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Abstract
We introduce a probabilistic framework for quanti-
fying the semantic similarity between two groups
of embeddings. We formulate the task of semantic
similarity as a model comparison task in which
we contrast a generative model which jointly mod-
els two sentences versus one that does not. We
illustrate how this framework can be used for the
Semantic Textual Similarity tasks using clear as-
sumptions about how the embeddings of words
are generated. We apply model comparison that
utilises information criteria to address some of
the shortcomings of Bayesian model compari-
son, whilst still penalising model complexity. We
achieve competitive results by applying the pro-
posed framework with an appropriate choice of
likelihood on the STS datasets.

1. Introduction
The problem of Semantic Textual Similarity (STS), measur-
ing how closely the meaning of one piece of text corresponds
to that of another, has been studied in the hope of improving
performance across various problems in Natural Language
Processing (NLP), including information retrieval (Zheng
& Callan, 2015). Recent progress in the learning of word
embeddings (Mikolov et al., 2013b) has allowed the encod-
ing of words using distributed vector representations, which
capture semantic information through their location in the
learned embedding space. Despite the extent to which se-
mantic relations between words are captured in this space, it
remains a challenge for researchers to adapt these individual
word embeddings to express semantic similarity between
word groups, like documents, sentences, and other textual
formats.

Recent methods for STS rely on additive composition of
word vectors (Arora et al., 2016; Blacoe & Lapata, 2012;
Mitchell & Lapata, 2008; 2010; Wieting et al., 2015) or
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deep learning architectures (Kiros et al., 2015), both of
which summarise a sentence through a single embedding.
The resulting sentence vectors are then compared using
cosine similarity — a choice stemming only from the fact
that cosine similarity gives good empirical results. It is
difficult for a practitioner to utilize word vectors efficiently,
as the underlying assumptions in the similarity measure are
not well understood and the assumptions made at the word
vector level are not clearly defined. For example, embedding
magnitude in (Arora et al., 2016) seems to matter at the word
level, but not at the sentence level. That is, normalizing
word embeddings before the SIF estimate decreases results
considerably, while normalising sentence embeddings has
no effect on results.

The main contribution of our work is the proposal of a
framework that addresses these issues by explicitly deriving
the similarity measure through a chosen generative model
of embeddings. Via this design process, a practitioner can
encode suitable assumptions and constraints that may be
favourable to the application of interest. Furthermore, this
framework puts forward a new research direction that could
help improve the understanding of semantic similarity by
allowing practitioners to study suitable embedding distribu-
tions and assess how these perform.

The second contribution of our work is the derivation of a
similarity measure that performs well in an online setting.
Online settings are both practical and key to use-cases that
involve information retrieval in dialogue systems. For ex-
ample, in a chat-bot application new queries will arrive one
at a time and methods such as the one proposed in (Arora
et al., 2016) will not perform as strongly as they do on
the benchmark datasets. This is because one cannot per-
form the required data pre-processing on the entire query
dataset, which will not be available a priori in online settings.
Whilst our framework produces an online similarity metric,
it remains competitive to offline methods such as (Arora
et al., 2016). We achieve results comparable to (Arora et al.,
2016) on the STS dataset in O(nd) time — compared to
the O(nd2) average complexity of their method (where n is
the number of words in a sentence, and d is the embedding
size).
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2. Background
The compositional nature of distributed representations
demonstrated in (Mikolov et al., 2013b) and (Pennington
et al., 2014) indicate the presence of semantic groups in the
representation space of word embeddings; an idea which has
been further explored in (Athiwaratkun & Wilson, 2017).
Under this assumption, the task of semantic similarity can
be formulated as the following question: “Are the two sen-
tences (as groups of words) samples from the same semantic
group?”. Utilising this rephrasing, this work formulates the
task of semantic similarity between two arbitrary groups of
objects as a model comparison problem. Taking inspiration
from (Ghahramani & Heller, 2006) and (Marshall et al.,
2006) we propose the generative models for groups (e.g.
sentences) D1,D2 seen in Figure 1.

The Bayes Factor for this graphical model is then formally
defined as

sim(D1,D2) = log
p(D1,D2|M1)

p(D1,D2|M2)

= log
p(D1,D2|M1)

p(D1|M2)p(D2|M2)
. (1)

To obtain the evidence p(D|Mi) the parameters of the
model must be marginalised

p(D1,D2|M1) =

∫
p(D1,D2|θ)p(θ)dθ

p(D1,D2|M1) =

∫ ∏
wk∈D1⊕D2

p(wk|θ)p(θ)dθ,

p(Di|M2) =

∫ ∏
wk∈Di

p(wk|θ)p(θ)dθ,

where⊕means concatenation andwk is a word embedding.

Computing the semantic similarity score of the two groups
D1,D2 under the Bayesian framework requires selecting

w̃i

θ

wi

w̃i ∈ D2wi ∈ D1

M1

w̃iwi

θ θ̃

wi ∈ D1 x̃i ∈ D2

M2

Figure 1. On the left, M1 assumes that both datasets are generated
i.i.d. from the same parametric distribution. On the right, M2 as-
sumes that the datasets are generated i.i.d. from distinct parametric
distributions.

a reasonable model likelihood p(wk|θ), prior density on
the parameters p(θ), and computing the marginal evidence
specified above. Computing the evidence can be computa-
tionally intensive and usually requires approximation. What
is more, the Bayes factor is very sensitive to the choice of
prior and can result in estimates that heavily underfit the
data (especially under a vague prior, as shown in Appendix
E 1), having the tendency to select the simpler model; which
is argued further by (M. S. Bartlett, 1957) and (Akaike et al.,
1981). This is handled in (Ghahramani & Heller, 2006)
by using the empirical Bayes procedure, a shortcoming of
which is the issue of double counting (Berger, 2000) and
thus being prone to over-fitting. We address these issues
by choosing to work with information criteria based model
comparison as opposed to using the Bayes factor. The de-
tails are described in Section 3.

We are not aware of any prior work on sentence similarity
that uses our approach. We employ a generative model for
sentences similar to (Arora et al., 2016), but our contribution
differs from theirs in that our similarity is based on the afore-
mentioned model comparison test, whilst theirs is based on
the inner product of sentence embeddings derived as maxi-
mum likelihood estimators. The method by (Marshall et al.,
2006) applies the same score as in Equation 1 in the context
of merging datasets whilst we focus on information retrieval
and semantic textual similarity.

3. Methodology
We address the shortcomings of the Bayes Factor described
in Section 2 by proposing model comparison criteria that
minimise Kullback-Leibler (KL) divergence (denoted in
equations as DKL) across a candidate set of models. This
results in a penalised likelihood ratio test which gives com-
petitive results. This approach relies on Information Theo-
retic Criteria to design a log-ratio-like test that is prior free
and robust to overfitting.

We seek to compare modelsM1 andM2 using Information
Criteria (IC) to assess the goodness of fit of each model.
There are multiple IC used for model selection, each with
different settings to which they are better suited. The IC
which we will be working with have the general form

IC(D,M) = −
(
αL(θ̂|D,M) + Ω (D,M)

)
,

where L(θ̂|D,M) =
∑n
i L(θ̂|wi,M) is the maximised

value of the log likelihood function for model M, α is
a scalar derived for each IC, and Ω (D,M) represents a
model complexity penalty term which is model and IC spe-
cific. Using this general formulation for the involved infor-

1All appendices are provided in the supplementary materials.
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mation criteria yields the similarity score

sim(D1,D2) =

= − IC({D1,D2},M1) + IC({D1,D2},M2)

=α
(
L̂(θ̂1,2|D,M1)−(L̂(θ̂1|D1,M2)+L̂(θ̂2|D1,M2))

)
− Ω ({D1,D2},M1) + Ω ({D1,D2},M2) .

Tversky’s contrast model2 describes what a good similarity
is from a cognitive science perspective. Interestingly, the
semantic interpretation of the similarity we have derived
is similar to the one described in that work. We want to
contrast the commonalities of the two datasets (through
shared parameters) to the distinctive features of each dataset
(through independently fit parameters).

Examples of these criteria can be put into two broad classes.
The Bayesian Information Criterion (BIC) is an example
of an IC that approximates the model evidence directly,
as defined in (Schwarz et al., 1978). Empirically it has
been shown that the BIC is likely to underfit the data, espe-
cially when the number of samples is small (Dziak et al.,
2012). We provide additional empirical results in Appendix
E, showing BIC is not a good fit for the STS task as sen-
tences contain a relatively small number of words (samples).
Thus we focus on the second class - Information Theoretic
Criteria.

3.1. Information Theoretic Criteria

The Information Theoretic Criteria (ITC) are a family of
model selection criteria. The task they address is evaluating
the expected quality of an estimated model specified by
L(θ̂|w) when it is used to generate unseen data from the
true distribution G(w), as defined in (Konishi & Kitagawa,
2008b). This family of criteria perform this evaluation by
using the KL divergence between the true model G(w) and
the fitted modelL(θ̂|w), with the aim of selecting the model
(from a given set of models) that minimizes the quantity

DKL

(
G(w)

∣∣∣∣∣∣p(w|θ̂)
)

= EG

[
ln

G(w)

p(w|θ̂)

]
= −HG(w)− EG

[
ln p(w|θ̂)

]
.

The entropy of the true model HG(w) will remain constant
across different likelihoods. Thus, the quantity of interest in
the definition of the information criterion under considera-
tion is given by the expected log likelihood under the true
model EG[ln p(w|θ̂)]. The goal is to find a good estima-
tor for this quantity and one such estimator is given by the

2As described in the paragraph surrounding Equation (9) of
(Tenenbaum & Griffiths, 2001)

normalized maximum log likelihood

EĜ
[
ln p(w|θ̂)

]
=

1

n

n∑
i=1

ln p(wi|θ̂),

where Ĝ represents the empirical distribution. This estima-
tor introduces a bias that varies with respect to the dimension
of the model’s parameter vector θ and requires a correction
in order to carry out a fair comparison of information crite-
ria between models. A model specific correction is derived
resulting in the following IC, called Takeuchi Information
Criterion (TIC) in (Takeuchi, 1976)

Ĵ = − 1

n

n∑
i=1

∇2
θL(θ|wi)

∣∣∣∣
θ=θ̂

,

Î =
1

n

n∑
i=1

∇θL(θ|wi)∇θL(θ|wi)>
∣∣∣∣
θ=θ̂

,

TIC(D,M) = −2
(
L(θ̂|D,M)− tr

(
ÎĴ−1

))
. (2)

For the case where we assume our model has the same
parametric form as the true model and as n→∞, the equal-
ity Î = Ĵ holds resulting in a penalty of tr

(
ÎĴ−1

)
=

tr(Ik) = k, where k is the number of model parameters, as
shown in (Konishi & Kitagawa, 2008a). This results in the
Akaike Information Criterion (AIC) (Akaike, 1974)

AIC(D,M) = −2(L(θ̂|D,M)− k).

The AIC simplification of TIC relies on several assumptions
that hold true in the big data limit. However, as shown in
Appendix F, for models with a high number of parameters,
TIC may prove unstable and thus AIC will generally perform
better. In this study we consider and contrast both.

We show in Appendix A that under the TIC we have the
following similarity (where we omit the conditioning on the
models for brevity)

sim(D1,D2) = 2

(
L(θ̂1,2|D1,2)− L(θ̂1|D1)− L(θ̂2|D2)

− tr
(
Î1,2Ĵ−11,2

)
+ tr

(
Î1Ĵ1

−1)
+ tr

(
Î2Ĵ2

−1))
,

and therefore under the AIC we have the following similarity

sim(D1,D2) = 2

(
L(θ̂1,2|D1,2)− L(θ̂1|D1)

− L(θ̂2|D2) + k

)
,

where D1,2 = D1 ⊕D2.
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4. Word Embedding Likelihoods
In this section we will illustrate how to derive a similarity
score under our ITC framework by choosing a likelihood
function that incorporates our prior assumptions about the
generating process of the data. Adopting the viewpoint of a
practitioner, we would like to compare the performance of
two models — one that ignores word embedding magnitude,
and one that makes use of it. Our modelling choices for
each assumption are the von Mises-Fisher (vMF) and Gaus-
sian likelihoods respectively. The comparison between the
two likelihoods we provide in Section 5 provides empirical
evidence as to which approach is better suited to modelling
word embeddings. As we will see the TIC penalties of both
likelihoods we consider can be calculated in O(nd), thus
not increasing the time complexity of the algorithm.

4.1. Von Mises-Fisher Likelihood

Cosine similarity is often used to measure the semantic sim-
ilarity of words in various information retrieval tasks. Thus,
we want to explore a distribution induced by the cosine sim-
ilarity measure. We model our embeddings as vectors lying
on the surface of the d − 1 dimensional unit hypersphere
w ∈ Sd−1 and i.i.d. according to a vMF likelihood (Fisher
et al., 1993)

p(w|µ, κ) =
κ

d
2−1

(2π)
d
2 I d

2−1
(κ)

exp
(
κµ>w

)
=

1

Z(κ)
exp

(
κµ>w

)
,

where µ is the mean direction vector and κ is the concen-
tration, with supports ||µ|| = ||w|| = 1, κ ≥ 0. The term
Iν(κ) Corresponds to a modified Bessel function of the first
kind with order ν.

In this work we reparameterise the random variable to po-
lar hypersphericalsw(φ) (φ = (φ1, ..., φd−1)>) and µ(θ)
(θ = (θ1, ..., θd−1)>) as adopted in (Mabdia, 1975). Fur-
ther details can be found in Appendix B.

We prove (in Appendix C) that the mixed derivatives of the
vMF log likelihood are a constant (with respect to θ) times
∂L(θ, κ|φ)/∂θk. Thus, evaluated at the MLE, these entries
are zero. Thus, we know Ĵ = diag(Ĵ11, ..., Ĵdd) and we
can express the TIC penalty described in Equation 2 as

tr(ÎĴ−1) =

d∑
i=1

Ĵii
−1
Îii = Ĵ−111

(
∂

∂κ
L(θ, κ|D)

)2

+

d∑
i=2

Ĵ−1ii

(
∂

∂θi−1
L(θ, κ|D)

)2

. (3)

This quantity only requires O(nd) operations to compute
and thus does not increase the asymptotic complexity of the
algorithm.

The closed form of the similarity measure for two sentences
D1,D2 of length m and l respectively under this model is
then

sim(D1,D2) = (m+ l)κ̂1,2R̄1,2 −mκ̂1R̄1 − lκ̂2R̄2

− (m+ l) logZ(κ̂1,2) +m logZ(κ̂1) + l logZ(κ̂2)

− tr(Î1,2Ĵ−11,2 ) + tr(Î1Ĵ1
−1

) + tr(Î2Ĵ2
−1

),

where the Jacobian terms (from the reparametrisation) can-
cel out. The subscripts indicate the sentence, with 1, 2 mean-
ing the concatenation of the two sentences.

4.2. Gaussian Likelihood

(Schakel & Wilson, 2015) show that some frequency infor-
mation is contained in the magnitude of word embeddings.
This motivates a choice of a likelihood function that is not
constrained to the unit hypersphere and possibly the sim-
plest such choice is the Gaussian likelihood. Due to the
small size of sentences3 we choose a diagonal covariance
Gaussian models. The Gaussian likelihood is then

p (w|µ,Σ) =
exp

(
− 1

2 (w − µ)>Σ−1(w − µ)
)√

(2π)d|Σ|
,

where Σ is a diagonal matrix.

Our framework further allows us to compare two models
and pick the better one without having access to a similarity
corpus, as long as the comparison is done on the same data.
As an example, we compare the diagonal Gaussian with a
more restricted version of itself — the spherical Gaussian.
We compute the average AIC on a corpus of sentences and
observe that the average AIC of the diagonal Gaussian is
lower than that of the spherical one. This suggests that
the diagonal Gaussian better describes the distribution of
word vectors in a sentence and thus will produce a better
similarity. We confirm this result in Appendix H, where we
also provide the average AIC scores for each model.

As with the vMF likelihood, we prove in Appendix D that
the Hessian of the log likelihood evaluated at the MLE
is diagonal. The TIC correction is a sum of O(d) terms,
similar to the form in Equation 3. This can be nicely written
in terms of biased sample kurtosis (denoted κ̂)

tr(ÎĴ−1) =
1

2

(
d+

d∑
i=1

(µ̂4)i
σ̂4
i

)
=
d

2
+

d∑
i=1

κ̂i
2

The closed form of the similarity measure for two sentences
D1,D2 of length m and l respectively under this model is

3The covariance matrix of n samples with d dimensions such
that n < d results in a low rank matrix.
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Table 1. Comparison of Spearman correlations on the STS datasets between the two similarity measures we introduce in the text. The
average is weighted according to dataset size.

Embedding Method STS12 STS13 STS14 STS15 STS16 Average

FastText vMF+TIC 0.5219 0.5147 0.5719 0.6456 0.6347 0.5762
Diag+AIC 0.6193 0.6334 0.6721 0.7328 0.7518 0.6764

GloVe vMF+TIC 0.5421 0.5598 0.5736 0.6474 0.6168 0.5859
Diag+AIC 0.6031 0.6131 0.6445 0.7171 0.7346 0.6564

Word2Vec GN vMF+TIC 0.5665 0.5735 0.6062 0.6681 0.6510 0.6115
Diag+AIC 0.5957 0.6358 0.6614 0.7213 0.7187 0.6618

then

sim(D1,D2) =

=

d∑
i=1

−(m+ l) ln(σ̂1,2)i +m ln(σ̂1)i + l ln(σ̂2)i+

+
d

2
+

1

2

d∑
i=1

−( ˆκ1,2)i + (κ̂1)i + (κ̂2)i

where the subscripts indicate the sentence, with 1, 2 mean-
ing the concatenation of the two sentences.

5. Experiments
We assess our methods’ performance on the Semantic Tex-
tual Similarity (STS) datasets 4 (Agirre et al., 2012; 2013;
2014; 2015; 2016). The objective of these tasks is to esti-
mate the similarity between two given sentences, validated
against human scores. In our experiments, we assess on the
pre-trained GloVe (Pennington et al., 2014) and FastText
(Bojanowski et al., 2016) , and Word2Vec GN (Mikolov
et al., 2013a) word embeddings. For the vMF distribution,
we normalize the word embeddings to be of length 1. Some
of the sentences are left with a single word after querying the
word embeddings, making the MLE of the κ parameter of
the vMF and Σ parameter of the Gaussian ill-defined, which
in turn causes the similarity metric to take on undefined val-
ues. We overcome this issue by padding each sentence with
an arbitrary embedding of a word or punctuation symbol
from the embedding lexicon (i.e. ’.’ or ’the’). Our code
builds on top of SentEval (Conneau & Kiela, 2018) and is
available at https://github.com/Babylonpartners/MCSG.

We first compare our methods: vMF likelihood with TIC
correction (vMF+TIC) and diagonal Gaussian likelihood
with AIC correction (Diag+AIC) against each other. Then,
the better method is compared against mean word vector
(MWV), word mover’s distance (WMD) (Kusner et al.,

4The STS13 dataset does not include the proprietary SMT
dataset that was available with the original release of STS.

2015) 5, smooth inverse frequency (SIF), and SIF with prin-
cipal component removal as defined in (Arora et al., 2016)
6. We re-ran these models under our experimental setup, to
ensure a fair comparison. The metric used is the average
Spearman correlation score over each dataset, weighted by
the number of sentences. The choice of Spearman correla-
tion is given by its non-parametric nature (assumes no distri-
bution over the scores), as well as measuring any monotonic
relationship between the two compared quantities.

5.1. Embedding Magnitude

A practitioner may want to learn more about a given set
of word embeddings, and the way these embeddings were
trained may not allow the user to understand the importance
of certain features — say embedding magnitude. This is
where our framework can be used to help build intuition by
comparing a likelihood that implicitly incorporates embed-
ding magnitude to one that does not.

We present the comparison between the similarities derived
from the vMF and Gaussian likelihoods in Table 4.2. We
note that the Gaussian is a much better modelling choice,
beating the vMF on every dataset by a margin of at least
0.05 (5%) on average, with each of the three word embed-
dings. This is strong evidence that the information encoded
in an embedding’s magnitude is useful for tasks such as
semantic similarity. This further motivates the conjecture
that frequency information is contained in word embedding
magnitude, as explored in (Schakel & Wilson, 2015).

5.2. Online Scenario

In an online setting, one cannot perform the principal com-
ponent removal described in (Arora et al., 2016), as that
pre-processing requires access to the entire query dataset a
priori.

The comparison against the baseline methods are presented

5https://github.com/mkusner/wmd
6https://github.com/PrincetonML/SIF

https://github.com/Babylonpartners/MCSG
https://github.com/mkusner/wmd
https://github.com/PrincetonML/SIF
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Table 2. Comparison of Spearman correlations on the STS datasets between our best model (Diag+AIC) and SIF, WMD and MWV for
three different word vectors. The average is weighted according to dataset size.

Embedding Method STS12 STS13 STS14 STS15 STS16 Average

FastText Diag+AIC 0.6193 0.6334 0.6721 0.7328 0.7518 0.6764
SIF 0.6079 0.6989 0.6777 0.7436 0.7135 0.6821
MWV 0.5994 0.6494 0.6473 0.7114 0.6814 0.6542
WMD 0.5576 0.5146 0.5915 0.6800 0.6402 0.5997

GloVe Diag+AIC 0.6031 0.6131 0.6445 0.7171 0.7346 0.6564
SIF 0.5774 0.6319 0.6135 0.6740 0.6589 0.6255
MWV 0.5526 0.5643 0.5625 0.6314 0.5804 0.5784
WMD 0.5516 0.5007 0.5811 0.6704 0.6246 0.5896

Word2Vec GN Diag+AIC 0.5957 0.6358 0.6614 0.7213 0.7187 0.6618
SIF 0.5697 0.6594 0.6669 0.7261 0.6952 0.6588
MWV 0.5744 0.6330 0.6561 0.7040 0.6617 0.6451
WMD 0.5554 0.5250 0.6074 0.6730 0.6399 0.6034

Table 3. Comparison of Spearman correlations on the STS datasets between our best model (Diag+AIC) and SIF+PCA for three different
word vectors.

Word vectors Method STS12 STS13 STS14 STS15 STS16 Average

FastText Diag+AIC 0.6193 0.6334 0.6721 0.7328 0.7518 0.6764
SIF+PCA 0.5945 0.7149 0.6824 0.7474 0.7271 0.6843

GloVe Diag+AIC 0.6031 0.6131 0.6445 0.7171 0.7346 0.6564
SIF+PCA 0.5732 0.6843 0.6546 0.7166 0.6931 0.6589

Word2Vec GN Diag+AIC 0.5957 0.6358 0.6614 0.7213 0.7187 0.6618
SIF+PCA 0.5602 0.6773 0.6722 0.7354 0.7111 0.6639

in Table 5.2. The method proposed in this work is able to
out-perform the standard weighting induced by MWV, as
well as the WMD approach on all datasets, with each of the
three word embeddings considered. We outperform SIF us-
ing the GloVe embeddings by 0.309 (3.09%) and effectively
tie when using the FastText and Word2Vec GN embeddings
with a difference of 0.0057 (0.57%) and 0.0030 (0.30%)
respectively. In Appendix I we conduct a significance anal-
ysis. We show that SIF and our method are on par with
each other and that both significantly outperform MWV and
WMD when using the GloVe embeddings.

5.3. Offline Scenario

There are use-cases in which the entire dataset of sentences
is available at evaluation time — for example, in clustering
applications. For this scenario, we compare against the SIF
weightings, augmented with the additional pre-processing
technique seen in (Arora et al., 2016). We need only con-
sider this baseline, as it outperforms all others by a large
margin.

The results are shown in Table 5.2. We remain competitive
with SIF+PCA on all three word embeddings, being able to
match very closely on GloVe embeddings. On the FastText
and Word2Vec embeddings, our method is less than 0.01
(1%) lower on average than SIF+PCA.

6. Conclusion
We’ve presented a new approach to similarity measurement
that achieves competitive performance to standard methods
in both online and offline settings. Our method requires a
set of clear choices — model, likelihood and information
criterion. From that, a comparison framework is naturally
derived, which supplies us with a statistically justified sim-
ilarity measure (by utilizing ITC to reduce the resulting
model-comparison bias). This framework is suitable for
a variety of modelling scenarios, due to the freedom in
specifying the generative process. The graphical model we
employ is adaptable to encode structural dependencies be-
yond the i.i.d. data-generating process we have assumed
throughout this study — for example, an auto-regressive (se-
quential) model may be assumed if the practitioner suspects
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that word order matters (i.e. compare ”Does she want to get
pregnant?” to ”She does want to get pregnant.”)

In this study, we conjecture that the von Mises-Fisher distri-
bution lends itself to representing word embeddings well, if
their magnitude is disregarded and a unimodal distribution
over individual sentences is assumed. Relaxing the former
assumption, we also model word embeddings with a Gaus-
sian likelihood. As this improves results, it suggests that
word embedding magnitude carries information relevant for
sentence level tasks, which agrees with prior intuition built
from (Schakel & Wilson, 2015). We hope that this frame-
work could be a stepping stone in using more complex and
accurate generative models of text to assess semantic simi-
larity. For example, relaxing the assumption of unimodality
is an interesting area for future research.

Acknowledgements
We would like to thank Dane Sherburn for the help with the
TIC robustness plots and Kostis Gourgoulias for the many
insightful conversations.

References
Agirre, E., Diab, M., Cer, D., and Gonzalez-Agirre, A.

Semeval-2012 task 6: A pilot on semantic textual simi-
larity. In Proceedings of the First Joint Conference on
Lexical and Computational Semantics-Volume 1: Pro-
ceedings of the main conference and the shared task, and
Volume 2: Proceedings of the Sixth International Work-
shop on Semantic Evaluation, pp. 385–393. Association
for Computational Linguistics, 2012.

Agirre, E., Cer, D., Diab, M., Gonzalez-Agirre, A., and Guo,
W. * sem 2013 shared task: Semantic textual similarity.
In Second Joint Conference on Lexical and Computa-
tional Semantics (* SEM), Volume 1: Proceedings of the
Main Conference and the Shared Task: Semantic Textual
Similarity, volume 1, pp. 32–43, 2013.

Agirre, E., Banea, C., Cardie, C., Cer, D., Diab, M.,
Gonzalez-Agirre, A., Guo, W., Mihalcea, R., Rigau, G.,
and Wiebe, J. Semeval-2014 task 10: Multilingual se-
mantic textual similarity. In Proceedings of the 8th in-
ternational workshop on semantic evaluation (SemEval
2014), pp. 81–91, 2014.

Agirre, E., Banea, C., Cardie, C., Cer, D., Diab, M.,
Gonzalez-Agirre, A., Guo, W., Lopez-Gazpio, I., Mar-
itxalar, M., Mihalcea, R., et al. Semeval-2015 task 2:
Semantic textual similarity, english, spanish and pilot on
interpretability. In Proceedings of the 9th international
workshop on semantic evaluation (SemEval 2015), pp.
252–263, 2015.

Agirre, E., Banea, C., Cer, D., Diab, M., Gonzalez-Agirre,
A., Mihalcea, R., Rigau, G., and Wiebe, J. Semeval-
2016 task 1: Semantic textual similarity, monolingual and
cross-lingual evaluation. In Proceedings of the 10th In-
ternational Workshop on Semantic Evaluation (SemEval-
2016), pp. 497–511, 2016.

Akaike, H. A new look at the statistical model identification.
IEEE transactions on automatic control, 19(6):716–723,
1974.

Akaike, H. et al. Likelihood of a model and information
criteria. Journal of econometrics, 16(1):3–14, 1981.

Arora, S., Liang, Y., and Ma, T. A simple but tough-to-
beat baseline for sentence embeddings. International
Conference on Learning Representations, 2017, 2016.

Athiwaratkun, B. and Wilson, A. G. Multimodal word
distributions. arXiv preprint arXiv:1704.08424, 2017.

Berger, J. O. Bayesian analysis: A look at today
and thoughts of tomorrow. Journal of the Ameri-
can Statistical Association, 95(452):1269–1276, 2000.
ISSN 01621459. URL http://www.jstor.org/
stable/2669768.

Blacoe, W. and Lapata, M. A comparison of vector-based
representations for semantic composition. In Proceed-
ings of the 2012 joint conference on empirical methods
in natural language processing and computational nat-
ural language learning, pp. 546–556. Association for
Computational Linguistics, 2012.

Bojanowski, P., Grave, E., Joulin, A., and Mikolov, T. En-
riching word vectors with subword information. CoRR,
abs/1607.04606, 2016. URL http://arxiv.org/
abs/1607.04606.

Conneau, A. and Kiela, D. Senteval: An evaluation toolkit
for universal sentence representations. arXiv preprint
arXiv:1803.05449, 2018.

Dziak, J. J., Coffman, D. L., Lanza, S. T., and Li, R. Sensi-
tivity and specificity of information criteria. The Method-
ology Center and Department of Statistics, Penn State,
The Pennsylvania State University, 16(30):140, 2012.

Fisher, N. I., Lewis, T., and Embleton, B. J. Statistical
analysis of spherical data. Cambridge university press,
1993.

Ghahramani, Z. and Heller, K. A. Bayesian sets. In Ad-
vances in neural information processing systems, pp. 435–
442, 2006.

Kiros, R., Zhu, Y., Salakhutdinov, R., Zemel, R. S., Torralba,
A., Urtasun, R., and Fidler, S. Skip-thought vectors.

http://www.jstor.org/stable/2669768
http://www.jstor.org/stable/2669768
http://arxiv.org/abs/1607.04606
http://arxiv.org/abs/1607.04606


Model Comparison for Semantic Grouping

CoRR, abs/1506.06726, 2015. URL http://arxiv.
org/abs/1506.06726.

Konishi, S. and Kitagawa, G. Information criteria and
statistical modeling. Springer Science & Business Media,
2008a.

Konishi, S. and Kitagawa, G. Information criteria and
statistical modeling. Springer Science & Business Media,
2008b.

Kusner, M., Sun, Y., Kolkin, N., and Weinberger, K.
From word embeddings to document distances. In
Bach, F. and Blei, D. (eds.), Proceedings of the
32nd International Conference on Machine Learn-
ing, volume 37 of Proceedings of Machine Learn-
ing Research, pp. 957–966, Lille, France, 07–09 Jul
2015. PMLR. URL http://proceedings.mlr.
press/v37/kusnerb15.html.

M. S. Bartlett, M. S. A comment on d. v. lindley’s statistical
paradox. Biometrika, 44(3/4):533–534, 1957.

Mabdia, K. Distribution theory for the von mises-fisher
distribution and ite application. Statistical Distributions
for Scientific Work, 1:113–30, 1975.

Marshall, P., Rajguru, N., and Slosar, A. Bayesian evidence
as a tool for comparing datasets. Physical Review D, 73
(6):067302, 2006.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. Efficient
estimation of word representations in vector space. arXiv
preprint arXiv:1301.3781, 2013a.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and
Dean, J. Distributed representations of words and phrases
and their compositionality. In Advances in neural infor-
mation processing systems, pp. 3111–3119, 2013b.

Mitchell, J. and Lapata, M. Vector-based models of semantic
composition. proceedings of ACL-08: HLT, pp. 236–244,
2008.

Mitchell, J. and Lapata, M. Composition in distributional
models of semantics. Cognitive science, 34(8):1388–
1429, 2010.

Pennington, J., Socher, R., and Manning, C. Glove: Global
vectors for word representation. In Proceedings of the
2014 conference on empirical methods in natural lan-
guage processing (EMNLP), pp. 1532–1543, 2014.

Schakel, A. M. and Wilson, B. J. Measuring word signifi-
cance using distributed representations of words. arXiv
preprint arXiv:1508.02297, 2015.

Schwarz, G. et al. Estimating the dimension of a model.
The annals of statistics, 6(2):461–464, 1978.

Takeuchi, K. The distribution of information statistics and
the criterion of goodness of fit of models. Mathematical
Science, 153:12–18, 1976.

Tenenbaum, J. B. and Griffiths, T. L. Generalization, sim-
ilarity, and bayesian inference. Behavioral and brain
sciences, 24(4):629–640, 2001.

Wieting, J., Bansal, M., Gimpel, K., and Livescu, K. To-
wards universal paraphrastic sentence embeddings. arXiv
preprint arXiv:1511.08198, 2015.

Zheng, G. and Callan, J. Learning to reweight terms with dis-
tributed representations. In Proceedings of the 38th Inter-
national ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval, SIGIR ’15, pp. 575–584,
New York, NY, USA, 2015. ACM. ISBN 978-1-4503-
3621-5. doi: 10.1145/2766462.2767700. URL http:
//doi.acm.org/10.1145/2766462.2767700.

http://arxiv.org/abs/1506.06726
http://arxiv.org/abs/1506.06726
http://proceedings.mlr.press/v37/kusnerb15.html
http://proceedings.mlr.press/v37/kusnerb15.html
http://doi.acm.org/10.1145/2766462.2767700
http://doi.acm.org/10.1145/2766462.2767700

