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Abstract
Labeling training data is a key bottleneck in the
modern machine learning pipeline. Recent weak
supervision approaches combine labels from mul-
tiple noisy sources by estimating their accuracies
without access to ground truth labels; however,
estimating the dependencies among these sources
is a critical challenge. We focus on a robust PCA-
based algorithm for learning these dependency
structures, establish improved theoretical recov-
ery rates, and outperform existing methods on var-
ious real-world tasks. Under certain conditions,
we show that the amount of unlabeled data needed
can scale sublinearly or even logarithmically with
the number of sources m, improving over previ-
ous efforts that ignore the sparsity pattern in the
dependency structure and scale linearly in m. We
provide an information-theoretic lower bound on
the minimum sample complexity of the weak su-
pervision setting. Our method outperforms weak
supervision approaches that assume conditionally-
independent sources by up to 4.64 F1 points and
previous structure learning approaches by up to
4.41 F1 points on real-world relation extraction
and image classification tasks.

1. Introduction
Supervised machine learning models have increasingly be-
come dependent on a large amount of labeled training data.
For most real-world applications, however, hand labeling
such a large magnitude of data is a major bottleneck, espe-
cially when domain expertise is required. Recently, gener-
ative models have been used to combine noisy labels from
weak supervision sources, such as user-defined heuristics
or knowledge bases, to efficiently assign training labels by
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treating the true label as a latent variable (Alfonseca et al.,
2012; Takamatsu et al., 2012; Roth & Klakow, 2013; Rat-
ner et al., 2019). Once the labels from the multiple noisy
sources are used to learn the parameters of a generative
model, the distribution over the true labels is inferred and
used to produce probabilistic training labels for the unla-
beled data, which can then be used to train a downstream
discriminative model.

Specifying how these weak supervision sources are corre-
lated is essential to correctly estimating their accuracies.
In practice, weak supervision sources often have strongly
correlated outputs due to shared data sources or labeling
strategies; for example, developers might contribute near-
duplicate weak supervision sources. Manually enumerat-
ing these dependencies is a development bottleneck, while
learning them statistically usually requires ground truth la-
bels (Meinshausen & Bühlmann, 2006; Zhao & Yu, 2006;
Ravikumar et al., 2010; Loh & Wainwright, 2013). Recently,
Bach et al. (2017) proposed a structure learning method for
weak supervision that requires Ω(m logm) samples given
m sources and does not exploit the sparsity of the struc-
ture of the associated model. This high sample complexity
may prevent it from identifying dependencies, thus affecting
the downstream quality of training labels assigned by the
generative model.

We propose using a structure learning technique for the weak
supervision setting that exploits the sparsity of the model to
achieve improved theoretical recovery rates. We decompose
the inverse covariance matrix of the observable sources via
robust principal component analysis (Candès et al., 2011;
Chandrasekaran et al., 2011). The decomposition produces
a sparse component encoding the underlying structure and
a low-rank component due to marginalizing over the latent
true label variable. We build on previous approaches using
this technique (Chandrasekaran et al., 2011; Wu et al., 2017),
but improve over their requirement of Ω(m) samples under
common weak supervision conditions.

The key to obtaining tighter complexity estimates is charac-
terizing the effective rank (Vershynin, 2012) of the covari-
ance matrix in terms of the structural information associated
with the weak supervision setting. The effective rank can
be unboundedly smaller than the true rank. We show that
under certain reasonable conditions on the effective rank,
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intuitively similar to the presence of a stronger dependency
in each cluster of correlated sources, the sample complexity
can be sublinear Ω(d2mτ ) for 0 < τ < 1 and maximum
dependency degree d. Under a stronger condition equiv-
alent to the presence of a dominant cluster of correlated
supervision sources, we obtain the rate Ω(d2 logm) that
matches the optimal supervised rate (Santhanam & Wain-
wright, 2012). We further study the unsupervised setting
through an information-theoretic lower bound on the sam-
ple complexity, yielding a characterization of the additional
cost of the weak supervision setting compared to the super-
vised setting. We find that, although latent-variable structure
learning may result in much higher sample complexity in
general, the additional number of samples required is small
in the weak supervision setting.

For a variety of real-world tasks from relation extraction
to image classification, correlations often naturally arise
among weak supervision sources like distant supervision
via dictionaries and user-defined heuristics. We show that
modeling dependencies recovered by our approach improves
over assuming conditional independence among the weak
supervision sources by up to 4.64 F1 points, and over exist-
ing structure learning approaches by up to 4.41 F1 points.

2. Background
Related Work Manually labeling training data can be
expensive and time-consuming, especially when domain ex-
pertise is required. A common alternative to hand-labeling
data is using weak supervision sources. Estimating the
accuracies of these sources without ground truth labels is
a classic problem (Dawid & Skene, 1979). Methods like
crowdsourcing (Dalvi et al., 2013; Joglekar et al., 2015;
Zhang et al., 2016), and boosting (Schapire & Freund, 2012)
are common; however, we focus on the case in which no
labeled data is required. Recently, generative models have
been used to combine various sources of weak supervision
in such settings (Alfonseca et al., 2012; Takamatsu et al.,
2012; Roth & Klakow, 2013; Ratner et al., 2019).

Dependencies occur naturally among weak supervision
sources for a variety of reasons: sources may operate over
the same input (Varma et al., 2017b), distant supervision
sources may refer to similar information from a single
knowledge base (Mintz et al., 2009), and heuristics over
ontologies may operate over the exact same subtree (Mal-
lory et al., 2015). Not accounting for these dependencies in
the generative model can lead to incorrectly estimating the
accuracy of the weak supervision sources. Dependencies
are difficult to specify manually in cases with hundreds of
sources, potentially developed by many users. Therefore,
there is a need to learn dependencies directly from the labels
assigned by the weak supervision sources without using
ground truth labels.

Structure learning has a rich history outside of the weak
supervision setting. The supervised, fully observed setting
includes node-wise and matrix-wise methods. Node-wise
methods, like Ravikumar et al. (2010), use regression on a
particular node to recover that node’s neighborhood. Matrix-
wise methods use the inverse covariance matrix to determine
the structure (Friedman et al., 2008; Ravikumar et al., 2011;
Loh & Wainwright, 2013). In the latent variable setting,
works like Chandrasekaran et al. (2012); Meng et al. (2014);
Wu et al. (2017) perform structure learning via robust-PCA
like approaches. In contrast, we focus on the weak supervi-
sion setting, providing a tighter characterization that leads to
improved rates, and provide further details in the Appendix.

The major work for structure learning in weak supervision
is Bach et al. (2017), which uses a `1-regularized node-wise
pseudo-likelihood method to obtain a sample complexity of
Ω(m logm). This expression does not depend on the max-
imum dependency degree d. Our approach fundamentally
differs—we use a matrix-wise method that scales better with
key parameters (like the sparsity of the graph d) and offers
improved performance for several real-world tasks.

Problem Setup We formally describe our setup and the
generative model to assign probabilistic training labels.
given a set of noisy labels from weak supervision sources.
X ∈ X is a data point, Y ∈ Y is a label with (X,Y ) drawn
i.i.d. from some distribution D. In the weak supervision
setting, we never have access to the true label Y ; instead
we rely on m weak supervision sources that produce noisy
labels λi for 1 ≤ i ≤ m.

Example 1. In a text relation extraction setting, X could
be be a tuple of two words, such as names of people, and
Y ∈ {0, 1} then represents whether the relation of interest
exists between the two words, for example whether these
two people are being described as married. Potential weak
supervision sources can use information from the sentence,
such as whether the word “married” appears between the
two words, to heuristically—and thus noisily—assign a la-
bel for a data point X . An example of an erring label is
produced by applying the heuristic to the sentence “Bob
and Alice were meant to get married in 2018, but postponed
the wedding by 3 years.”

We model the joint distribution of λ1, λ2, . . . , λm, Y via a
Markov random field with associated graph G = (V,E)
with V = {λ1, . . . , λm} ∪ {Y }. If λi is not independent
of λj conditioned on Y and the other sources, then (λi, λj)
is an edge in G. For simplicity, we assume X ,Y = {0, 1},
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although our results easily extend. The density fG is

fG(λ1, . . . , λm, y) =
1

Z
exp

(∑
λi∈V

θiλi

+
∑

(λi,λj)∈E

θi,jλiλj + θY y +
∑
λi∈V

θY,iyλi

 , (1)

where Z is a partition function to ensure fG is a normalized
distribution, and θi and θi,j represent the canonical parame-
ters associated with the sources. We can think of θi,j as the
strength of the correlation between sources λi and λj , and
θY,i as a measure of accuracy of the source λi. Once these
parameters are learned, the generative model assigns proba-
bilistic training labels by computing fG(Y |λ1, . . . , λm) for
each object X in the unlabeled training set, which can be
used to train any downstream model.

In the conditionally independent model, θi,j = 0 ∀i, j. In
cases with dependencies, the structure of G is user-defined
or inferred from source metadata. Our approach learns the
dependency structure, then applies previous work that sam-
ples from the posterior of a graphical model directly (Ratner
et al., 2016) or uses a matrix completion approach to solve
for the source parameters (Ratner et al., 2019).

We also rely on the singleton separator set assumption (Rat-
ner et al., 2019), which implies the sources form s fully-
connected clusters. This is common for weak supervision
settings, motivated by the intuition that groups of weak
supervision sources may share common data resources.

3. Learning Structures in the Weak
Supervision Regime

Our goal is to learn the dependency structure among weak
supervision sources, i.e. graph G, directly from data, with-
out observing the latent true label Y . We introduce this
latent structure learning problem, which we focus on for
the remainder of the paper, in Section 3.1. We provide
background on robust PCA in Section 3.2, and describe our
algorithm adapting it to weak supervision in Section 3.3.

3.1. Structure Learning Objective

We want to learn the structure of graph G given access
to noisy labels from m weak supervision sources and no
ground truth labels. Let O = {λ1, . . . , λm} be the observed
labels from the weak supervision sources, and S = {Y } be
the unobserved latent variable. Then,

Cov [O ∪ S] := Σ =

[
ΣO ΣOS
ΣTOS ΣS

]
.

We rely on a common weak supervision assumption that the

graph is sparse, which implies the inverse covariance matrix

Σ−1 := K =

[
KO KOS
KT
OS KS

]
.

is graph-structured: there is no edge between λi and λj in
G when the corresponding term in Σ−1 is 0, or, equivalently,
λi and λj are independent conditioned on all of the other
terms (Loh & Wainwright, 2013). However, a key difficulty
is that we never know Y , so we cannot observe the full
covariance matrix Σ, or the graph-structured Σ−1.

However, we can take advantage of the fact that the
sub-block of the inverse covariance matrix KO is graph-
structured. In turn, this implies that K−1

O is a permutation
of a block-diagonal matrix with s blocks corresponding to
the s source clusters, where each block is no larger than
(d + 1) × (d + 1), where d is the maximum dependency
degree. From the block matrix inversion formula,

KO = Σ−1
O + cΣ−1

O ΣOSΣTOSΣ−1
O , (2)

where c =
(
ΣS − ΣTOSΣ−1

O ΣOS
)−1 ∈ R+. Let z =√

cΣ−1
O ΣOS ; we can write (2) as

Σ−1
O = KO − zzT .

While we cannot observe Σ since it contains the true label Y ,
we can observe ΣO and thus Σ−1

O . We form the empirical
covariance matrix of observed labels Σ

(n)
O ∈ Rm×m:

Σ
(n)
O =

1

n
ΛΛT − vvT ,

where Λ represents the m × n matrix of labels from the
weak supervision sources assigned to the unlabeled data, n
represents the total number of datapoints, and v ∈ Rm×1 is
the average label assigned by the weak supervision sources.

Our goal is to calculate KO, which is graph-structured and
allows us to read off the structure of G from its entries.
We therefore have to decompose the observable Σ−1

O into
KO and zzT , unknown sparse and low-rank components.
This inspires the use of robust principal component analy-
sis (Candès et al., 2011; Chandrasekaran et al., 2011).

3.2. Robust PCA

The robust PCA setup consists of a matrix M ∈ Rm×m that
is equal to the sum of a low-rank matrix and a sparse matrix,
M = L + S, where rank(L) = r and |supp(S)| = k. The
name is inspired by the observation that although standard
PCA recovers a low-dimensional subspace in the presence of
bounded noise, it is not robust to gross corruptions (modeled
by the entries of the sparse matrix). Note that the decom-
position M = L+ S is not identifiable without additional
conditions. For example, if M = eie

T
j , M is itself both
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sparse and low-rank, and thus the pairs (L, S) = (M, 0)
and (L, S) = (0,M) are equally valid solutions. Therefore,
the fundamental question of robust PCA is to determine
when a unique decomposition can be recovered.

The two seminal works on robust PCA (Candès et al., 2011;
Chandrasekaran et al., 2011) studied transversality condi-
tions for identifiability. In particular, the solution spaces
L, S can only intersect at 0. For the sparse component, let

Ω(S) = {N ∈ Rm×m | supp(N) ⊆ supp(S)}.

For the low-rank component, let L = UDV T be the SVD
of L with rank r. Then, let

T (L) = {UXT + Y V T | X,Y ∈ Rm×r}.

The key notion for identifiability in robust PCA problems
is to ensure these subspaces are transverse—so that neither
the low-rank components are too sparse, nor the sparse
component too low-rank. We measure these notions via the
the functions µ, ξ (Chandrasekaran et al., 2011):

µ(Ω(S)) = max
N∈Ω(S),‖N‖∞=1

‖N‖, and

ξ(T (L)) = max
N∈T (L),‖N‖≤1

‖N‖∞.

These two quantities govern how well-aligned the sparse
matrix S is with the coordinate axes and how spread out the
low-rank matrix L is. For the decomposition of M = L+S
to be identifiable, the required condition is

µ(Ω(S))ξ(T (L)) < 1. (3)

3.3. Adapting Robust PCA for Weak Supervision

We now adapt the robust PCA setting to our setup: S = KO

and L = zzT , a rank one matrix. First, we determine
identifiability in the noiseless case: if we do not have identi-
fiability even with the true ΣO matrix, we have no hope of
recovering structure in the sampled case Σ

(n)
O .

Let amin, amax be the smallest and largest terms in ΣOS ,
respectively. These represent the smallest and largest covari-
ances between the true label Y and the weak supervision
sources λi, which are the smallest and largest accuracies of
the sources. Similarly, we let cmin, cmax be the smallest and
largest terms in ΣO, respectively, representing the smallest
and largest correlations among the sources. We can now
write the identifiability condition in terms of the extreme
values of the source accuracies and correlations.
Lemma 1. Let KO be the block of the inverse covariance
matrix Σ−1 corresponding to the observed variables, and
let amin, amax, cmin, cmax be defined as above. Then,

µ(Ω(KO))ξ(T (zzT )) ≤ 6.4d√
m

(
cmax

cmin

)(
amax

amin

)
.

Algorithm 1 Weak Supervision Structure Learning

Input: Estimate of the covariance matrix Σ̂O, parameters
λn, γ, threshold T , loss function L(·, ·)
Solve:

(Ŝ, L̂) = argmin(S,L)L(S−L,Σ(n)
O )+λn(γ‖S‖1+‖L‖∗)

s.t. S − L � 0, L � 0
Ê ← {(i, j) : i < j, Ŝij > T}
Return: Ĝ = (V, Ê)

Thus, for a fixed degree d, if we have access to

m ≥ 40.96d2[cmaxamax/cminamin]2

weak supervision sources, then µ(Ω(KO))ξ(T (zzT )) < 1
and there is a unique solution to the decomposition of Σ−1

O .

Implementation We use the loss function from Wu et al.
(2017) for Robust PCA in Algorithm 1, which helps avoid
inverting the covariance matrix:

L(S −L,Σ(n)
O ) =

1

2
tr((S −L)Σ

(n)
O (S −L))− tr(S −L).

We implement Algorithm 1 using standard convex solvers.
The recovered sparse matrix Ŝ does not have entries that are
perfectly 0. Therefore, a key choice is to set a threshold T
to find the zeros in Ŝ such that

S̃ij =

{
Ŝij if Ŝij > T,

0 if Ŝij ≤ T.

We can then pass the nonzero entries of S̃ as dependencies
to the generative model described in Section 2.

4. Analysis
Our goal is to provide guarantees on the probability that
Algorithm 1 successfully recovers the exact dependency
structure. The critical quantity in establishing these guar-
antees is ‖Σ(n)

O − ΣO‖, the spectral norm of the estimation
error of the covariance matrix. We control it by charac-
terizing the effective rank of the covariance matrix ΣO in
Section 4.1. We then introduce two different conditions on
the effective rank, which enable us to derive our main result
of improved sample complexities in Section 4.2.

4.1. Controlling the Covariance Estimation Error

Structure learning algorithms for the supervised case
(Ravikumar et al., 2011; Loh & Wainwright, 2013) recover
the structure with high probability given Ω(dk logm) sam-
ples, where k ≥ 2 depends on the approach taken. The
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unsupervised (latent variable) algorithms in Chandrasekaran
et al. (2012); Wu et al. (2017) require Ω(m) samples.

The critical difference between these classes of algorithms
is in their objectives. The objective function for Ravikumar
et al. (2011); Loh & Wainwright (2013) contains the regu-
larizer ‖ · ‖1, while the algorithms in Chandrasekaran et al.
(2012); Wu et al. (2017) instead have ‖·‖1 +‖·‖∗. The pres-
ence of the ‖ · ‖∗ norm in the objective for the latent settings
is the key difference. Both classes of algorithms rely on the
primal-dual witness approach for their proofs of consistency.
The dual norm of ‖ · ‖∗ is the spectral norm ‖ · ‖. As a result,
a bound on ‖Σ(n)

O −ΣO‖ is necessary, while a simpler entry-
wise bound is sufficient for the supervised case. To ensure
high-probability recovery, the unsupervised approaches rely
on matrix concentration inequalities bounding ‖Σ(n)

O −ΣO‖
that require Ω(m) samples.

Characterizing the Effective Rank To reduce this sam-
pling rate, we leverage a refined measure of rank, the effec-
tive rank (Vershynin, 2012), defined as

re(ΣO) = tr(ΣO)/‖ΣO‖.

The effective rank may be much smaller than the true rank;
the notion that data matrices are approximately low-rank
is well-known (Udell & Townsend, 2018). Characterizing
the effective rank in the weak supervision setting enables
us to apply sharper concentration inequalities. We build
on the analyses in Chandrasekaran et al. (2012); Wu et al.
(2017) while providing improved rates. We note that Meng
et al. (2014) also considered the effective rank for a related
problem; we additionally cover a wider range of cases in the
weak supervision setting and give a tighter characterization.

Recall that the structure of K−1
O contains our key problem

parameters—but ΣO does not. We show that

re(ΣO) ≤ re(K−1
O ) +

‖v‖2

‖K−1
O ‖

.

Therefore, the effective rank of ΣO can be controlled via
the effective rank of K−1

O . We can then characterize re(ΣO)
in terms of structural information about the supervision
sources. More details on this process are in the Appendix.

4.2. Conditions on the Effective Rank & Main Results

We provide two separate conditions on the effective rank,
which lead to two different improved regimes for recovery
in Algorithm 1. Let 0 < τ ≤ 1 be a constant and d the
maximum dependency degree.
Definition 1 (SBD Condition). The matrix ΣO satisfies the
source block decay (SBD) condition if its effective rank
re(ΣO) satisfies

re(ΣO) ≤ mτ

(1 + τ) logm

Cond. re(ΣO) s Rate

Bach none none Ω(m logm)
Wu none none Ω(d2m)

SBD O( mτ

logm ) O

((
m

log2m

)τ/(2−τ)
)

Ω(d2mτ )

SSB O(d) none Ω(d2 logm)

Table 1. Conditions and rates for latent variable structure learning.

and the number of clusters s satisfies

s ≤ m
τ

2−τ

((1 + τ) logm)2/(2−τ)
.

This condition represents a mild assumption on the struc-
ture of ΣO (and, equivalently K−1

O ). It corresponds to mild
eigenvalue decay in the source blocks, and a condition lim-
iting the total number of blocks. In the weak supervision
setting, this translates to the strength of some of the corre-
lations in a cluster differing. By exploiting this decay and
controlling the total number of blocks s, we can obtain a
sublinear sample complexity of Ω(d2mτ ) for Algorithm 1.

Definition 2 (SSB Condition). The matrix ΣO satisfies the
strong source block (SSB) condition if its effective rank
re(ΣO) satisfies re(ΣO) ≤ cd, where c is a constant.

The alternate condition is equivalent to the presence of a
cluster of sources that forms a strong voting block, dominat-
ing the other sources. With this condition, we can retrieve
the optimal rate of Ω(d2(1 + τ) logm) from the supervised
case. We provide a more precise characterization for the
effective rank bounds in the proof of the theorem in the
Appendix.

Additional Standard Conditions Next, we highlight the
general conditions used by Chandrasekaran et al. (2012) and
Wu et al. (2017) whose work we build on; we require these
to hold in addition to the SBD or SSB conditions we define
above. Specifically, we use a series of standard quantities
that control transversality, introduced by Chandrasekaran
et al. (2012) and Wu et al. (2017). Let

hX(Y ) =
1

2
(XY + Y X).

Let PS denote orthogonal projection onto subspace S. The
following terms are used to control the behavior of hX(·)
on the spaces Ω(S) and T (L). For convenience, we simply
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use Ω and T to denote these spaces. Let

αΩ = min
M∈Ω,‖M‖∞=1

‖PΩhΣO (M)‖∞,

δΩ = min
M∈Ω,‖M‖∞=1

‖PΩ⊥hΣO (M)‖∞,

αT = min
M∈T,‖M‖=1

‖PThΣO (M)‖,

δT = min
M∈T,‖M‖=1

‖PT⊥hΣO (M)‖,

βT = max
M∈T,‖M‖∞=1

‖hΣO (M)‖∞,

βΩ = max
M∈Ω,‖M‖=1

‖hΣO (M)‖.

We set

α = min{αΩ, αT }, β = max{βT , βΩ}, δ = max{δΩ, δT }.

The following irrepresentability conditions are inherited
from Wu et al. (2017) and are generalizations of standard
conditions from the graphical model literature (Ravikumar
et al., 2011; Zhang & Zou, 2014): there exists ν ∈ (0, 1/2)

δ/α < 1− 2ν, and

µ(Ω)ξ(T ) ≤ 1

2

(
να

(2− ν)β

)2

.

Finally, let ψ1 be the largest eigenvalue of ΣO, ψm be the
smallest, let KO,min be the smallest non-zero entry in KO,
and σ be the nonzero eigenvalue of zzT . We set

γ =
να

2dβ(2− ν)
.

Main Results We now present the formal result for the
consistency of Algorithm 1. First, the SBD case:

Theorem 1 (Source Block Decay Case). Let 0 < τ ≤ 1 be
a constant. Suppose that the standard conditions above and
the SBD condition are met. Set

λn = max{1, γ−1} (3− 2ν)c1ψ1

√
mτ

ψm
√
n

.

Let

ρ1 =

[
6c2β(3− 2ν)(2− ν)ψ1

να2ψm
max{ γ

KO,min
, σ−1,

1

ψm
}
]2

.

If the number of samples n satisfies

n > ρ1d
2mτ ,

and we run Algorithm 1, then, with probability at least
1−m−τ , we recover the exact structure G.

Next, the SSB case:

Theorem 1 (Strong Source Block Case). Suppose instead
that in addition to the standard conditions, the SSB condi-
tion holds. Set

λn = max{1, γ−1} (3− 2ν)c4c2ψ1d(1 + τ) log(m)

ψmn
.

Let

ρ2 =
6βc2c4(3− 2ν)(2− ν)ψ1

να2ψm
max

{
γ

KO,min
, σ−1,

1

ψm

}
.

If the number of samples n satisfies

n > ρ2(1 + τ)d2 log(m),

then, with probability at least 1−m−τ , we recover the exact
structure G.

We provide a formal proof of Theorem 1 in the Appendix.
The proof modifies the proof technique in Wu et al. (2017)
by applying stronger concentration inequalities.

5. Information-Theoretic Lower Bound
So far, we analyzed a specific algorithm, showing that under
the stronger of our two conditions, the sample complex-
ity matches the optimal one of Ω(d2 logm) for supervised
structure learning. Now we explore the general question
of the fundamental limits of structure learning with latent
variables. We derive the information-theoretic lower bounds
on sample complexity: bounds that show that for any such
algorithm, at least a certain number of samples is required
to avoid incurring a particular probability of error.

First, we consider the general latent-variable case. We do
not need to have Y connected to each of the λi source vari-
ables; Y may be connected to just some of these sources.
Even if we ensure that the class of graphs we are working
over is connected overall, there are graphs that cannot be
distinguished, with any number of samples. One such ex-
ample is shown in Figure 1. Here, we have two graphs, G1

and G2, where the only difference is that in one case, there
is an edge between Y and λ1, while in the other, there is an
edge between Y and λ2. By observing only λ1 and λ2, but
not Y , we cannot distinguish between these two graphs.

Working in the fully-general latent structure learning setting
leads to uninteresting results. Instead, we again work in
the weak supervision setting where Y is connected to all
of the λi’s. We already know, from our algorithmic analy-
sis, that in certain cases we can recover the structure with
Ω(d2 logm) samples, and this quantity is optimal even in
the supervised case. Certainly we expect that the presence
of the latent variable Y will require more samples (in terms
of lower bounds). In Theorem 2 we quantify this difference.
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λ1 λ2

Y

G1

λ1 λ2

Y

G2

Figure 1. In these two graphs, Y is not connected to every source.
Observing λ1 and λ2 does not allow us to establish which of
{G1, G2} is the true model, regardless of the number of samples.

The strategy used to derive information-theoretic lower
bounds is to construct a collection of graphs along with
a set of parameters and to use Fano’s inequality (or related
methods) that rely on a notion of distance between pairs of
graphs in the collection. The smaller this distance, the larger
the number of samples required to distinguish between a
pair of graphs. Our approach is to consider a collection
of graphs used to derive the Ω(d2 logm) lower bound, and
to construct the equivalent collection in the latent-variable
weak supervision case. We then compute how much larger
the number of samples required for reliably selecting the
correct graph is for the unsupervised versus supervised case.

Let Gws be the class of graphs on m+ 1 nodes (m sources
and 1 latent node connected to all of the other nodes) with
maximum degree d, structured according to our exponential
family model, restricted to the setting where only edge pa-
rameters are non-zero, and all such edge parameters are θ.
Let M = |Gws|. Our main result is

Theorem 2. Any decoding procedure to determine G from
samples of λ1, . . . , λm will have maximum probability of
error at least δ− 1

logM if the number of samples n is upper-
bounded as

n < (1− δ) log(m(m− 1)/2)

2θ(1− 4(exp(4θ) + 3)−1 − tanh2(θ))
.

As expected, that the number of samples here is larger
than supervised version, where the expression simply has
a 2θ tanh θ in the denominator (Santhanam & Wainwright,
2012). In particular, the number of additional samples n∆

we need is given by

n∆ =
(1− δ) log(m(m− 1)/2)

2θ
×[

1

1− 4(exp(4θ) + 3)−1 − tanh2(θ)
− 1

tanh θ

]
.

This quantity characterizes the cost in sample complexity
due to the weak supervision setting. We observe, however,

that in the limit of θ → 0, this relative cost is not too high.
This is the regime of interest for d,m → ∞, where we
require θ → 0 to avoid an exponential sample complexity
(Santhanam & Wainwright, 2012). Then, the relative ver-
sion of the cost above can be upper bounded by 2. That
is, we need no more than twice as many samples as in the
supervised case to avoid an unreliable encoder.

As expected, latent variable structure learning requires more
samples than the fully-supervised version; potentially, in-
finitely more. However, the weak-supervision setting pro-
vides us with a tractable scenario, where the lower bounds
are not much larger than the supervised equivalents.

We briefly comment on the approach to Theorem 2. The
collection considered is takes the graphs where all of the
λi’s have no edge between them and adds a single edge
between λs and λt, s 6= t ∈ {1, . . . ,m}. Thus there are(
m
2

)
such graphs in the collection. In the supervised setting,

there is just one such edge per graph since there is no latent
variable Y ; in our setting, there are m additional edges
between each λi and Y . Intuitively, the challenge when
distinguishing between graphs is to ascertain whether a pair
of nodes are connected by an edge; this is harder in our
setting since all pairs of nodes as connected through Y .

6. Experimental Results
We evaluate our structure learning method on real-world
applications ranging from medical image classification to re-
lation extraction over text. We compare our performance to
several common weak supervision baselines: an unweighted
majority vote of the weak supervision source labels, a gener-
ative modeling approach that assumes independence among
weak supervision sources (Ratner et al., 2016), and a genera-
tive model using dependency structure learned with an exist-
ing structure learning approach for weak supervision (Bach
et al., 2017). We report performance of the discriminative
model trained on labels from these generative models in
Table 2. Finally, we run simulations to explore the perfor-
mance of our method under two conditions from Section 3.

6.1. Real-World Tasks

Task Descriptions We describe the different weak super-
vision tasks, the associated weak supervision sources, and
the discriminative model used to perform classification. The
Bone Tumor task is to classify tumors in X-rays as aggres-
sive or non-aggressive (Varma et al., 2017b). The discrimi-
native model is a logistic regression model over hundreds
of shape, texture, and intensity-based image features. The
supervision sources are user-defined heuristics and decision
trees over features extracted from the X-rays.

The CDR task is to detect relations among chemicals
and disease mentions in PubMed abstracts (Bach et al.,
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Improvement Over

Application m (s, d) MV Indep. Bach et al. Ours Indep. Bach et al.

Bone Tumor 17 (2,3) 65.72 67.32 67.83 71.96 +4.64 +4.13
CDR 33 (22,14) 47.74 54.60 55.90 56.81 +2.21 +0.91
IMDb 5 (1,4) 55.21 58.80 60.23 62.71 +3.91 +2.48
MS-COCO 3 (1,2) 57.95 59.47 59.47 63.88 +4.41 +4.41

Table 2. Statistics for weak supervision tasks (m: number sources, s: number of cliques, d: max. degree of source). F1 scores of
discriminative models trained on labels generated by majority vote (MV), a generative model with no dependencies (Indep.), a generative
model with dependencies learned by a prior structure learning approach for weak supervision (Bach et al), and by our approach (Ours).

2017; Wei et al., 2015). The discriminative model is an
LSTM (Graves & Schmidhuber, 2005) that takes as in-
put sentences containing the mentions. The supervision
sources are distant supervision from the Comparative Toxi-
cogenomics Database (Davis et al., 2016) and user-defined
heuristics. The IMDb task is to classify plot summaries as
describing action or romantic movies (Varma et al., 2017c).
The discriminative model is an LSTM that takes as input
the entire plot summary. The supervision sources are user-
defined heuristics that look for mentions of specific words.
The MS-COCO task is to classify images as containing
a person (Varma et al., 2017a). The discriminative model
is GoogLeNet. The supervision sources are user-defined
heuristics written over associated captions.

Performance Our method learns dependencies among the
supervision sources for each of the tasks described above,
which leads to an average improvement of 3.80 F1 points
over the model that assumes independence. For the MS-
COCO task, Bach et al. (2017) is unable to learn any depen-
dencies while our method learns a single pairwise depen-
dency, which improves performance by 4.41 F1 points. For
the Bone Tumor task, our method identifies 2 cliques with 3
supervision sources. The first clique consists of heuristics
that all rely on features related to edge sharpness along the
lesion contour of the tumor, while the sources in the second
clique rely on features describing the morphology of the
tumor. Incorporating these dependencies in the generative
model improves over Bach et al. (2017) by 4.13 F1 points.
Finally, for the IMDb task, our method learns a clique in-
volving 4 sources while Bach et al. (2017) only learns 3
pairwise dependencies among the same sources. Learning a
clique improves performance by 2.48 F1 points.

6.2. Simulations

We also perform simulations over synthetic data using 200
weak supervision sources to explore how our performance
compares to Bach et al. (2017) under the two conditions on
effective rank described in Section 4, the SSB condition and
the SBD condition. We define success as how often these
methods are able to learn the true dependencies and plot our
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Figure 2. Shaded region shows where n < m. With the SSB
condition, our method significantly outperforms existing method.
Without this condition, neither methods work well when n < m.

results in Figure 2. We first generate labels from supervision
sources to match the SSB condition by ensuring there exists
a single cluster of strongly correlated sources along with
other more weakly correlated sources. We observe that
our method performs significantly better than Bach et al.
(2017), and is capable of recovery in the regime where n is
roughly in the range (logm, m). Second, we simulate the
SBD condition by generating multiple cliques of sources
where a single dependency in each clique is stronger than
the rest. We continue to perform better compared to Bach
et al. (2017) under this condition and across all values of n.

7. Conclusion
The dependency structure of generative models significantly
affects the quality of the generated labels. However, learning
this structure without any ground truth labels is challenging.
We present a structure learning method that relies on robust
principal component analysis to estimate the dependencies
among the different weak supervision sources. We prove
that the amount of unlabeled data required to estimate the
true structure can scale sublinearly or even logarithmically
with the number of weak supervision sources, improving
over the standard sample complexity, which is linear. Under
certain conditions, we match the information-theoretic opti-
mal lower bound in the supervised case. Empirically, this
translates to our method outperforming traditional structure
learning approaches by up to 4.41 F1 points and methods
that assume independence by up to 4.64 F1 points.
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First, we provide a glossary of terms and notation that we use throughout this paper for easy summary. Afterwards, we
provide an extended discussion of related work. We give the proofs of our main results (the lemma and the two theorems).
Next, we include a discussion on other aspects of generating information-theoretic lower bounds for the weak supervision
setting. We also consider extending robust PCA-based techniques for structure learning without the singleton separator set
assumption. Finally, we give additional experimental details.

A. Glossary
The glossary can be found in Table 3 below.

Symbol Used for

X Data point, X ∈ X
n Number of data points
Y Latent label
λi Weak supervision sources output by the ith source for X
m Number of sources
G Source dependency graph, G = (V,E), V = {λ1, ..., λm} ∪ {Y }
fG Density of weak supervision sources λ1...λm and latent variable Y
d Maximum degree of weak supervision sources in G
s Number of cliques of dependent weak supervision sourcess in G
O The set of observable variables, i.e., weak supervision sources (but not the label Y )
S The set of unobserved variables, i.e., the latent label Y
Σ Covariance matrix of O ∪ S , Σ = Cov [O ∪ S]
K The inverse covariance matrix K = Σ−1

ΣO Covariance matrix of O, the observed variables. Neither ΣO nor Σ−1
O are graph structured

KO Sub-block of inverse covariance matrix K corresponding to observed variables
zzT Low rank matrix that encodes the parameters of the graph fG such that KO = Σ−1

O + zzT

T (L) Tangent space for the low-rank component in robust PCA, T (L) = {UXT + Y V T | Y1, Y2 ∈ Rm×r}
Ω(S) Tangent space for the sparse component, Ω(S) = {X ∈ Rm×m | supp(N) ⊆ supp(S)}
ξ(T (L)) Measurement of diffuseness of the low-rank term, ξ(T (L)) = maxN∈T (L),‖N‖≤1 ‖N‖∞
µ(Ω(S)) Measurement of sparsity, µ(Ω(S)) = maxN∈Ω(S),‖N‖∞=1 ‖N‖
τ Constant between 0 and 1 that controls the sampling rate and the error probability
ψ1 Smallest eigenvalue of ΣO
ψm Largest eigenvalue of ΣO
γ Hyperparameter in Algorithm 1
λn Positive eigenvalue of L = zzT

σ Constant related to λn that controls sample complexity of Algorithm
KO,min Smallest non-zero entry of |KO|
αΩ minM∈Ω,‖M‖∞=1 ‖PΩhΣO (M)‖∞
δΩ minM∈Ω,‖M‖∞=1 ‖PΩ⊥hΣO (M)‖∞
αT minM∈T,‖M‖=1 ‖PThΣO (M)‖
δT minM∈T,‖M‖=1 ‖PT⊥hΣO (M)‖
βT maxM∈T,‖M‖∞=1 ‖hΣO (M)‖∞
βΩ maxM∈Ω,‖M‖=1 ‖hΣO (M)‖
α min{αΩ, αT }
β max{βT , βΩ}
δ max{δΩ, δT }

Table 3. Glossary of variables and symbols used in this paper.
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B. Extended Related Work
A common alternative to hand labeling data is using weak supervision sources, such as distant supervision (Craven et al.,
1999; Mintz et al., 2009), multi-instance learning (Riedel et al., 2010; Hoffmann et al., 2011) and heuristics (Bunescu &
Mooney, 2007; Shin et al., 2015). Estimating the accuracies of weak supervision sources without ground truth labels is a
classic problem (Dawid & Skene, 1979). Methods like crowdsourcing (Dalvi et al., 2013; Joglekar et al., 2015; Zhang et al.,
2016), and boosting (Schapire & Freund, 2012) are common approaches; however, we focus on the case in which no labeled
data is required.

Recently, generative models have been used to combine various sources of weak supervision (Alfonseca et al., 2012;
Takamatsu et al., 2012; Roth & Klakow, 2013; ?; Ratner et al., 2019). Most previous work assumes that the structure of
these models is user-specified. Bach et al. (2017) recently showed that it is possible to learn dependencies with a sample
complexity that scales quasilinearly with the number of sources. Varma et al. (2017b) inferred dependencies using the code
used to define the weak supervision sources. Our method improves over Bach et al. (2017) by reducing the dependence on
the number of sources to sublinear, and, under stronger conditions, logarithmic, and is able to learn dependencies that are
not explicit in the code, thus improving over Varma et al. (2017b) as shown in Section 6.

Structure learning outside the context of weak supervision can be roughly divided into the supervised and unsupervised
case, which require access to ground truth labels and not, respectively. Within these, we can further split the methods into
node-wise and matrix-wise methods. Node-wise methods, like Bach et al. (2017), use regression on a particular node to
recover that node’s neighborhood (Candes et al., 2007; Ravikumar et al., 2010; Wainwright & Jordan, 2008; Tibshirani,
1996) and matrix-wise methods like ours use the inverse covariance matrix to determine the structure (Loh & Wainwright,
2013; Chandrasekaran et al., 2012). The canonical matrix-wise method in the supervised case is the graphical Lasso
algorithm (GLASSO) (Friedman et al., 2008).

Analysis of the graphical lasso applied to sparse inverse covariance matrices was studied in Ravikumar et al. (2011), which
achieves a sample complexity of d2 logm. The key question is then when the inverse covariance (precision) matrix of a
random vector is sparse. In the classical, Gaussian case, the sparsity is governed by the graphical model associated with
the vector: if a pair of variables are independent conditioned on all the other variables (i.e., there is no edge between the
associated nodes in their graph), the precision matrix is 0 at the corresponding entry. This is not necessarily the case for
non-Gaussian models. For discrete models, (Loh & Wainwright, 2013) characterizes the situations when the precision
matrix is indeed graph-structured. In many cases, it is necessary to form a larger, generalized covariance matrix. However,
for graphs with singleton separator sets, the normal precision matrix is graph-structured.

The idea of using robust PCA for separating the sparse part of the precision matrix (encoding the graph structure) from the
low-rank matrix that captures the marginalizing effects dates back to the original papers on robust PCA (Chandrasekaran
et al., 2012). For Gaussian graphical models with latent variables, Chandrasekaran et al. (2011) produced the seminal work
Chandrasekaran et al. (2012). More recent work follows the same approach, but modifies the loss function (Wu et al., 2017)
and relaxes the Gaussian assumptions. On the other hand, Wu et al. (2017) still requires a partially Gaussian model in order
to induce sparsity, while our work operates in the discrete case entirely by leveraging the singleton separator set criteria.
Both of these works lead to a Ω(m) rate. The work Meng et al. (2014) is closer to the spirit of our approach; one of their
results also considers using the effective rank by applying a theorem from Lounici (2014). However, our work and theirs
has key differences: they consider the Gaussian rather than discrete setting, they are interested in model estimation rather
than selection. Finally, they work in a general setting; our work in the weak supervision setting enables us to more tightly
characterize the effective rank in terms of key sparsity parameters, while they leave the effective rank as a parameter that can
only be measured.

The major work for structure learning in the weak supervision regime is Bach et al. (2017). This is a fundamentally different
approach, building on the node-wise methods and using a pseudo-likelihood to estimating the structure. The key requirement
of Bach et al. (2017) is the maximum number of dependencies d. However, this maximum is taken over all variables, both
observed and latent. In the weak supervision scenario, there is a dependency between each weak supervision sources and the
latent true label, and therefore this degree d always takes the value m (Corollary 2 in Bach et al. (2017)), leading to a rate of
Ω(m logm). The key advantage of our work is that for us, d is taken over the observed variables only—and therefore can
be much smaller than m. This enables us to obtain sublinear (and even logarithmic) rates in m, and to better scale with the
sparsity of the model.
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C. Proofs
Next, we give proofs of our results, starting with Lemma 1.

Proof. Our goal is to bound the product µ(KO)ξ(zzT ). Bounding µ(KO) is easy: we apply the simple bound µ(KO) ≤ d
(Proposition 3 in Chandrasekaran et al. (2011)).

We must bound the ξ(zzT ) term, which we do as follows. First, since zzT is symmetric, it has the same row-space and
column-space. Let this row-space be denoted rs(zzT ). Define β(S) := maxi ‖PSei‖2, where PS is projection onto the
subspace S and ei is the ith standard basis vector. Then, from Proposition 4 in Chandrasekaran et al. (2011)),

ξ(zzT ) ≤ 2β(rs(zzT )).

Since zzT is rank-one, its row-space is simply spanned by z and β(rs(zzT )) = ‖z̄‖∞, where z̄ is z/‖z‖. Now, applying the
definition of z,

β(rs(zzT )) = ‖z̄‖∞ =
‖z‖∞
‖z‖

=
‖Σ−1

O ΣOS‖∞
‖Σ−1

O ΣOS‖
. (4)

Now, we can upper bound the numerator

‖Σ−1
O ΣOS‖∞ ≤ ‖Σ−1

O ‖∞‖ΣOS‖∞.

We lower bound the denominator as

‖Σ−1
O ΣOS‖ ≥ σmin(Σ−1

O )‖ΣOS‖ =
‖ΣOS‖

σmax(ΣO)
.

Using these bounds in (4), we have that

β(rs(zzT )) ≤
(
σmax(ΣO)‖Σ−1

O ‖∞‖ΣOS‖∞
‖ΣOS‖

)
. (5)

Recall that amin, amax are the smallest and largest terms in ΣOS , respectively. Similarly, recall that cmin, cmax are the
smallest and largest terms in ΣO. We have that ‖ΣOS‖∞ = amax. Also, ‖ΣOS‖ ≥

√
mamin, so that

‖ΣOS‖∞
‖ΣOS‖

≤ amax√
mamin

.

Bounding ‖Σ−1
O ‖∞ is slightly more challenging. Recall the definition of a symmetric diagonally dominant (SDD) matrix. A

matrix J ∈ Rm×m is SDD if it is symmetric and if ∆i(J) := |Jii|−
∑
j 6=i |Jij | ≥ 0 for all i = 1, . . . ,m. It is often the case

that covariance matrices are SDD (for example, this is the case for the covariances of Gaussian free field models). Even if
ΣO is not SDD, we can make it SDD by performing the operation ΣO ← ΣO + νI , for some ν satisfying ν ≤ (m− 1)cmax.
This operation is equivalent to adding independent noise with variance ν to each of the supervision sources. Critically, this
does not affect the off-diagonal entries of Σ, which are what we wish to recover.

Thus we take ΣO ← ΣO + νI so that ΣO is SDD. Then we apply the following tight bound on the∞ norm of the inverse
of a SDD matrix (Hillar et al., 2014):

‖Σ−1
O ‖∞ ≤

3m− 4

2cmin(m− 2)(m− 1)
≤ 8

5cminm
.

Finally, we must bound the largest singular value of ΣO. Here, we use a Gerschgorin-style bound (Qi, 1984): σmax(ΣO)
is at most the largest row or column sum (excluding diagonal elements) plus the largest diagonal element. For us,
σmax(ΣO) ≤ ν +mcmax ≤ (2m− 1)cmax.
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Putting these results into (5), we obtain

β(rs(zzT )) ≤8(2m− 1)cmaxamax

5m3/2cminamin

≤ 3.2√
m

cmaxamax

cminamin
.

Thus,

ξ(zzT ) ≤ 6.4√
m

(
cmax

cmin

)(
amax

amin

)
.

Multiplying by µ(KO) ≤ d gives the result.

Proof of Theorem 1 Now we prove Theorem 1.

Proof. Our approach proceeds in two steps. First, we bound the effective rank (Vershynin, 2012) of our estimate of ΣO, the
covariance matrix of the observed sources. Next, we apply a pair of concentration bounds for estimating ΣO. Afterwards,
we show how to adapt the proof of Theorem 4.1 in Wu et al. (2017) to obtain the result in Theorem 1.

Effective Rank The effective rank of a matrix A is

re(A) =
tr(A)

‖A‖
.

This quantity can be far smaller than the actual rank. As we shall see, sharp concentration bounds for estimating ΣO can be
derived by exploiting re(ΣO). We begin by bounding this quantity in our setting. Applying the matrix inversion lemma, we
have that

ΣO = K−1
O + (KS −KT

OSK
−1
O KOS)−1K−1

O KT
OS(K−1

O KT
OS)T

= K−1
O + vvT ,

where v = (KS −KT
OSK

−1
O KOS)−

1
2K−1

O KT
OS . Then,

re(ΣO) =
tr(ΣO)

‖ΣO‖

=
tr(K−1

O + vvT )

‖ΣO‖

=
tr(K−1

O ) + tr(vvT )

‖ΣO‖
= (tr(K−1

O + tr(vvT ))(λmin(Σ−1
O ))

= (tr(K−1
O ) + tr(vvT ))(λmin(KO − zzT ))

≤ (tr(K−1
O ) + tr(vvT ))(λmin(KO) + λmax(−zzT ))

=
tr(K−1

O ) + ‖v‖2

‖K−1
O ‖

= re(K
−1
O ) +

‖v‖2

‖K−1
O ‖

.

Here, we upper bounded the effective rank of ΣO in terms of the effective rank of K−1
O . The motivation for doing so is

that K−1
O is more tractable to analyze with respect to our key quantities, such as d and s. Recall that KO is sparse matrix.

Moreover, it is (a permutation) of a block diagonal matrix. Then, K−1
O is also block diagonal and sparse.

Next, we motivate the two conditions from Theorem 1. Recall that s is the number of cliques among our supervision sources.
Let C1, C2, . . . , Cs be the cliques that correspond to the variables λ1, . . . , λm, with

∑s
j=1 |Cj | = m and |Cj | ≤ d for all

1 ≤ j ≤ s. With slightly abuse of notation, we also refer to Cj as the corresponding submatrix in K−1
O .
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For our first condition, note that in general tr(Ci) ≤ |Ci|λmax(K−1
O ). We assume that tr(Ci) ≤ 1

2 |Ci|
τ/2λmax(K−1

O ) ≤
λmax(K−1

O )|Ci|τ/2. Effectively, we are assuming eigenvalue decay in each clique of sources with rate τ/2; this is reasonable,
since these blocks behave like the adjacency graph of a complete graph. The largest eigenvalue of such an adjacency matrix
is large, but all remaining eigenvalues are small. Now, under this assumption, we have, by Holder’s inequality,

re(K
−1
O ) =

∑s
j=1 tr(Cj)

λmax(K−1
O )

≤ 1

2

s∑
j=1

|Ci|τ/2 ≤
1

2
s1−τ/2

 s∑
j=1

|Ci|

τ/2

≤ 1

2
s1−τ/2mτ/2.

We have the following additional requirement:

s ≤ m
τ

2−τ

((1 + τ) logm)2/(2−τ)
.

This condition controls the largest number of cliques; note that taking τ → 1 allows for nearly m cliques (this is thus close
to the case where all the sources are conditionally independent on the true label). Now, with a little bit of algebra, we have
that

re(K
−1
O ) ≤ 1

2
s1−τ/2mτ/2 ≤ mτ/2

(1 + τ) logm
mτ/2

=
1

2

mτ

(1 + τ) logm
.

We will similarly require that ‖v‖ is bounded by the expression above (that is, O( 1
2m

τ/2/ log(m)), so that

re(ΣO) ≤ mτ

(1 + τ) logm
. (6)

Next, we have the alternative strong source block condition. Now, we assume that one of the blocks corresponding to a
clique is dominant. Concretely, if Ci is dominant, we require that (i) tr(Ci) ≥

∑
j 6=i tr(Cj), (ii) λmax(Ci) ≥ λmax(Cj) for

all j 6= i, and (iii) ‖KOS‖2 ≤ 2‖(KOS)Ci‖2. In the latter term, (KOS)Ci is the subvector of KOS corresponding to the
variables in Ci.

Under these assumptions, we show that the effective rank is bounded by a constant times d. First,

re(K
−1
O ) =

tr(K−1
O )

‖K−1
O ‖

=
tr(K−1

O )

λmax(Ci)
≤ 2tr(Ci)
λmax(Ci)

≤ 2dλmax(Ci)

λmax(Ci)
= 2d.

Next,

‖v‖2/‖K−1
O ‖ = ‖cK−1

O KT
OS‖2/‖K−1

O ‖ ≤ c
2‖K−1

O ‖‖KOS‖2 ≤ c2‖K−1
O ‖2‖(KOS)Ci‖2

≤ 2c2‖K−1
O ‖(d‖(KOS)Ci‖2∞) ≤ c′d,

for some constant c′.

Putting these together, we have that

re(ΣO) ≤ re(K−1
O ) + ‖v‖2/‖K−1

O ‖ ≤ 2d+ c′d = c4d,

where c4 = 2 + c′, as desired.

Concentration Inequality We use a very slightly-modified version of Theorem 2.2 from Bunea & Xiao (2015). Written
in our notation, it states that with probability at least 1− exp(−t),

‖Σ(n)
O − ΣO‖ ≤ c2‖ΣO‖max

{√
re(ΣO)(t+ logm)

n
,
re(ΣO)(t+ logm)

n

}
. (7)
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First, let us show why this result applies to our setting. Let λ be the observed random vector (λ1, . . . , λm) and λ̄ be its mean.
Then λ− λ̄ is a centered discrete random variable, and thus bounded. Our random vector is then sub-Gaussian. Next, we
note that it satisfies Assumption 1 of Bunea & Xiao (2015), the only requirement for the concentration inequality we use
(the assumption is a bound on the higher-order moments of λ as a function of the second moment); again, this property
follows from boundedness.

Next, to produce (7), we combine Proposition A.2 and Proposition A.4, with the only change being the replacement of the
norm in Proposition A.2 with ‖v − λ̄‖2; here we recall that v is our estimate of the mean. Note that the variable v − λ̄ is
centered and sub-Gaussian; the remainder of the proof follows.

Now, if re(ΣO)(t+ logm)/n ≤ 1, or, equivalently, re(ΣO) ≤ n
t+logm , the max on the right hand side in (7) takes the first

value. We can then rewrite the bound as

‖Σ(n)
O − ΣO‖ ≤ c2‖ΣO‖

√
re(ΣO)(t+ logm)

n
. (8)

On the other hand, if re(ΣO) > n
t+logm , we have that the second term in the max is larger, so that we obtain

‖Σ(n)
O − ΣO‖ ≤ c2‖ΣO‖

re(ΣO)(t+ log(m))

n
. (9)

Remainder of the Proof Now we tackle the proof of the main theorem, which adapts the proof of Theorem 4.1 in (Wu
et al., 2017). The key is to replace Lemma D.1, which states (in our notation) that, for some constant CK ,

Pr

{
‖Σ(n)

O − ΣO‖ ≤ CK
√
m

n

}
≥ 1− 2 exp(−m).

For the source block decay (SBD) assumption, we use (8) with t = τ logm. Then, as long as n ≥ mτ , it is easy to verify
that the condition

re(ΣO) ≤ mτ

logm(mτ )
≤ n

(1 + τ) logm

is met by directly applying the bound on re(ΣO) from (6). Next,

‖Σ(n)
O − ΣO‖ ≤ c2‖ΣO‖

√
re(ΣO)(1 + τ) logm

n

≤ c2‖ΣO‖
√
mτ

n
.

We write

Fsbd(n,m, τ) = c2‖ΣO‖
√
mτ

n
= c2ψ1

√
mτ

n
.

Next, we work with the strong source block (SSB) condition. Again, we wish to obtain a final error probability of at least
1−m−τ , so that we take t = τ logm. Applying our bound on re(ΣO), the tail bound (9) becomes

‖Σ(n)
O − ΣO‖ ≤

1

n
c2c4‖ΣO‖d(1 + τ) log(m). (10)

We set

Fssb(n,m, d) :=
c2c4ψ1d(1 + τ) log(m)

n
.

Now that we have our two tail functions Fsbd(n,m, τ) and Fssb(n,m, d), we will finish off the proof by adapting the proof
of Wu et al. (2017). For the first condition, we replace the tail term

√
m/n with a

√
mτ/n term, so that our require number

of samples is the sublinear mτ (rather than m). For the second condition, we replace
√
m/n in Wu et al. (2017) with a

(logm)/n term, which produces a sampling rate in terms of (logm) instead of m.
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Concretely, we replace theCK
√

p
n term in the proof of Theorem 4.1 in Wu et al. (2017) withFsbd(n,m, τ) andFssb(n,m, d).

In particular, for the first case, we do this replacement in the following expression for the dual norm gγ ,

gγ(A†h
Σ

(n)
O

(R∗)) ≤ m‖Σ(n)
O R∗‖ ≤ γ−1

ψm
Fsbd(n,m, τ),

in the step immediately preceding (D.4). Note that here, we replace max{1, γ−1} with γ−1, since in our regime of interest,
γ−1 ≥ 1. Indeed, this is equivalent to requiring that along with the condition on µ(Ω)ξ(zzT ), we have 2d ≥ ξ(zzT ). Note
also that our notation for the smallest eigenvalue is slightly different.

The term then carries forward, with the final requirement being the selection of the regularization term λn at the end of Step
1 of the proof. Hence, we now require that

λn =
(3− 2ν)γ−1

ψm
F(n,m, τ)sbd.

For the second condition, we replace the CK
√

p
n term with Fssb(n,m, d). We now need that

λn =
(3− 2ν)γ−1

ψm
F(n,m, d)ssb.

All that is left is to ensure the three conditions in the statement of Theorem 4.1 in Wu et al. (2017) are met. These conditions
are (in our notation)

σ >
3

α
λn,

1

ψm
>

3λn
α
,

and,

KO,min >
3γ

α
λn.

Rewriting these, we have that

1

λn
>

3

α
max

{
1

ψm
,

γ

KO,min
, σ−1

}
. (11)

For our first condition, recalling that γ = να
2dβ(2−ν) ,

λn =
(3− 2ν)γ−1

ψm
F(n,m, τ)sbd

=
2dβ(3− 2ν)(2− ν)

ναψm
F(n,m, τ)sbd

=
2dc2β(3− 2νψ1)(2− ν)

ναψm

√
mτ

n
.

Then, plugging this into (11), we get

n >

[
6c2β(3− 2ν)(2− ν)ψ1

να2ψm
max

{
1

ψm
,

γ

KO,min
, σ−1

}]2

d2mτ .

This completes the first case of the theorem.

Now, for the second case,

λn =
(3− 2ν)γ−1

ψm
F(n,m, τ)ssb

=
2dβ(3− 2ν)(2− ν)

ναψm
F(n,m, τ)ssb

=
2c2c4β(3− 2ν)(2− ν)ψ1

ναψm

d2(1 + τ) log(m)

n
.
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Again, we plug the latter expression into (11), getting

n >
2c2c4β(3− 2ν)(2− ν)ψ1

να2ψm
max

{
1

ψm
,

γ

KO,min
, σ−1

}
(1 + τ)d2 log(m).

Now we are done.

Proof of Theorem 2

Proof. The typical approach taken for minimax-style lower bounds is to construct an ensemble of hypotheses (in our case,
graphs encoding the distribution) and to control the distance between these hypotheses. Concretely, Fano’s lemma is used,
which requires controlling the KL divergence between pairs of distributions. As in prior work (Santhanam & Wainwright,
2012; Shanmugam et al., 2014), we use the symmetric KL divergence S, which is defined by

S(fG||fG′) = D(fG||fG′) +D(fG′ ||fG),

with

D(fG||fG′) =
∑

x∈{0,1}r
fG(x) log

(
fG(x)

fG′(x)

)
.

We use the following variant of Fano’s lemma (Santhanam & Wainwright, 2012)

n < (1− δ) logM
2
M2

∑M
k=1

∑M
`=k+1 S(fGk ||fG`)

. (12)

Here, we have a class of graphs G1, G2, . . . , GM . The result states that if n is upper bounded as in (12), no structure
learning procedure has a better maximum error probability (over the entire family) than δ − 1

logM . Prior work on lower
bounding the sample complexity for structure learning uses multiple choices of ensemble and takes the maximum over the
resulting complexities. In particular, Santhanam & Wainwright (2012) (called SW from now on), considers three ensembles.
The first of these takes a graph on m nodes with no edges, and then adds one edge to form

(
M
2

)
graphs. We will use a similar

construction, with the additional constraint that we are in the weak supervision setting, where we have the label node Y
connected to all other nodes.

We start with full generality. Note that, from our model,

fG(λ1, . . . , λm) =
∑
y

fG(λ1, . . . , λm, y)

=
∑
y

1

Z
exp

∑
λi∈V

θiλi +
∑

(λi,λj)∈E

θijλiλj + θY y +
∑
λi∈V

θY,iyλi


=

1

Z
exp

∑
λi∈V

θiλi +
∑

(λi,λj)∈E

θijλiλj

[∑
y

exp

(
θY y +

∑
λi∈V

θY,iyλi

)]
.

Now we can start computing the symmetric KL divergence between a pair of graphs G,G′ in our class of graphs:

S(G||G′) = EG[log fG − log fG′ ] + EG′ [log fG′ − log fG] (13)

= EG

∑
λi∈V

(θi − θ′i)λi +
∑

(λi,λj)∈E

(θij − θ′ij)λiλj + log

∑
y exp(θY y +

∑
λi∈V θY,iyλi)∑

y exp(θ′Y y +
∑
λi∈V θ

′
Y,iyλi)


+ EG′

∑
λi∈V

(θ′i − θi)λi +
∑

(λi,λj)∈E′
(θ′ij − θij)λiλj + log

∑
y exp(θ′Y y +

∑
λi∈V θ

′
Y,iyλi)∑

y exp(θY y +
∑
λi∈V θY,iyλi)


(14)
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Here, the partition functions cancel out going from the first line to the second.

Now we build our ensemble. Let Gst = (V,E), with V = {λ1, . . . , λm, Y }. We set

E = {(λs, λt), (λ1, Y ), (λ2, Y ), . . . , (λm, Y )}.

Note that the edges consist of the latent label node connected to all other nodes, and the sole additional edge (λs, λt).

For this class of models, we consider only edge potentials, all with parameter θ (of course, the non-edges have a parameter
of 0). With this setting, for two graphs Gst, Guv , where the edge sets are E and E′, respectively, (14) reduces to,

S(Gst||Guv) = EGst

 ∑
(λi,λj)∈E, 6∈E′

θλiλj −
∑

(λi,λj)∈E′,6∈E

θλiλj + log

∑
y exp(

∑
λi∈V θyλi)∑

y exp(
∑
λi∈V θyλi)


+ EGuv

 ∑
(λi,λj)∈E′ 6∈E

θλiλj −
∑

(λi,λj)∈E, 6∈E′
θλiλj + log

∑
y exp(

∑
λi∈V θyλi)∑

y exp(
∑
λi∈V θyλi)



Note that the fraction inside the log is equal to 1—this is because there is an edge between λi and Y for all i. As a result, the
log term is 0. Note also that there is only one edge that differs in each graph, so that the above reduces further to

S(Gst||Guv) = θ(EGst [λsλt]− EGuv [λsλt]) + θ(EGuv [λuλv]− EGst [λuλv]).

By symmetry, this is simply

S(Gst||Guv) = 2θ(EGst [λsλt]− EGuv [λsλt]) (15)

In the supervised case, in the above expression there is no path connecting λs to λt in Guv , so that EGuv [λsλt] = 0 and the
result further reduces to 2θ(EGst [λsλt]). In particular, a simple computation shows that this is equal to 2θ tanh θ. However,
in the unsupervised case, EGuv [λsλt] 6= 0, since there is a path between λs and λt despite the fact that in Guv there is no
edge joining them! The path is through the latent variable Y : λs − Y − λt. As a result, the EGuv [λsλt] > 0 and this term
reduces the overall distance between our graphs. In turn, this means that we require more samples for the weak supervision
case compared to the supervised setting. We make these notions concrete in the following.

We compute EGst [λsλt] and EGuv [λsλt]. This is a simple calculation. Note that since we marginalize over the latent Y , the
vertices λw for w 6∈ {λs, λt} do not contribute anything. Then, we have that

EGst [λsλt] =
exp(3θ)− exp(−θ)

exp(3θ) + 3 exp(−θ)
,

and

EGuv [λsλt] =
exp(2θ) + exp(−2θ)− 2

exp(2θ) + exp(−2θ) + 2
= tanh2(θ),

A small simplification to the first term and plugging this into (15) yields

S(Gst||Guv) = 2θ(1− 4(exp(4θ) + 3)−1 − tanh2(θ)).

Finally, we are ready to apply Fano (12). Since we have
(
m
2

)
choices for which edge to choose, and since S(Gst||Guv) is

the same for all choices, we obtain the bound

n < (1− δ) log(m(m− 1)/2)

2θ(1− 4(exp(4θ) + 3)−1 − tanh2(θ))
.

This completes the proof.
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Conjecture on Singleton Separator Set Dense Ensemble Our proof above used a sparse ensemble to derive a lower
bound: such ensembles use few edges between the supervision sources, and add an edge. Note that our construction satisfied
the singleton separator set property. The other approach is to consider dense ensembles, as in the second ensemble in SW.

This particular ensemble involves dividing up the m nodes evenly into cliques of d nodes each. Then, a single edge is
removed from one of these cliques. However, this ensemble does not satisfy the singleton separator set assumption. To
see why, suppose λ1, . . . , λd is such a clique, and remove the edge between λi, λj for 1 ≤ i, j ≤ d. Now, we have two
maximal cliques: {λ1, . . . , λd} \ {λi} and {λ1, . . . , λd} \ {λj}. The separator set is the intersection of these two cliques:
{λ1, . . . , λd} \ {λi, λj}, which is not a singleton for d > 3.

For the second ensemble, the idea is to ensure that E[λiλj ] is very close to 1, e.g., at least 1− exp(dθ)/d. We conjecture
that the following ensemble, which does satisfy the singleton separator set property, also has the same behavior. Specifically,
take two complete graphs Kd+1 ∪Kd+1. Let us name the vertices as {λi} ∪ {λd+i} for 1 ≤ i ≤ d. Now, in addition to the
two complete cliques, we also add cross-edges (acting as ribs), (λi, λd+i) for 1 ≤ i ≤ d. Now we remove a single edge,
say (λs, λd+s) to form Gs. Note that Gs does satisfy singleton separator set: the maximal cliques are the two complete
subgraphs, along with each of the cross edges. The intersections here are the single nodes that connect the clique with the
cross-edge.

We conjecture that using Gs as in Ensemble 2 in SW will give us a similar amount of control over E[λs, λd+s], providing us
with a similar bound for the more restricted singleton separator set ensemble. Deriving such a bound would present another
bounding regime, sharpening our result in Theorem 2.

Beyond Singleton Separator Sets There is a further remarkable application of robust PCA. Say we wish to perform
structure learning (in the fully supervised setting, where we see Σ) by using a covariance matrix-based approach, but
our graph G does not satisfy the singleton separator set assumption. Then, Σ−1 is not graph-structured, but an enlarged
generalized covariance matrix Σaug is, where this matrix is augmented with variables in the separator set S (Loh &
Wainwright, 2013). Then robust PCA can recover the structure with only Σ−1 as input.

More concretely, suppose that G is a graph where all the separator sets are singleton, with the exception of one set {λs, λt}.
Then, the generalized covariance matrix contains all variables and an additional row corresponding to the entry λsλt. Note
that here we observe all the λi’s, but, as we do not know the structure, we cannot select λsλt to form the generalized
covariance matrix. However, if we treat this variable as latent, taking the role of Y in our analysis, we can use Algorithm 1.
In particular, if our second condition is met, our sample complexity is again Ω(d2 logm), which extends the result in Loh &
Wainwright (2013) to the non-singleton separator set graph class.

D. Extended Experimental Details
For Algorithm 1, cases where we have direct access to the inverse matrix Σ−1

O , such as in (Ratner et al., 2019), where it is
computed for the parameter estimation algorithm, the loss function term in Algorithm 1 is not needed, and we simply run
robust PCA. We now provide additional comparisons to a structure inference method for weak supervision, Varma et al.
(2017b). The method uses the source code that defines different weak supervision sources to infer dependencies among them
by looking at what features of the data the sources rely on. This approach has an advantage over statistical methods since it
does not require any data to infer partial structure. However, this method is unable to infer any structure for CDR and IMDb,
performing up to 3.91 F1 points worse than our method. For the other tasks, our method is able to learn dependencies that
Varma et al. (2017b) infers and additional dependencies that are implicit for the Bone Tumor and MS-COCO tasks. This
leads to an improvement of up to 1.60 F1 points as shown in Table 4.

Improvement Over

Application m (s, d) MV Indep. Bach et al. Partial Ours Bach et al. Partial

Bone Tumor 17 (2,3) 65.72 67.32 67.83 70.79 71.96 +4.13 +1.17
CDR 33 (22,14) 47.74 54.60 55.90 54.60 56.81 +0.91 +2.21
IMDb 5 (1,4) 55.21 58.80 60.23 58.80 62.71 +2.48 +3.91
MS-COCO 3 (1,2) 57.95 59.47 59.47 62.28 63.88 +4.41 +1.60

Table 4. Extended results table with comparison to the structure inference method (Partial).


