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A. Derivation of TIC forM2

The MLE for p(φ1,2|θ,M2) can be derived by simply esti-
mating the separate MLE solutions for p(φ1|θ1,M2) and
p(φ2|θ2,M2). What is not as obvious is that the penalty
term follows the estimation pattern.

Gradient vectors forM2 are given by (where⊕ is concate-
nation)

∇θL(θ|φ1,2) = ∇θ1
L(θ1|φ1)⊕∇θ2

L(θ2|φ2),

and Hessian results in a block diagonal matrix

∇2
θL(θ|φ1,2) =

[
∇2

θ1
L(θ1|φ1) 0

0 ∇2
θ2
L(θ2|φ2)

]
,
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Computing tr(ÎĴ−1) then yields
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B. Reparametrisation of the vMF Distribution
We reparametrise the random variable to polar hyperspher-
icals w(φ) (φ = (φ1, ..., φd−1)>) as adopted in (Mabdia,
1975)
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(2π)
d
2 I d
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(κ)
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,
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where

wi(φ) = ((1− δid) cosφi + δid)

i−1∏
k=1

sinφk ,

µi(θ) = ((1− δid) cos θi + δid)

i−1∏
k=1

sin θk,

∣∣∣∣∂w∂φ
∣∣∣∣ =

d−2∏
k=1

(sinφk)d−k−1.

This reparametrisation simplifies the calculation of partial
derivatives. The maxima of the likelihood remains un-
changed since |∂w/∂φ| does not depend on θ thus the
MLE estimate in the hyper-shperical coordinates parametri-
sation is given by applying the map from the cartesian MLE
to the polars.

µ̂ =

∑n
i=1wi

||
∑n
i=1wi||

, θ̂ = µ−1(µ̂),

Ad(κ) =
Id/2
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||
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n

,

κ̂ = A−1d (R̄) ≈ R̄(d− R̄2)

1− R̄2
.

where both the derivation and approximation for the MLE
estimates are derived in (Banerjee et al., 2005). Let D =
{φi}ni=1 be the dataset. The log likelihood is then

L(θ, κ|φ) = κw(φ)>µ(θ)− logZ(κ) + log

∣∣∣∣∂w∂φ
∣∣∣∣

L(θ, κ|D) =

n∑
i=1

L(θ, κ|φi).
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C. Partial Derivative Calulations (vMF
Likelihood)

We first show the following result, which is useful for the
full derivation. For k ≤ j

∂

∂θk
µj(θ) =

∂
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((1− δkd) cos θk + δkd)
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= ((1− δkj) cot θk − δkj tan θk)µj(θ),

where the second line comes from the fact that sin θk (or
cos θk) gets transformed into a cos θk (or− sin θk), and thus
we can revert to the original definition of µj by multiplying
with a cot θk (or − tan θk). If k > j, this derivative is 0.
Thus, for a single data point w(φ)

∂
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where the sum starts from k, as for j < k, the derivative is
zero.

The derivative with respect to κ is derived as follows
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where the derivative of the second term is a known result.

We next focus on second order derivatives
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Unless this derivative is zero, we notice that we take the
derivative ∂2 cos θk/∂θ

2
k or ∂2 sin θk/∂θ

2
k, both of which

result in the negative of the original function. Thus
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The below result is given (where v = d
2 − 1)
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Next, we show that the second order mixed derivatives are a
constant (with respect to φ) times ∂L(θ, κ|φ)/∂θk, i.e.
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,

Evaluated at the MLE by definition
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Assuming l < k (Hessian is symmetric)
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where the sum starts from max(k, l) = k because
all terms below that are zero. Then at the MLE
cot θl
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= 0.

D. Partial Derivatives Calculation (Gaussian
Likelihood)

The partial derivatives for the diagonal Gaussian likelihood
are (we take derivatives with respect to precision λ2k=1/σ2

k)

∂
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Evaluating at the MLE we get
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Substituting these derivatives into the definition of Î and Ĵ
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Finally, computing the model complexity penalty we get
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E. Bayes Factor and Bayesian Information
Criterion

We first define the Bayes Factor for the Gaussian likelihood
with parameters (µ,Λ = Σ−1). We assume a Wishart prior

p(µ,Λ) = N
(
µ|µ0, (κ0Λ)−1

)
Wi(Λ|ν0,T−10 ),

which yields the following Normal-Wishart posterior (Mur-
phy, 2007)

p(µ,Λ|D) = N
(
µ|µn, (κnΛ)−1

)
Wi(Λ|νn,T−1n ).

The posterior parameters are

νn = ν0 + n,

κn = κ0 + n,
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κn
,
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(wk − w̄) (wk − w̄)
>
,
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2κn
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>
.

The evidence (Murphy, 2007) is

p(D) =
1

πnd/2

(
κ0
κn

) d
2 |T0|
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2
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2

Γd(νn/2)
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.

Table 1. Spearman correlations using GloVe embeddings and Gaus-
sian likelihood. The AIC and BIC use a diagonal covariance matrix,
while the Bayes Factor uses a full covariance matrix.

AIC Bayes Factor BIC

STS-12 0.6031 0.4592 0.5009
STS-13 (-SMT) 0.6132 0.5687 0.6011
STS-14 0.6445 0.5829 0.5926
STS-15 0.7171 0.6627 0.6625
STS-16 0.7346 0.5389 0.5826

Using p(D1,D2|M1) = p(D1 ⊕D2|M1) we compute the
Bayes factor forM1,M2 in closed form

sim(D1,D2) =

(
κnκm
κ0κl

) d
2 |Tn|

νn
2 |Tm|

νm
2

|Tl|
νl
2 |T0|

ν0
2

Γd
(
νl
2

)
Γd
(
νl
2

)
Γd
(
νn
2

)
Γd
(
νm
2

) .
(1)

where |D1| = n, |S2| = m and |D1 ⊕D2| = m+ n = l.

The BIC is defined as

BIC(D,M) = −2L(θ̂|D,M) + k log n ≈ −p(D|M),

and acts as a direct approximation to the model evidence
(Schwarz et al., 1978). Thus, the similarity under the BIC is

sim(D1,D2) = 2
(
L(θ̂1,2|M1)− L(θ̂1|M2)− L(θ̂2|M2)

)
− k log

n+m

nm
, (2)

where n,m are defined as above.

Equations 1 and 2 represents our similarity score under a
Gaussian likelihood, for the Bayes Factor and BIC respec-
tively.

Table E compares BIC and the Bayes Factor using a Gaus-
sian likelihood to the approach presented in the paper. We
see that while these approaches are competitive on STS-
13, STS-14 and STS-15, they both give severely worse
results on STS-12 and STS-16, with more than 0.08 differ-
ence. This motivates our choice to do a penalised likelihood
ratio test instead of doing full Bayesian inference of the
evidences.

F. TIC Robustness
In this section, we compare the TIC and AIC on the two
likelihoods described in the main text. Table F presents
the results of that comparison. As we can see, with each
word embedding the Gaussian AIC correction outperforms
the TIC correction on average. Looking at Figure 1, it
becomes apparent why — the more parameters a Gaussian
has, the more dependent its correction is on the number
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Table 2. Comparison of Spearman correlations on the STS datasets between the TIC and AIC corrections for the diagonal covariance
Gaussian and vMF likelihood functions.

Embedding Method STS12 STS13 STS14 STS15 STS16 Average

FastText vMF+TIC 0.5219 0.5147 0.5719 0.6456 0.6347 0.5762
vMF+AIC 0.5154 0.5107 0.5697 0.6425 0.6330 0.5726

Diag+TIC 0.5882 0.6585 0.6678 0.7205 0.7060 0.6632
Diag+AIC 0.6193 0.6335 0.6721 0.7328 0.7518 0.6764

GloVe vMF+TIC 0.5421 0.5598 0.5736 0.6474 0.6168 0.5859
vMF+AIC 0.5331 0.5465 0.5653 0.6434 0.6331 0.5802

Diag+TIC 0.5773 0.6467 0.6559 0.7141 0.7019 0.6536
Diag+AIC 0.6031 0.6132 0.6445 0.7171 0.7346 0.6564

Word2Vec GN vMF+TIC 0.5665 0.5735 0.6062 0.6681 0.6510 0.6115
vMF+AIC 0.5519 0.5770 0.6055 0.6715 0.6560 0.6094

Diag+TIC 0.5673 0.6234 0.6460 0.6942 0.6559 0.6363
Diag+AIC 0.5957 0.6358 0.6614 0.7213 0.7187 0.6618
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Figure 1. TIC Correction penalty for varying sample sizes, samples
generated from standardised normal N (0, Id).

of words in the sentence. This is reminiscent of the linear
scaling with number of words in the BIC penalty discussed
in Appendix E, which was shown to perform badly. On the
other hand, looking at Figure 2, we see that the TIC for the
vMF distribution has very low variance, and is generally not
dependent on the number of word embeddings in the word
group. This gives intuition why the AIC and TIC for the
vMF give very similar results.

G. Running Times
In our case d = 300, and n ranges from 2 to 30. If we
ignore word embedding loading times, on the entire STS
dataset (STS12 to STS16), the SIF+PCA algorithm takes
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Figure 2. TIC Correction penalty for varying sample sizes, sam-
ples generated from Uniform distribution on the unit hypersphere
U(Sd−1).

1.02 seconds for the calculation of the PC components and
1.92 seconds for the cosine-based similarity. Our entire
diagonal Gaussian AIC method takes 1.97 seconds, which
is about 33 percent faster.

H. Spherical Gaussian Results
We compute the average AIC of the two Gaussians using
FastText embeddings. The diagonal covariance Gaussian
has an average AIC of -4738, while the spherical has an
average AIC of -3945. The results of each similarity mea-
sure induced by the two likelihoods are shown in Table H.
As we can see, the diagonal Gaussian covariance likelihood
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Table 3. Comparison of Spearman correlations on the STS datasets between the AIC corrections for the diagonal covariance Gaussian and
spherical covariance Gaussian likelihood functions.

Embedding Method STS12 STS13 STS14 STS15 STS16 Average

FastText Spherical+AIC 0.5817 0.5912 0.6199 0.6866 0.7076 0.6312
Diag+AIC 0.6193 0.6335 0.6721 0.7328 0.7518 0.6764

GloVe Spherical+AIC 0.5639 0.5718 0.5890 0.6667 0.6732 0.6073
Diag+AIC 0.6031 0.6132 0.6445 0.7171 0.7346 0.6564

Word2Vec GN Spherical+AIC 0.5844 0.6131 0.6308 0.6864 0.6975 0.6368
Diag+AIC 0.5957 0.6358 0.6614 0.7213 0.7187 0.6618

Table 4. Pairs for which the non-parametric test rejected the null
hypothesis (i.e. the results were statistically significant).

Embedding Method 1 Method 2

FastText SIF WMD
FastText SIF+PCA WMD
GloVe Diag+AIC MWV
GloVe SIF+PCA MWV

produces a better similarity measure.

I. Significance Analysis
We perform the same triplet sampling procedure as in
(Zhelezniak et al., 2019) to generate estimates of Spear-
man correlations. Using the bootstrap estimated correlation
coefficients we then carry out a non parametric two sam-
ple test (Gretton et al., 2012) in order to determine if the
samples are drawn from different distributions.

Out of all possible pairs in [Diag+AIC, SIF, SIF+PCA,
MWV, WMD] we list the pairs for which the signifi-
cance analysis rejected the null hypothesis in Table H.
We can see that the only significant differences are be-
tween MWV/WMD and the rest of the methods, thus show-
ing we are competitive to the methods from (Arora et al.,
2016). The code to reproduce these results can be found at
https://github.com/Babylonpartners/MCSG.
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