =

∫ t

x=0

n(x)v(n(x))dx and

C(t) = exp(−M(t))

∫ t

x=0

exp(M(x))n(x)2dx.

Then recurrence (13) implies

E[Yt] ≤ A · C(t) +B · exp(−M(t))

for constants

A = (2N + 1) exp(n(0))

and

B = (2N + 1) exp(M(1))n(0)2 + E[Y0]

(they depend on parameter N and starting vector w0).

Lemma 8. A close to optimal step size can be computed by
solving the differential equation

C̄(t) =
2[−C̄ ′(t)]1/2

v([−C̄ ′(t)]1/2)

and equating
n(t) = [−C̄ ′(t)]1/2.

The solution to the differential equation approaches C(t)
for t large enough: For all t ≥ 0, C(t) ≤ C̄(t). For t large
enough, C(t) ≥ C̄(t)/2.
Lemma 9. For v(η) = βhη1−h with h ∈ (0, 1], where
β > 0 is a constant and 0 ≤ η ≤ r for some r ∈ (0,∞]
(including the possibility r =∞), we obtain

C̄(t) = [1/(2− h)]h/(2−h)(2/β)2/(2−h)(t+ ∆)−h/(2−h)

for

n(t) =

(
2

β(2− h)

)1/(2−h)

(t+ ∆)−1/(2−h)

with

∆ =
2 max{2L, 1/r}

β(2− h)
.

The above results show that an objective function with cur-
vature h = 0 or a very small curvature does not have a fast
decreasing expected convergence rate E[Yt]. Nevertheless,
the SGD algorithm does not need to converge in Yt. For
small curvature the objective function looks very flat and
we may still approach Fmin reasonably fast.

We use the following classical argument: By (12),
2t∑

i=t+1

ηiE[Ei] ≤ E[Yt+1]− E[Y2t+1] + 2N

2t∑
i=t+1

η2
i .

Define the average

At =
1

t

2t∑
i=t+1

E[Ei].

For ηt = n(t) as defined in the previous lemma,

n(2t)tAt ≤
2t∑

i=t+1

ηtE[Ei],

2t∑
i=t+1

η2
i ≤

∫ 2t

x=t

n(x)2dx =

∫ 2t

x=t

[−C̄ ′(x)]dx

= C̄(t)− C̄(2t)

and

E[Yt+1] ≤ A · C̄(t+ 1) +B · exp(−M(t+ 1))

≤ A · C̄(t) +B · exp(−M(t)).

We derive

M(t) =

∫ t

x=0

n(x)v(n(x))dx = βh

∫ t

x=0

n(x)2−hdx

=
2h

2− h

∫ t

x=0

(t+ ∆)−1dx

=
2h

2− h
[ln(t+ ∆)− ln ∆],
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hence,

exp(−M(t)) = (t+ ∆)−2h/(2−h)∆2h/(2−h).

Combining all inequalities yields

n(2t)tAt ≤ (2N+A)·C̄(t)+B∆2h/(2−h)(t+∆)−2h/(2−h).

This proves the following theorem:

Theorem 3. For an objective function with curvature h ∈
(0, 1] with associated v(η) = βhη1−h, where β > 0 is a
constant and 0 ≤ η ≤ r for some r ∈ (0,∞] (including the
possibility r =∞), a close to optimal step size is

ηt =

(
2

β(2− h)

)1/(2−h)

(t+ ∆)−1/(2−h).

The corresponding expected convergence rates are

E[Yt] ≤ A
[1/(2− h)]h/(2−h)(2/β)2/(2−h)

(t+ ∆)h/(2−h)
+

B
∆2h/(2−h)

(t+ ∆)2h/(2−h)
,

1

t

2t∑
i=t+1

E[Ei] ≤ (2N +A)A′
(2t+ ∆)1/(2−h)

(t+ ∆)h/(2−h)t
+

B∆2h/(2−h)B′
(2t+ ∆)1/(2−h)

(t+ ∆)2h/(2−h)t
,

where

A′ = [1/(2− h)]−(1−h)/(2−h)(2/β)1/(2−h),

and

B′ = [1/(2− h)]−1/(2−h)(2/β)−1/(2−h).

The asymptotic behavior is dominated by the terms with
A and A′. This shows independence of the expected con-
vergence rates from the starting point w0 since E[Y0] only
occurs in B. We have

E[Yt] = O(t−h/(2−h)) and
1

t

2t∑
i=t+1

E[Ei] = O(t−1/(2−h)).

For µ-strongly convex objective functions we have v(η) =
µ
2hη

1−h for h = 1. Theorem 3 (after substituting constants
and substituting r =∞) gives, for A = (2N + 1)e1/(2L),

E[Yt] ≤
A

µ

[
16

(µt+ 8L)

]
+O(t−2)

and

1

t

2t∑
i=t+1

E[Ei] ≤
2N +A

µ

[
4(2µt+ 8L)

(µt+ 8L)t

]
+O(t−2)

for step size

ηt =
2

µt/2 + 4L
.

In (Nguyen et al., 2018), they report an optimal step size of
2/(µt+ 4L), hence, η2t is equal to this optimal steps size
for the t-th iteration and this implies that it takes a factor 2
slower to converge; this is consistent with our derivation in
which we use C̄(t) as a 2-approximate optimal solution.

For the example in Theorem 2 with v(η) = µhη1−h for
h = 1/2 (and r =∞), we obtain, forA = (2N+1)e1/(2L),

E[Yt] ≤
A

µ

[
32

3µt+ 8L

]1/3

+O(t−2/3)

and

1

t

2t∑
i=t+1

E[Ei] ≤
2N +A

µ

[
2(6µt+ 8L)2

(3µt+ 8L)t3

]1/3

+O(t−1)

for step size

ηt =

(
2

3µt/2 + 4L

)2/3

.

Due to the smaller curvature we need to choose a larger
step size. The expected convergence rates are O(t−1/3) and
O(t−2/3), respectively.

For h ↓ 0, we recognize the classical result which holds
for all convex objective functions. In this case the theorem
shows that a diminishing step size of O(t−1/2) is close to
optimal.

5. Experiments
We consider both unregularized and regularized logistic
regression problems with different regularizers to account
for convex, ω-convex, and strongly convex cases:

fi(w) = log(1 + exp(−yixTi w)) (convex)

f
(a)
i (w) = fi(w) + λ‖w‖ (ω-convex)

f
(b)
i (w) = fi(w) + λG(w) (ω-convex)

f
(c)
i (w) = fi(w) +

λ

2
‖w‖2 (strongly convex),

where the penalty parameter λ is set to 10−3. We have
not been able to prove the curvature of the objective func-
tion F corresponding to f (a)

i , we address this in a general
take-away in the conclusion; F corresponding to f (b)

i has
curvature h = 1/2 by Theorem 2; F corresponding to f (c)

i

has curvature h = 1 since it is strongly convex.

We conducted experiments on a binary classification dataset
mushrooms from the LIBSVM website2. We ran Algo-

2http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/
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Figure 1: Convergence rate for (a) fi(w) (h = 0); (b) f (a)
i (w); (c) the new regularizer f (b)

i (w) (h = 1/2), (d) f (c)
i (w) (h = 1).

rithm 1 using the fixed learning rate η = 10−2 and dimin-
ishing step sizes ηt = 0.1/t1/(2−h) for different values of
h = {0, 0.25, 0.5, 0.75, 1} to validate theoretical conver-
gence rates given in Theorem 3. For each problem, we
experimented with 10 seeds and took the average of func-
tion values at the end of each epoch. To smooth out function
values due to the “noise” from randomness, we reported the
moving mean with a sliding window of length 3 for curves
in Figure 1.

The plots match the theory closely in terms of curvature val-
ues and optimal diminishing step sizes. Figure 1(a) for con-
vex case with curvature h = 0 shows the best performance
for a step size ηt = 0.1/

√
t corresponding to h = 0. Figure

1(b) suggests that the objective function F corresponding
to f (a)

i has curvature close to h = 0.75; this curvature may
be due to convergence to a minimum w∗ in a neighborhood
where the combination of plain logistic regression and regu-
larizer ‖w‖ has curvature 0.75. In Figure 1(c), the stepsize
rule pertaining to h = 0.5 yields the top performance for
f

(b)
i having curvature h = 0.5. Finally, the strongly convex

case f (c)
i having curvature h = 1, the step size ηt = 0.1/t,

i.e. h = 1, gives the fastest convergence.

6. Conclusion
We have provided a solid framework for analyzing the ex-
pected convergence rates of SGD for any convex objective
function. Experiments match derived optimal step sizes. In
particular, our new regularizer fits theoretical predictions.

The proposed framework is useful for analyzing any new
regularizer, even if theoretical analysis is out-of-scope. One
only needs to experimentally discover the curvature h of a
new regularizer once. After curvature h is determined, the
regularizer can be used for any convex problem together
with a diminishing step size proportional to the optimal one
as given by our theory for curvature h. Our theory predicts
the resulting expected convergence rates and this can be
used together with other properties of regularizers to select
the one that best fits a convex problem.

Our framework characterizes a continuum from plain convex
to strong convex problems and explains how the expected
convergence rates of SGD vary along this continuum. Our
metric ‘curvature’ has a one-to-one correspondence to how
to choose an optimal diminishing step size and to the ex-
pected and average expected convergence rate.
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A. Recurrence for General Convex Objective Functions
Lemma 1 Let Ft be a σ-algebra which contains w0, ξ0, w1, ξ1, . . . , wt−1, ξt−1, wt. Assume ηt ≤ 1/L. For any given
w∗ ∈ W∗, we have

E[Yt+1|Ft] ≤ E[Yt|Ft]− 2ηt(1− ηtL)Et + 2η2
tN. (14)

Proof. The proof consists of two parts: We first derive a general inequality on Yt and after this we take the expectation
leading to the final result.

We remind the reader that wt+1 = wt − ηt∇f(wt; ξt) from which we derive, for any given w∗ ∈ W∗,

‖wt+1 − w∗‖2 = ‖wt − w∗ − ηt∇f(wt; ξt)‖2

= ‖wt − w∗‖2 − 2ηt〈∇f(wt; ξt), wt − w∗〉
+ η2

t ‖∇f(wt; ξt)‖2

≤ ‖wt − w∗‖2 − 2ηt〈∇f(wt; ξt), wt − w∗〉
+ 2η2

t ‖∇f(wt; ξt)−∇f(w∗; ξt)‖2

+ 2η2
t ‖∇f(w∗; ξt)‖2,

where the inequality follows from the general inequality ‖x‖2 ≤ 2‖x− y‖2 + 2‖y‖2.

Application of inequality (4), i.e., ‖∇f(wt; ξt)−∇f(w∗; ξt)‖2 ≤ L〈∇f(wt; ξt)−∇f(w∗; ξt), wt − w∗〉, gives

‖wt+1 − w∗‖2

≤ ‖wt − w∗‖2 − 2ηt〈∇f(wt; ξt), wt − w∗〉
+ 2η2

tL〈∇f(wt; ξt)−∇f(w∗; ξt), wt − w∗〉
+ 2η2

t ‖∇f(w∗; ξt)|2

= ‖wt − w∗‖2 − 2ηt(1− ηtL)〈∇f(wt; ξt), wt − w∗〉
+ 2η2

t ‖∇f(w∗; ξt)‖2 − 2η2
tL〈∇f(w∗; ξt), wt − w∗〉.

The convexity assumption states 〈∇f(wt; ξt), wt − w∗〉 ≥ f(wt; ξt)− f(w∗; ξt) and this allows us to further develop our
derivation: For ηt ≤ 1/L,

‖wt+1 − w∗‖2

≤ ‖wt − w∗‖2 − 2ηt(1− ηtL)[f(wt; ξt)− f(w∗; ξt)]

+ 2η2
t ‖∇f(w∗; ξt)‖2 − 2η2

tL〈∇f(w∗; ξt), wt − w∗〉.

Let wt∗ be such that ‖wt−wt∗‖2 = inf
w∗∈W∗

‖wt−w∗‖2 = Yt (here, we assume for simplicity that the infinum can be realized

for some wt∗ and we note that the argument below can be made general with small adaptations). Notice that

Yt+1 = inf
w∗∈W∗

‖wt+1 − w∗‖2 ≤ ‖wt+1 − wt∗‖2.
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By using w∗ = wt∗ in the previous derivation, we obtain

Yt+1 ≤ Yt − 2ηt(1− ηtL)[f(wt; ξt)− f(wt∗; ξt)]

+ 2η2
t ‖∇f(wt∗; ξt)‖2

− 2η2
tL〈∇f(wt∗; ξt), wt − wt∗〉.

Now, we take the expectation with respect to Ft. Notice that F (wt) = Eξ[f(wt; ξ)] = Eξ[f(wt; ξ)|Ft] and F (wt∗) =
Eξ[f(wt∗; ξ)] = Eξ[f(wt∗; ξ)|Ft]. This yields

E[Yt+1|Ft] ≤ E[Yt|Ft]− 2ηt(1− ηtL)[F (wt)− F (wt∗)]

+ 2η2
tE[‖∇f(wt∗; ξt)‖2|Ft]

− 2η2
tL〈∇F (wt∗), wt − w∗〉.

Since ∇F (wt∗) = 0 and F (wt∗) = F (w∗) = Fmin for all w∗ ∈ W∗, we obtain

E[Yt+1|Ft] ≤ E[Yt|Ft]− 2ηt(1− ηtL)[F (wt)− F (w∗)]

+ 2η2
tE[‖∇f(wt∗; ξt)‖2|Ft]

≤ E[Yt|Ft]− 2ηt(1− ηtL)[F (wt)− F (w∗)]

+ 2η2
tN,

where the last inequality follows from the definition of N . The lemma follows after substituting Et = F (wt)− F (w∗).

B. W.p.1. Result
Lemma 10 ((Bertsekas, 2015)). Let Yk, Zk, and Wk, k = 0, 1, . . . , be three sequences of random variables and let
{Fk}k≥0 be a filtration, that is, σ-algebras such that Fk ⊂ Fk+1 for all k. Suppose that:

• The random variables Yk, Zk, and Wk are nonnegative, and Fk-measurable.

• For each k, we have E[Yk+1|Fk] ≤ Yk − Zk +Wk.

• There holds, w.p.1,

∞∑
k=0

Wk <∞.

Then, we have, w.p.1,

∞∑
k=0

Zk <∞ and Yk → Y ≥ 0.

Theorem 1. Consider SGD with a stepsize sequence such that

0 < ηt ≤
1

L
,

∞∑
t=0

ηt =∞ and
∞∑
t=0

η2
t <∞.

Then, the following holds w.p.1 (almost surely)

F (wt)− F (w∗)→ 0,

where w∗ is any optimal solution of F (w).
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Proof. The following proof follows the proof in (Nguyen et al., 2018). From Lemma 1 we recall the recursion

E[Yt+1|Ft] ≤ E[Yt|Ft]− 2ηt(1− ηtL)Et + 2η2
tN.

Let Zt = 2ηt(1− ηtL)Et and Wt = 2η2
tN . Since

∑∞
t=0Wt =

∑∞
t=0 2η2

tN <∞, by Lemma 10, we have w.p.1

E[Yt|Ft]→ Y ≥ 0,
∞∑
t=0

Zt =

∞∑
t=0

2ηt(1− ηtL)[F (wt)− F (w∗)] <∞.

We want to show that [F (wt)− F (w∗)]→ 0 w.p.1. Proving by contradiction, we assume that there exists ε > 0 and t0, s.t.,
[F (wt)− F (w∗)] ≥ ε for ∀t ≥ t0. Hence,

∞∑
t=t0

2ηt(1− ηtL)[F (wt)− F (w∗)] ≥
∞∑
t=t0

2ηt(1− ηtL)ε

= 2ε

∞∑
t=t0

ηt − 2Lε

∞∑
t=t0

η2
t =∞.

This is a contradiction. Therefore, [F (wt)− F (w∗)]→ 0 w.p.1.

C. Convexity and Curvature
C.1. Function δ(·)

For smooth functions a : w ∈ Rd → [0,∞) and b : w ∈ Rd → [0,∞) we define

δ(ε) = sup
p:Ep[a(w)]≤ε

Ep[b(w)],

where p represents a probability distribution over w ∈ B ⊆ Rd. We assume δ(ε) <∞ for ε ≥ 0.

The next lemmas show that function δ(·) has a number of interesting properties that are useful for us when applied to

a(w) = F (w)− F (w∗) = F (w)− Fmin

and
b(w) = inf

w∗∈W∗
‖w − w∗‖2.

Lemma 11. Let p be a probability distribution over w ∈ B ⊆ Rd. Then, Ep[b(w)] ≤ δ(Ep[a(w)]).

Proof. Let ε = Ep[a(w)]. By the definition of function δ(·), since Ep[a(w)] ≤ ε,

Ep[b(w)] ≤ sup
p̄:Ep̄[a(w)]≤ε

Ep̄[b(w)] = δ(ε) = δ(Ep[a(w)]).

To gain insight about distribution p in the definition of function δ(ε) we define

W(ε̂) = {w : a(w) = ε̂},

p̂(w) = Prp(w|w ∈ W(ε̂)),

and
q(ε̂) = Prp(w ∈ W(ε̂)) = p(W(ε̂)).
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Notice that from q and p̂ we can infer p and vice versa.

By Bayes’ rule, for w ∈ W(ε̂),
p(w) = q(ε̂)p̂(w).

Note that the space Rd is partitioned into the infinitely many subsetsW(ε̂) for ε̂ ≥ 0. This proves

Ep[a(w)] =

∫
ε̂≥0

∫
w∈W(ε̂)

a(w)p̂(w)q(ε̂) dwdε̂

(these integrals make sense because we assume smooth functions a(w) and b(w), which also implies thatW(ε̂) is connected
and even convex if a(·) is convex). By the definition ofW(ε̂), a(w) = ε̂ for w ∈ W(ε̂). This leads to the simplification

Ep[a(w)] =

∫
ε̂≥0

ε̂q(ε̂)


∫

w∈W(ε̂)

p̂(w) dw

 dε̂ =

∫
ε̂≥0

ε̂q(ε̂)dε̂ = Eq[ε̂],

where q is considered a distribution over parameter ε̂ ∈ [0,∞).

The above shows that we may rewrite

δ(ε) = sup
p:Ep[a(w)]≤ε

Ep[b(w)]

= sup
q:Eq [ε̂]≤ε

sup
p̂ over w∈W(ε̂)∩B

Eq,p̂[b(w)]

= sup
q:Eq [ε̂]≤ε

sup
p̂ over w∈W(ε̂)∩B

Eq

 ∫
w∈W(ε̂)

p̂(w)b(w) dw

 .
ForW(ε̂) ∩ B 6= ∅, we implicitly define w(ε̂) as a solution of

b(w(ε̂)) = sup
w∈W(ε̂)∩B

b(w) (15)

(here, we assume for simplicity that the supremum can be realized for some w(ε̂) and we note that the argument below can
be made general with small adaptations). ForW(ε̂) ∩ B 6= ∅, integral∫

w∈W(ε̂)

p̂(w)b(w) dw

is maximized by distribution p̂ over B defined by
p̂(w(ε̂)) = 1

and zero elsewhere. This proves the next lemma (in the supremum q(ε̂) should be chosen equal to 0 ifW(ε̂) ∩ B = ∅).
Lemma 12.

δ(ε) = sup
q:Eq [ε̂]≤ε

Eq[b(w(ε̂))] = sup
q:Eq [ε̂]≤ε

Eq

[
sup

w∈W(ε̂)∩B
b(w)

]
,

where q is a distribution over ε̂ ∈ [0,∞) andW(ε̂) = {w : a(w) = ε̂}.

It turns out that
ρ(ε̂) = b(w(ε̂)) = sup

w∈W(ε̂)∩B
b(w)

is increasing forW(ε̂) ∩ B 6= ∅, but it may have convex and concave parts. For this reason we are not able to simplify δ(·)
any further.

Given the reformulation of δ(ε) we are able to prove the following property of function δ(·).
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Lemma 13. Suppose that a(w) = 0 implies both b(w) = 0 and w ∈ B, and suppose that there exists a w∗ such that
a(w∗) = 0. Then, δ(0) = 0, δ(ε) is increasing, and δ(ε) is ∩-convex.

Proof. From Lemma 12 we obtain the expression

δ(0) = sup
q:Eq [ε̂]≤0

Eq

[
sup

w∈W(ε̂)∩B
b(w)

]
,

where q is a distribution over ε̂ ∈ [0,∞). Therefore, Eq[ε̂] ≤ 0 if and only if Eq[ε̂] = 0, i.e., the probability ε̂ = 0 is equal to
1 according to distribution q. This proves

δ(0) = sup
w∈W(0̂)∩B

b(w).

By definition, if w ∈ W(0̂), then a(w) = 0 and by our assumption b(w) = 0 and w ∈ B. Given the existence of a(w∗) = 0,
the setW(0̂) ∩ B is not empty, hence, δ(0) = 0.

We show that δ(.) is ∩-convex: Lemma 12 shows that for any ε1, ε2 > 0, there exists distributions q1 and q2 such that
Eq1 [ε̂] ≤ ε1, Eq2 [ε̂] ≤ ε2, and

δ(ε1) = Eq1 [b(w(ε̂))] and
δ(ε2) = Eq2 [b(w(ε̂))].

(again we assume for simplicity that the supremums in the reformulation of function values δ(ε1) and δ(ε2) in Lemma 12
can be realized for some q1 and q2; we note that the argument below can be made general with small adaptations).

Note that for q = αq1 + (1− α)q2, we have

Eq[ε̂] = αEq1 [ε̂] + (1− α)Eq2 [ε̂] ≤ αε1 + (1− α)ε2

and

Eq[b(w(ε̂))] = αEq1 [b(w(ε̂))] + (1− α)Eq2 [b(w(ε̂))]

= αδ(ε1) + (1− α)δ(ε2).

This shows that

αδ(ε1) + (1− α)δ(ε2) = Eq[b(w(ε̂))]

≤ sup
q:Eq̄ [ε̂]≤αε1+(1−α)ε2

Eq̄[b(w(ε̂))]

= δ(αε1 + (1− α)ε2).

Let ω(x) be increasing and ∩-convex such that, for all w ∈ Rd,

ω(a(w)) ≥ b(w).

Then, since ω(x) is ∩-convex, E[ω(X)] ≤ ω(E[X]) for any real valued random variable. Hence,

Ep[b(w)] ≤ Ep[ω(a(w)] ≤ ω(Ep[a(w)]).

If we assume Ep[a(w)] ≤ ε, then
Ep[b(w)] ≤ ω(ε)

because ω(·) is increasing. By the definition of δ(·),

δ(ε) = sup
p:Ep[a(w)]≤ε

Ep[b(w)] ≤ ω(ε).

The other way around holds true as well: Let ω(x) be increasing and ∩-convex such that ω(ε) ≥ δ(ε) for ε ≥ 0. Then, by
Lemma 11 using point distribution p(w) = 1 and 0 elsewhere, b(w) ≤ δ(a(w)) for w ∈ B. Since ω(ε) ≥ δ(ε), we have
b(w) ≤ ω(a(w)). We have the following lemma.
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Lemma 14. Let ω(x) be increasing and ∩-convex. Then, ω(a(w)) ≥ b(w) for all w ∈ B ⊆ Rd if and only if δ(ε) ≤ ω(ε)
for all ε ≥ 0.

The above lemma shows that δ(·) is the ’minimal’ increasing and ∩-convex function with the property ω(a(w)) ≥ b(w) for
all w.

C.2. Relating Expectations of a(·) and b(·)

We start by noting that, for all x > 0 and y > 0,

ω(y) ≤ ω(x) + ω′(x)(y − x) (16)

(irrespective of whether y ≤ x or y ≥ x).

Lemma 15. Let ω(·) be increasing and ∩-convex with ω(0) = τ ≥ 0. Then,

ω′(x) ≤ ω(x)− τ
x

for all x > 0, and (17)

cα(e)
ω(x)

x
≤ ω′(x) for all 0 < α ≤ x ≤ e and 0 < e < sup{z ≥ 0 : ω′(z) 6= 0}, (18)

where

cα(e) = inf
x∈[α,e]

(
ω(2x)

ω(x)
− 1) > 0. (19)

We notice that (1) sup{z ≥ 0 : ω′(z) 6= 0} > 0 if and only if ω(x) is not the all zero function, and (2) by combining (17)
and (18), c(e) ≤ 1.

Proof. We start by noting that, for all x > 0 and y > 0,

ω(y) ≤ ω(x) + ω′(x)(y − x) (20)

(irrespective of whether y ≤ x or y ≥ x).

By substituting y = 0 in (20), τ = ω(0) ≤ ω(x) + ω′(x)[0− x]. Therefore, x · ω′(x) ≤ ω(x)− τ and (17) follows.

By substituting y = 2x in (20), ω(2x) ≤ ω(x) + ω′(x)[2x− x]. Therefore, ω(2x)− ω(x) ≤ x · ω′(x). By the definition of
cα(e), cα(e) ≤ ω(2x)

ω(x) − 1 or equivalently (cα(e) + 1)ω(x) ≤ ω(2x). Combining inequalities yields cα(e)ω(x) ≤ x · ω′(x)

which proves (18).

Since ω(x) is increasing, ω(2x) ≥ ω(x) and cα(e) ≥ 0. If cα(e) = 0, then there exists an x ∈ [α, e] such that ω(2x)
ω(x) −1 = 0,

i.e., ω(2x) = ω(x). This implies that ω(·) is constant on the non-empty interval [x, 2x]. Together with ω(·) being increasing
and ∩-convex this implies that ω(·) is constant on [x,∞), hence, ω′(z) = 0 for z ≥ x. This means that

e < sup{z ≥ 0 : ω′(z) 6= 0} ≤ x,

contradicting x ∈ [α, e]. So, cα(e) 6= 0.

By substituting y = Ep[a(w)] in (20), we obtain, for all x ≥ 0,

ω(Ep[a(w)]) ≤ ω(x) + ω′(x)[Ep[a(w)]− x]. (21)

Lemma 11 and Lemma 14, where we assume ω(a(w)) ≥ b(w) for all w, prove

Ep[b(w)] ≤ δ(Ep[a(w)]) ≤ ω(Ep[a(w)]) (22)

(a more direct proof is given below and is also in the main body). Combination of (21) and (22) yields

Ep[b(w)] ≤ ω(Ep[a(w)]) ≤ ω(x) + ω′(x)[Ep[a(w)]− x]

= (ω(x)− ω′(x)x) + ω′(x)Ep[a(w)].
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We infer from Lemma 15 that

ω′(x) ≤ ω(x)− τ
x

.

Lemma 15 also shows that for 0 < α ≤ x ≤ e and e small enough

ω(x)

ω′(x)
− x ≤ (cα(e)−1 − 1)x,

where cα(e) > 0. Applying these results to the above derivation yields, for α ≤ x ≤ e,

xEp[b(w)]

ω(x)− τ
≤ Ep[b(w)]

ω′(x)
≤ (

ω(x)

ω′(x)
− x) + Ep[a(w)] ≤ (cα(e)−1 − 1)x+ Ep[a(w)].

If we assume ω′(ε) 6= 0 for all ε ≥ 0, then

sup{z ≥ 0 : ω′(z) 6= 0} =∞,

hence, e is unrestricted. By using

sup
e∈[α,∞)

inf
x∈[α,e]

ω(2x)

ω(x)
− 1

instead of cα(e) we obtain the best bound:

Lemma 16. Let ω : [0,∞) → [0,∞) be ∩-convex (i.e. ω′′(ε) < 0) and strictly increasing (i.e., ω′(ε) > 0) with
ω(0) = τ ≥ 0. If ω(a(w)) ≥ b(w) for all w ∈ Rd, then, (1) for all 0 < α ≤ x,

xEp[b(w)]

ω(x)− τ
≤ 2− cα
cα − 1

x+ Ep[a(w)],

where

cα = sup
e∈[α,∞)

inf
x∈[α,e]

ω(2x)

ω(x)
> 1,

and (2) for all 0 < x,
Ep[b(w)]

ω′(x)
≤ (

ω(x)

ω′(x)
− x) + Ep[a(w)].

Proof. We repeat a more condensed proof for (2): Since ω(a(w)) ≥ b(w) for all w,

Ep[b(w)] ≤ Ep[ω(a(w))].

Since ω(·) is ∩-convex,
Ep[ω(a(w))] ≤ ω(Ep[a(w)]).

By substituting y = Ep[a(w)] in (20), we obtain

ω(Ep[a(w)]) ≤ ω(x) + ω′(x)[Ep[a(w)]− x].

Rearranging terms and dividing by ω′(x) proves property (2).

We will apply the above lemma to the class of strictly increasing and ∩-convex functions

ωh,r,µ,τ (x) =

{
τ + 2

µ (x/r)h, if x ≤ r, and
τ + 2

µ + 2
µh((x/r)− 1), if x > r,

for h ∈ (0, 1], r > 0, µ > 0, and τ ≥ 0. Notice that ωh,r,µ,τ (0) = τ .

Function ωh,r,µ,τ (x) is curved like xh for x close enough to zero up to x ≤ r. For x > r, values ωh,r,µ,τ (x) are chosen as
large as possible under the constraint that ωh,r,µ,τ (·) remains ∩-convex (i.e., ωh,r,µ,τ (x) is equal to the tangent of 2

µ (x/r)h

at x = r).
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In our analysis of cα we consider three cases. Let x ≥ α. First, suppose that 2x ≤ r. Then,

ωh,r,µ,τ (2x)

ωh,r,µ,τ (x)
=
τ + 2

µ (2x/r)h

τ + 2
µ (x/r)h

= 1 +
2h − 1

(µτ/2)(r/x)h + 1
.

This is minimized for x as small as possible. Assuming 2α ≤ r, allows x = α and achieves

inf
x∈[α,r/2]

ωh,r,µ,τ (2x)

ωh,r,µ,τ (x)
= 1 +

2h − 1

(µτ/2)(r/α)h + 1
. (23)

Second, suppose that x ≤ r ≤ 2x. Then,

ωh,r,µ,τ (2x)

ωh,r,µ,τ (x)
=
τ + 2

µ + 2
µh((2x/r)− 1)

τ + 2
µ (x/r)h

. (24)

Setting variable y = r/x ∈ [1, 2] and taking the derivative with respect to y (and grouping terms) gives

h 2
µy
−h−1{ 2

µ (1− h)[1− 2y−1]− τ [2yh−1 − 1]}
τ + 2

µy
−h .

The term [1− 2y−1] ≤ 0 for y ∈ [1, 2] and the term [2yh−1 − 1] ≥ 0 for y ∈ [1, 2]. This shows that the derivative above is
≤ 0 for y ∈ [1, 2]. Therefore (24) is minimized for y = r/x = 2; we again assume 2α ≤ r. This achieves

inf
x∈[r/2,r]

ωh,r,µ,τ (2x)

ωh,r,µ,τ (x)
=

τ + 2
µ

τ + 2
µ2−h

= 1 +
2h − 1

τ µ2 2h + 1
. (25)

Third, suppose that r ≤ x. Then,

ωh,r,µ,τ (2x)

ωh,r,µ,τ (x)
=
τ + 2

µ + 2
µh((2x/r)− 1)

τ + 2
µ + 2

µh((x/r)− 1)
=
τ µ2 + 1 + h((2x/r)− 1)

τ µ2 + 1 + h((x/r)− 1)

= 1 +
h

(τ µ2 + 1− h)(r/x) + h
.

This is minimized for r/x as large as possible, i.e., r = x, which achieves

inf
x∈[r,∞)

ωh,r,µ,τ (2x)

ωh,r,µ,τ (x)
= 1 +

h

(τ µ2 + 1− h) + h
= 1 +

h

τ µ2 + 1
. (26)

The above analysis shows that the three cases (23), (25), and (26) neatly fit together in that

ωh,r,µ,τ (2x)

ωh,r,µ,τ (x)
is increasing in x ≥ α.

This proves that cα is equal to (23);

cα = 1 +
2h − 1

(µτ/2)(r/α)h + 1
.

In Lemma 16 we need
2− cα
cα − 1

=
(µτ/2)(r/α)h + 1

2h − 1
− 1 =

(µτ/2)(r/α)h + 2− 2h

2h − 1
.

Lemma 16 provides the following results: (1) For 0 < α ≤ x ≤ r with α ≤ r/2,

µ

2
rhx1−hEp[b(w)] ≤ (µτ/2)(r/α)h + 2− 2h

2h − 1
x+ Ep[a(w)].
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By substituting α = x, the tightest inequality is obtained:

µ

2
rhx1−hEp[b(w)] ≤ (µτ/2)(r/x)h + 2− 2h

2h − 1
x+ Ep[a(w)].

(2) By substituting exact expressions for ω′(x) and ω(x) in Lemma 16, we obtain for all 0 < x ≤ r,

1

h

µ

2
rhx1−hEp[b(w)] ≤ (µτ/2)(r/x)h + 1− h

h
x+ Ep[a(w)].

This shows that the asymptotic dependency on x obtained by the more accurate derivation in (2) is the same as for the
slightly less tight derivation giving (1). The technique that led to (1) may be a useful tool in analyzing other functions ω(.).

We summarize (2) in the following lemma:

Lemma 17. Let

ωh,r,µ,τ (x) =

{
τ + 2

µ (x/r)h, if x ≤ r, and
τ + 2

µ + µ
2h((x/r)− 1), if x > r.

Then,
1

h

µ

2
rhx1−hEp[b(w)] ≤ (µτ/2)(r/x)h + 1− h

h
x+ Ep[a(w)].

In our analysis of the convergence rate we need

v(η) = sup{ 1

ω′(x)
:
ω(x)

ω′(x)
− x ≤ η}.

Notice that the derivative of ω(x)
ω′(x) − x is equal to

−ω(x)ω′′(x)

ω′(x)2
≥ 0,

and the derivative 1
ω′(x) is equal to

−ω′′(x)

ω′(x)2
≥ 0.

This implies that v(η) is increasing and is alternatively defined as

v(η) =
1

ω′(x)
where η =

ω(x)

ω′(x)
− x.

For ωh,r,µ,τ we have

v(η) =
1

h

µ

2
rhx1−h where η =

(µτ/2)(r/x)h + 1− h
h

x.

If τ 6= 0, then

x =
ηh

(µτ/2)(r/x)h + 1− h
≤ ηh

(µτ/2)(r/x)h
,

hence,

x1−h ≤ 2ηh

µτrh
.

We get the upper bound

v(η) =
1

h

µ

2
rhx1−h ≤ 1

h

µ

2
rh

2ηh

µτrh
=
η

τ
.

This upper bound is tight for small η.
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If τ = 0, then

x =
ηh

1− h
,

hence,

v(η) =
1

h

µ

2
rhx1−h =

1

h

µ

2
rh
(

ηh

1− h

)1−h

=
µ

2
h−h(1− h)−(1−h)rhη1−h.

Lemma 18. For ωh,r,µ,τ ,

v(η) ≤ η

τ
if τ 6= 0

and
v(η) =

µ

2
h−h(1− h)−(1−h)rhη1−h if τ = 0.

Notice that taking the limit h ↓ 0 for τ = 0 gives
v(η) =

µ

2
η.

The limit h = 1 gives
v(η) =

µ

2
r,

where r = 1 corresponds to µ-strongly objective functions.

In our definition and analysis of curvature (in the main text) we use the functions

ωh,r,µ(x) = ωh,r,µh,τ=0(x) =

{ 2
µh (x/r)h, if x ≤ r, and
2
µh + 2

µ ((x/r)− 1), if x > r,

for h ∈ (0, 1], r > 0, and µ > 0. We conclude from Lemma 18 that for these functions,

v(η) =
µh

2
h−h(1− h)−(1−h)rhη1−h.

C.3. Example Curvature h = 1/2

Let
F (w) = H(w) + λG(w)

be our objective function where λ > 0, H(x) is a convex function, and

G(w) =

d∑
i=1

[ewi + e−wi − 2− αw2
i ] with α = 1.

Since H(w) is convex,
H(w)−H(w′) ≥ 〈∇H(w′), (w − w′)〉.

If we can prove, for all w,w′ ∈ Rd,

G(w)−G(w′) ≥ 〈∇G(w′), (w − w′)〉+ γ‖w − w′‖2/h, (27)

then both inequalities can be added to obtain

F (w)− F (w′) ≥ 〈∇F (w′), (w − w′)〉+ λγ‖w − w′‖2/h.

For w′ = w∗ ∈ W∗, i.e.,∇F (w∗) = 0, we obtain

F (w)− F (w∗) ≥ λγ‖w − w∗‖2/h.

Since this holds for all w∗ and F (w∗) = Fmin, we have

F (w)− F (w∗) ≥ λγ
{

inf
w∗∈W∗

‖w − w∗‖2
}1/h

.
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Hence F is ω-convex over Rd for ω(x) = 2
µhx

h with µ = 2λγ
h . We conclude that F has curvature h over Rd.

We will prove (27) for h = 1/2. We derive

G(w)−G(w′) =

d∑
i=1

{
[ewi + e−wi − 2− αw2

i ]− [ew
′
i + e−w

′
i − 2− αw′2i ]

}
and

〈∇G(w′), (w − w′)〉 =

d∑
i=1

[ew
′
i − e−w

′
i − α2w′i] · (wi − w′i).

Let vi = wi − w′i and substitute w′i = wi − vi in the above equations. Then,

[G(w)−G(w′)]− 〈∇G(w′), (w − w′)〉

=

d∑
i=1

{
ewi [1− e−vi − e−vivi] + e−wi [1− evi + evivi]− αv2

i

}
(28)

and we want to prove that this is at least

≥ γ

{
d∑
i=1

v2
i

}1/h

= γ‖w − w′‖2/h.

Differentiating (28) with respect to wi yields

ewi [1− e−vi − e−vivi]− e−wi [1− evi + evivi]. (29)

Notice that 1− e−vi − e−vivi ≥ 0 since evi ≥ 1 + vi for all vi. Also notice that 1− evi + evivi ≥ 0 since e−vi ≥ 1− vi
for all vi. This shows that (28) is minimized for wi for which (29) is equal to 0, i.e.,

ewi =

√
1− evi + evivi

1− e−vi − e−vivi
.

Plugging this back into (28) shows that (28) is at most

d∑
i=1

2
√

[1− e−vi − e−vivi][1− evi + evivi]− αv2
i

=

d∑
i=1

2
√

2− v2
i − (evi + e−vi) + vi(evi − e−vi)− αvi.

We substitute the Taylor series expansion of evi and e−vi and get

d∑
i=1

2

√√√√2

∞∑
j=2

(2j − 1)

(2j)!
v2j
i − αv

2
i .

The i-th term is at least ᾱv4
i if

2

∞∑
j=2

(2j − 1)

(2j)!
v2j
i ≥ (ᾱv4

i + αv2
i )2/4 =

α2

4
v4
i +

αᾱ

2
v6
i +

ᾱ2

4
v8
i . (30)

The first three terms of the infinite sum are
v4
i

4
+
v6
i

72
+

v8
i

2880
.
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So, if we set

α = 1 and ᾱ =
1

36
,

then (30) is satisfied. So,

[G(w)−G(w′)]− 〈∇G(w′), (w − w′)〉 ≥
d∑
i=1

ᾱv4
i .

Since the 2-norm and 4-norm satisfy

‖w − w′‖2 =

(
d∑
i=1

v2
i

)1/2

≤ d1/4

(
d∑
i=1

v4
i

)1/4

,

we obtain
d∑
i=1

ᾱv4
i ≥

ᾱ

d
‖w − w′‖4.

This proves (27) for h = 1/2 and

γ =
ᾱ

d
=

1

36d
.

Hence, F is ω-convex over Rd for ω(x) = 2
µhx

h with µ = 2
λγh .

Theorem 4. Let
F (w) = H(w) + λG(w)

be our objective function where λ > 0, H(x) is a convex function, and

G(w) =

d∑
i=1

[ewi + e−wi − 2− w2
i ].

Then, F is ω-convex over Rd for ω(x) = 2
µhx

h with h = 1/2 and µ = 2λγ
h = λ

9d .

As the derivation shows, it is not possible to prove a curvature > 1/2 (the bounds are tight in that we can always find an
example which violates a larger curvature).

The associated v(η) as defined in (8) is equal to

v(η) = βhη1−h with β =
µ

2
h−h(1− h)−(1−h),

for µ ≥ 0. In effect the rh term of ωh,µ,r is absorped in µ and r → ∞. Function ω in the above theorem is equal to
limr→∞ ωh,µ/rh,r.

D. Proof Convergence Rate
Lemma 19. Let n(·) be a decreasing step size function representing n(t) = ηt. Define

M(y) =

∫ y

x=0

n(x)v(n(x))dx and C(t) = exp(−M(t))

∫ t

x=0

exp(M(x))n(x)2dx.

Then recurrence
E[Yt+1] ≤ (1− ηtv(ηt))E[Yt] + (2N + 1)η2

t

implies
E[Yt] ≤ A · C(t) +B · exp(−M(t))

for constants A = (2N + 1) exp(n(0)) and B = (2N + 1) exp(M(1))n(0)2 + E[Y0] (depending on parameter N and
starting vector w0).
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Proof. We first define some notation:
yt = E[Yt], n(t) = ηt.

Here, yt measures the expected convergence rate and n(t) is the step size function which we assume to be decreasing in t.

By using induction in t, we can solve the recursion as

yt+1 ≤
t∑
i=0

[

t∏
j=i+1

(1− n(j)v(n(j)))](2N + 1)n(i)2 + y0

t∏
i=0

(1− n(i)v(n(i))).

Since 1− x ≤ exp(−x) for all x ≥ 0,

t∏
j=i+1

(1− n(j)v(n(j))) ≤ exp(−
t∑

j=i+1

n(j)v(n(j))).

Since n(j) is decreasing in j and v(η) is increasing in η, n(j)v(n(j)) is decreasing in j and we have

t∑
j=i+1

n(j)v(n(j)) ≥
∫ t+1

x=i+1

n(x)v(n(x))dx.

Combining the inequalities above, we have

yt+1 ≤
t∑
i=0

exp(−
t∑

j=i+1

n(j)v(n(j)))(2N + 1)n(i)2 + y0 exp(−
t∑

j=0

n(j)v(n(i)))

≤
t∑
i=0

exp(−
∫ t+1

x=i+1

n(x)v(n(x))dx)(2N + 1)n(i)2 + y0 exp(−
∫ t+1

x=0

n(x)v(n(x))dx)

=

t∑
i=0

exp(−[M(t+ 1)−M(i+ 1)])(2N + 1)n(i)2 + exp(−M(t+ 1))y0,

where

M(y) =

∫ y

x=0

n(x)v(n(x))dx and
d

dy
M(y) = n(y)v(n(y)).

We further analyze the sum in the above expression:

S =

t∑
i=0

exp(−[M(t+ 1)−M(i+ 1)])(2N + 1)n(i)2

= exp(−M(t+ 1))

t∑
i=0

exp(M(i+ 1))(2N + 1)n(i)2.

We know that exp(M(x + 1)) increases and n(x)2 decreases, hence, in the most general case either their product first
decreases and then starts to increase or their product keeps on increasing. We first discuss the decreasing and increasing
case. Let a(x) = exp(M(x+ 1))n(x)2 denote this product and let integer j ≥ 0 be such that a(0) ≥ a(1) ≥ . . . ≥ a(j)
and a(j) ≤ a(j + 1) ≤ a(j + 2) ≤ . . . (notice that j = 0 expresses the situation where a(i) only increases). Function
a(x) for x ≥ 0 is minimized for some value h in [j, j + 1). For 1 ≤ i ≤ j, a(i) ≤

∫ i
x=i−1

a(x)dx, and for j + 1 ≤ i,

a(i) ≤
∫ i+1

x=i
a(x)dx. This yields the upper bound

t∑
i=0

a(i) = a(0) +

j∑
i=1

a(i) +

t∑
i=j+1

a(i)

≤ a(0) +

∫ j

x=0

a(x)dx+

∫ t+1

x=j+1

a(x)dx,

≤ a(0) +

∫ t+1

x=0

a(x)dx.
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The same upper bound holds for the other case as well, i.e., if a(i) is only decreasing. We conclude

S ≤ (2N + 1) exp(−M(t+ 1))[exp(M(1))n(0)2 +

∫ j+1

x=0

exp(M(x+ 1))n(x)2dx].

Combined with

M(x+ 1) =

∫ x+1

y=0

n(y)n(v(y))dy ≤
∫ x

y=0

n(y)n(v(y))dy + n(x) = M(x) + n(x)

we obtain

S ≤ (2N + 1) exp(−M(t+ 1))[exp(M(1))n(0)2 +

∫ t+1

x=0

exp(M(x))n(x)2exp(n(x))dx]

≤ (2N + 1) exp(−M(t+ 1))[exp(M(1))n(0)2 + exp(n(0))

∫ t+1

x=0

exp(M(x))n(x)2dx].

This gives

yt+1 ≤ (2N + 1) exp(−M(t+ 1))[exp(M(1))n(0)2

+ exp(n(0))

∫ t+1

x=0

exp(M(x))n(x)2dx] + y0 exp(−M(t+ 1))

= (2N + 1) exp(n(0))C(t+ 1)

+ exp(−M(t+ 1))[(2N + 1) exp(M(1))n(0)2 + y0],

where

C(t) = exp(−M(t))

∫ t

x=0

exp(M(x))n(x)2dx.

Notice that if v(η) = c · η for some constant c, then C(t) = (1− exp(−M(t)))/c, which approaches 1/c rather than 0 for
t→∞. In the main text we already concluded that linear v(η) do not contain any information.

We want to minimize C(t) by appropriately choosing the step size function n(t). We first compute the derivative

C ′(t) = −n(t)v(n(t))C(t) + n(t)2 = n(t)v(n(t))[
n(t)

v(n(t))
− C(t)]. (31)

Notice that C(t) is decreasing, i.e., C ′(t) < 0, if and only if

C(t) ≥ n(t)

v(n(t))
. (32)

This shows that C(t) can at best approach n(t)
v(n(t)) . For example,

C̄(t) = 2
n(t)

v(n(t))
(33)

would be close to optimal. Substituting (33) back into (31) gives

C̄ ′(t) = −n(t)2.

Hence,

n(t) =
√
−C̄ ′(t)

and substituting this back into (33) gives the differential equation

C̄(t) =
2
√
−C̄ ′(t)

v(
√
−C̄ ′(t))

.
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For the corresponding step size function n(t) we know that the actual C(t) starts to behave like C̄(t) for large enough t, i.e.,
as soon as (32) is approached. So, after C(0) = 0 (for t = 0, the term B · exp−M(0) will dominate), C(t) increases until
it crosses n(t)

v(n(t)) after which it starts decreasing and approaches C̄(t), the solution of the differential equation. We have

n(t)

v(n(t))
= C̄(t)/2 ≤ C(t) for t large enough

and
C(t) ≤ C̄(t) for all t ≥ 0.

The above can be used to show that the actual C(t) is at most a factor 2 larger than the smallest C(t) over all possible step
size functions n(t) for t large enough.
Lemma 20. A close to optimal step size can be computed by solving the differential equation

C̄(t) =
2
√
−C̄ ′(t)

v(
√
−C̄ ′(t))

and equating

n(t) =
√
−C̄ ′(t).

The solution to the differential equation approaches C(t) for t large enough: For all t ≥ 0, C(t) ≤ C̄(t). For t large
enough, C(t) ≥ C̄(t)/2.

We will solve the differential equation for
v(η) = βhη1−h

with h ∈ (0, 1], where β is a constant and 0 ≤ η ≤ r for some r ∈ (0,∞] (including the possibility r =∞). This gives the
differential equation

C̄(t) =
2

βh

(√
−C̄ ′(t)

)h
=

2

βh
[−C̄ ′(t)]h/2.

We try the solution
C̄(t) = ct−h/(2−h)

for some constant c. Plugging this into the differential equation gives

ct−h/(2−h) =
2

βh
[

ch

(2− h)
t−h/(2−h)−1]h/2.

Notice that (−h/(2− h)− 1)(h/2) = −(2/(2− h))(h/2) = −h/(2− h) so that the t terms cancel. We need to satisfy

c =
2

βh
[

ch

(2− h)
]h/2,

i.e., we must choose

c = [h/(2− h)]h/(2−h)(2/βh)2/(2−h) = [1/(2− h)]h/(2−h)(2/β)2/(2−h).

For n(t) we derive

n(t) =
√
−C̄ ′(t) = [(h/(2− h))ct−h/(2−h)−1]1/2 =

√
ch/(2− h)t−1/(2−h)

=

(
2

β(2− h)

)1/(2−h)

t−1/(2−h).

We need to be careful about the initial condition: η0 ≤ 1
2L and also ηt ≤ η0 ≤ r. To realize these conditions we make

η0 = min{ 1

2L
, r}

by defining ηt = n(t+ ∆) for some suitable ∆. Notice that by starting with the largest possible step size, C(t) will cross
n(t)
v(n(t)) as soon as possible so that it starts approaching the close to optimal C̄(t) as soon as possible.
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Lemma 21. For

v(η) = βhη1−h

with h ∈ (0, 1], where β > 0 is a constant and 0 ≤ η ≤ r for some r ∈ (0,∞] (including the possibility r =∞), we obtain

C̄(t) = [1/(2− h)]h/(2−h)(2/β)2/(2−h)(t+
2 max{2L, 1/r}

β(2− h)
)−h/(2−h)

with

n(t) =

(
2

β(2− h)

)1/(2−h)

(t+
2 max{2L, 1/r}

β(2− h)
)−1/(2−h).

We will apply the lemma to two cases: v(η) = µhη1−h with h = 1/2, and v(η) = µ
2hη

1−h for h = 1. In both cases
r =∞.

We first consider h = 1/2 for which β = µ. This gives ∆ = 8L
3µ . We obtain

C̄(t) = (25/3)1/3 1

µ4/3
(t+

8L

3µ
)−1/3,

n(t) = (
4

3µ
)2/3(t+

8L

3µ
)−2/3 = (

4

3µt+ 8L
)2/3,

A = (2N + 1)e1/(2L).

We can apply this to E[Yt] and 1
t

∑2t
i=t+1 E[Ei] in Theorem 3:

E[Yt] ≤ (2N + 1)e1/(2L) 1

µ

(
32

3µt+ 8L

)1/3

+O(t−2/3)

and

1

t

2t∑
i=t+1

E[Ei] ≤ (2N + 1)(e1/(2L) + 1)
1

µ

(
2(6µt+ 8L)2

(3µt+ 8L)t3

)1/3

+O(t−1).

Next we consider the case h = 1 for which β = µ
2 . This gives ∆ = 8L

µ . We obtain

C̄(t) = (4/µ)2(t+
8L

µ
)−1,

n(t) =
4

µ
(t+

8L

µ
)−1 =

4

µt+ 8L
,

A = (2N + 1)e1/(2L).

We can apply this to E[Yt] and 1
t

∑2t
i=t+1 E[Ei] in Theorem 3:

E[Yt] ≤ (2N + 1)e1/(2L) 1

µ

16

(µt+ 8L)
+O(t−2)

and

1

t

2t∑
i=t+1

E[Ei] ≤ (2N + 1)(e1/(2L) + 1)
1

µ

4(2µt+ 8L)

(µt+ 8L)t
+O(t−2).
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E. Related Works
In (Gordji et al.), the authors define and study φ-convex functions, and φb-convex and φE-convex functions which are the
generalization of φ-convex functions. Indeed, φ is a mapping from R × R to R. Hence, it is very different from our ω
function, i.e., ω : [0,∞)→ [0,∞).

In (Auger & Hansen, 2013), the authors discuss positive homogeneous functions. As defined in Definition 3.3, A function
F : Rn → R is said positively homogeneous with degree α if for all ρ > 0 and for all w ∈ Rn, F (ρw) = ραF (w). It is
obvious this class of functions is very different from our F ω-convex functions.

In (Csiba & Richtárik, 2017), the authors studied the convergence of class of functions which satisfy the following conditions

1. Strong Polyak-Lojasiewics condition:

1

2
‖∇F (w)‖2 ≥ µ(F (w)− F (w∗)),∀w ∈ Rn.

2. Weak Polyak-Lojasiewics condition:

‖∇F (w)‖‖w − w∗‖ ≥
√
µ(F (w)− F (w∗)),∀w ∈ Rn.

Moreover, they also consider the φ-gradient dominated functions, i.e., F : Rn → R is φ-gradient dominated if there exists a
function φ : R+ → R+ such that φ(0) = 0, limt→0 φ(t) = 0 and

F (w)− F (w∗) ≤ φ(‖∇F (w)‖),∀w ∈ Rn.

Compared to our F ω-convex functions, the studied class of functions F in (Csiba & Richtárik, 2017) as introduced above
is very different from the one studied in our paper.


