Appendix: Probabilistic Neural-symbolic models for
Interpretable Visual Question Answering

1. A variational lower bound on the evidence
for sequential latent variable models

Lemma 1. Given observations {x",z"} and p(x,z) =
p(2)py(x|2z), let 2, the token at the t'" timestep in a se-
quence z be distributed as a categorical with parameters .
Let us denote 11 = {m;}L_,, the joint random variable over
all wy. Then, the following is a lower bound on the joint
evidence L = logp(z™) + log ps (x"|2"):

N
L > loggy(z"|x") + log ps (x"|2")—
n=1

KL (q(TT|z", x")[[p(IT)) (1)

where p(Il) is a distribution over the sampling distri-

butions implied by the prior p(z) and q(II|x™,z") =
q(mo) Hle q(me|x™, 28, -+, 2] 1), where each q(my|-) is
a delta distribution on the probability simplex.

Proof. We provide a proof for the lemma stated in the main
paper, which explains how to obtain a lower bound on the
evidence L for the data samples {x",z"}]_,.

Let us first focus on the prior on (serialized) programs,
log p(z). This is a sequence model, which factorizes as,
logp(z) = logp(z1) + 1, logp(z|{zi}I=}), where
p(zt]-) ~ Cat(m). We learn point estimates of the param-
eters for the prior (in a regular sequence model), however,
the every sequence has an implicit distribution on p(7;). To
see this, note that at every timestep (other than ¢t = 1), the
sampling distribution depends upon {z;}7_,, which is set of
random variables. Let p(I1, z) denote the joint distribution
of all the sampling distributions across multiple timesteps
IT = (71, - ,77) and 2, the realized programs from the
distribution. Let G = {m;,z;} 1,

Since 7y refers to the sampling distribution for z;, we im-
mediately notice that z; | G/m|m:. That is, z; only de-
pends on the sam7p11ng distribution at time ¢, meaning that
log p(z|IT) = >, log p(z¢|m).

With this (stochastic) prior parameterization, we can factor-
ize the full graphical model now as follows: p(x,z, II) =
p(I)p(z|1)p, (x|z). We treat II as a latent variable. Then,

the marginal likelihood for this model is:

L= Zlogp

) + log ps(x"|2") (2)

Notice that this equals the evidence for the original, graphi-
cal model of our interest. Next, we write, for a single data
instance:

log p(x,2z) = log/de(x,z,H)
~log [dllp(IDp(a/1D)ps (x]2)

B p(1II)
~log / S plal T, (a2,)

where we multiply and divided by a variational approxima-
tion ¢(I1|z, x) and apply Jensen’s inequality (due to concav-
ity of log) to get the following variational lower bound:

logp(x,2z) > /qu(H\z,x) [log p(z|IT) + log p, (x|2)]
— KL (g(I|z,x)|[p(II)) (3)

Next, we explain how to parametrize the prior, which is
the key assumption for deriving the result. Let 7, =
f(x,{z;}_1) be the inferred distribution for z;. That is,
z; = Cat(7,). Then, let g (m|x, {z;}I=]) = 6(m — 7)),
that is, a Dirac delta function at 7;.

Further, note that we can write the second term
Ey(t1jz,x) [log p(z|11)] as follows:

dllq(11|z, x) log p(z|11) “4)

—

T
=Y [dmatmlzy it 0 ogplalm) - ©)
t=1

Appendix

Each integral in the sum above can be simplified as follows:
[dmatml ()21 %) log ()

:/d’]T(S(’]Tt_'ﬁ_t) Ing(Zt|'/Tt)

= log p(z¢|)
=logqg(z|{z}!2],x) [by definition]

Substituting into Equation (4), we get:

T
3 / droq(mo| {2} L %) log po (2m,)
t=1

T

= logqs(z/{z}iZ],x)
t=1

= log q4(z|x)

This gives us the final bound, written over all the observed
data points:

N
L > logps(x"|z") +log gy (2"[x")

n=1

— KL (¢(IT]x, 2)[p(IT)) = (6)

O

2. Justification for «

We optimize the full evidence lower bound L, + Uy
using supervised learning for £,. and REINFORCE for
Uqe- When using REINFORCE, notice that Vgl =
Vs log q(z|x™)[R,c — B], where B is a baseline. For the
lower bound on L., the gradient is V4 log ¢(z"|x™). No-
tice that the scales of the gradients from the two terms are
very different, since the order of %y is around the number
of bits in a program, making it dominate in the early stages
of training.

3. Justifications for 5 < 1

During question coding, we learn a latent representation
of programs in presence of a question reconstructor. Our
reconstructor is a sequence model, which can maximize
the likelihood of reconstructed question without learning
meaningful latent representation of programs. Recent the-
ory from Alemi et al. (2018) prescribes changes to the
ELBO, setting 8 < 1 as a recipe to learn representations
which avoid learning degenerate latent representations in
the presence of powerful decoders. Essentially, Alemi et al.
(2018) identify that up to a constant factor, the negative
log-marginal likelihood term D=—F, ., (z|x) [log ps (x|2)],

and the KL divergence term R = KL (¢4 (z|x), p(z)) bound
the mutual information between the data x and the latent
variable z as follows:

H-D<I(x2z) <R)

where H is the entropy of the data, which is a constant. One
can immediately notice that the standard elbo = —D — R.
This means that for the same value of the elbo one can get
different models which make drastically different usage of
the latent variable (based on the achieved values of D and
R). Thus, one way to achieve a desired behavior (of say
high mutual information 7(x, z)), is to set 3 to a lower value
than the standard elbo (c.f. Eqn. 6 in Alemi et al. (2018).)
This aligns with our goal in question coding, and so we use
B < 1.

4. Implementation Details for SHAPES

We provide more details on the modeling choices and hyper-
parameters used to optimize the models in the main paper.

Sequence to Sequence Models: All our sequence to se-
quence models described in the main paper (Section. 2) are
based on LSTM cells with a hidden state of 128 units, single
layer depth, and have a word embedding of 32 dimensions
for both the question as well as the program vocabulary.

The when sampling from a model, we sample till the max-
imum sequence length of 15 for questions and 7 for pro-
grams.

Image CNN: The SHAPES images are of 30x30 in size
and are processed by a two layered convolutional neural
network, which in its first layer has a 10x 10 filters applied
at a stride of 10, and in the second layer, it does 1x1 convo-
lution applied at a stride of 1. Channel widths for both the
layers are 64 dimensional.

Moving average baseline: For a reward R, we use an ac-
tion independent baseline b to reduce variance, which tracks
the moving average of the rewards seen so far during train-
ing. Concretely, the form for the ¢(z|x) network is:

VJ(0) = Epgajx) [(R — b))V og q(z]x)] (8)
where, given D as the decay rate for the baseline,
by =bi—1+ D x*(R—b_1) 9

is the update on the baseline performed at every step of
training.

In addition, the variational parameters ¢ are also updated
via. the path derivative V, log g4(z|x).

Training Details: We use the ADAM optimizer with a
learning rate of 1e—3, a minibatch size of 576, and use a
moving average baseline for REINFORCE, with a decay

Appendix

factor of 0.99. Typical values of /3 are set to 0.1, « is set to
100 and is chosen on a validation set among (1.0, 10.0,
100.0).

Simulating programs from known syntax: We follow a
simple two-stage heuristic procedure for generating a set of
samples to train the program prior in our model. Firstly, we
build a list of possible future tokens given a current token,
and sample a random token from that list, and repeat the
procedure for the new token to get a large set of possible
valid sequences — we then pass the set of candidate sam-
pled sequences through a second stage of filtering based on
constraints from the work of (Hu et al., 2017).

5. Additional Results on SHAPES

Empirical vs. syntactic priors. While our default choice
of the prior p(z) is from programs simulated from the known
syntax, it might not be possible to exhaustively enumerate
all valid program strings in general. Here, we consider the
special case where we train the prior on a set of unaligned,
ground truth programs from the dataset. Interestingly, we
find that the performance of the question coding stage, espe-
cially at reconstructing the questions improves significantly
when we have the syntactic prior as opposed to the empirical
prior (from 38.39 4 11.92% to 54.86 £ 6.75% for 5% pro-
gram supervision). In terms of program prediction accuracy,
we also observe marginal improvements in the cases where
we have 5% and 10% supervision respectively, from 56.23
+ 2.81% to 65.45 £ 11.88%. When more supervision is
available, regularizing with respect to the broader, syntac-
tic prior hurts performance marginally, which makes sense,
as one can just treat program supervision as a supervised
learning problem in this setting.

Predicate Factoring. @We choose to parameterize a
find[green] operation with its own individual parame-
ters O¢ing green; instead of having a parameterization for
O:ing With green supplied as an argument to the neural
module network. In doing so we followed prior work (John-
son et al., 2017). However, we also note that other work (Hu
et al., 2017) has explored the second parameterization. Con-
ceptually, choice of either is orthogonal to the benefits from
our probabilistic formulation. However, for completeness
we implemented argument based modules on SHAPES —
getting similar accuracy as atomic modules (for both Prob-
NMN and NMN). For example, at 15% supervision, Prob-
NMN gets to a joint training VQA accuracy on (SHAPES-
Val) of 97.53 (& 1.23) [Prob-NMN] vs. 80.78 (& 11.75) for
NMN. Thus, this design choice does not seem to have an
impact on the relative performance of Prob-NMN and the
NMN baseline.

Effect of the Program Prior p(z). Next, we explore the
impact of regularizing the program posterior to be close to

the prior p(z), for different choices of the prior. Firstly, we
disable the KL-divergence term by setting 8 = 0 in Equa-
tion (6), recovering a deterministic version of our model,
that still learns to reconstruct the question x given a sampled
program z. Compared to our full model at 10% supervi-
sion, the performance on question coding drops to 23.14 +
6.1% program prediction accuracy (from 60.18 £ 9.56%).
Interestingly, the 5 = 0 model has a better performance on
question reconstruction, which improves from 83.60 £ 5.57
% to 94.3 £ 1.85%. This seems to indicate that, without the
KL term, the model focuses solely on reconstruction and
fails to learn compositionality in the latent z space, such
that supervised grounding are poorly propagated to unsu-
pervised questions as evidenced by the drop in program
prediction accuracy. Thus, the probabilistic model helps
better achieve our high-level goal of data-efficient legibility
in the reasoning process. In terms of the VQA accuracy
on validation (at the end of joint training) we see a drop in
performance from 96.86 + 2.48 to 74.82 4 17.88.

Effect of Optimizing the True ELBO, 5 = 1. Next,
we empirically validate the intuition that for the semi-
supervised setting, approximate inference g4(z|x) learned
using Equation (1) for sequence models often leads to solu-
tions that do not make meaningful use of the latent variable.
For example, we find that at 5 = 1 (and 10% supervision),
training the true evidence lower bound on U/, deteriorates
the question reconstruction accuracy from 83.60 % to 8.74%
causing a large distortion in the original question, as pre-
dicted by the results from Alemi et al. (2018). Overall, in
this setting the final accuracy on VQA at the end of joint
training is 74.45 + 15.58, a drop of > 20 % accuracy.

6. Coherence and Sensitivity Sampling

Our goal is to sample from the posterior p(z|a, i), which
we accomplish by sampling from the unnormalized joint
distribution p(z|a,i) o p(z)p(a|z,i). To answer a query
conditioned on an answer a, one can simply filter out sam-
ples which have a = a, and produce the sample programs as
the program, and decode the program x* ~ p(x|z) to pro-
duce the corresponding question. Note that it is also possible
to fit a (more scalable) variational approximation ¢, (z|a, 1)
having trained the generative model retrospectively, follow-
ing results from Vedantam et al. (2018) However, for the
current purposes we found the above sampling procedure to
be sufficient.

7. Implementation Details on CLEVR

CLEVR dataset is an order of magnitude larger than
SHAPES, with larger vocabulary, longer sequences and
images with higher visual complexity. We take this scale-up
into account, and make suitable architectural modifications

Appendix

Answer: Yes

Coherence

Gnm Gnm Gnm Geme Gncer Gmeanm cyundp

Gilter(smal.l))Gilter(metal)) GiLter (cylindp)

-

Answer: No

-

Gilter(LargQ)Gilter(yeLlrp) GiLter(sphexj) Gelate(righi)fiLter(smal)) Gilter(metaQ)GiLter(spheip)

Sensitivity
Answer: Small

Gilter(Large))Gilter(browy) Gilter(meta\.)) Gelate(fron) Gilter(graQ) Gilter(metal)) Guery (sizy)

Figure 1. Coherence and Sensitivity: Image and a correponding answer are specified, and the model is asked to produce programs it
believes should lead to the particular answer for the given image. One can notice that the generated programs are consistent with each
other, and evaluate to the specified answer. Results are shown for a Prob-NMN model trained with 0.143% supervision on CLEVR.

in comparison to SHAPES.

Sequence to Sequence Models: The encoders of our
sequence-to-sequence models (program generator and ques-
tion reconstructor) are based on LSTM cells with a hidden
state of 256 units, a depth of two layers, and accept input
word embeddings of 256 dimensions for both question and
program vocabulary. We follow the same architecture for
our program prior sequence model. Our decoders are similar
to encoders, only with a modification of having single layer
depth. When sampling from the model, we sample till the
maximum sequence length in observed training data — this
results in program sequences of maximum length 28, and
question sequences of maximum length 44.

Image CNN: We resize the CLEVR images to 224x224
dimensions and pass them through an ImageNet pre-trained
ResNet-101, and obtain features from its ‘third stage’, which
results in features of dimensions 1024x14x14. These
features are used as input to the Neural Module Network.

Training Details In order to get stable training with
sequence-to-sequence models on CLEVR, we found it use-
ful to average the log-probabilities across multiple timesteps.
Without this, in presence of a large variance in sentence
lengths, we find that the model focuses on generating the
longer sequences, which is usually hard without first un-
derstanding the structure in shorter sequences. Averaging
(across) the T' dimension helps with this. This is also com-
mon practice when working with sequence models and has

been done in numerous prior works (Vinyals et al., 2015;
Johnson et al., 2017; Hu et al., 2017; Lu et al., 2017) etc..
With higher linguistic variation in CLEVR questions, learn-
ing question reconstruction is difficult at the start of training
when the latent program space isn’t learned properly. To
make learning easier, we increase the influence of teach-
ing examples by also scaling question reconstruction loss
with « in Equation (3). We use the ADAM optimizer with
a learning rate of 1e-3 for Question Coding, 1e-4 for
Module Training and 1e-5 for Joint Training. We do not
introduce any weight decay. We use a batch size of 256
across all stages, and a moving average baseline for RE-
INFORCE with decay factor of 0.99, similar to SHAPES.
We set « as 100, 5 as 0.1 and v as 10. We validate every
500 iterations for question coding and joint training, and
every 2000 iterations for module training. We drop the
learning rate to half when our primary metric (either pro-
gram prediction accuracy or VQA accuracy, in respective
stages) does not improve within next 3 validations. We use
the code and module design choices of the state of the art
TbD nets (Mascharka et al., 2018) to implement the py, (a|i)
mapping in our model.

8. Results on CLEVR-Humans dataset

Johnson et al. (2017) also collect a dataset of questions
asked by humans on the images in the CLEVR dataset,
which is called CLEVR-humans. CLEVR-humans is out of

Appendix

distribution data for both NMN and Prob-NMN. We train
the models on the regular CLEVR dataset (with 0.143 %
question-program supervision) and evaluate the checkpoints
on the CLEVR-human validation set which contains 7202
questions. We find that the gains on the regular CLEVR
setup for Prob-NMN also translate to the CLEVR-humans
setting, with Prob-NMN getting to an accuracy of 50.81
4 1.93 vs. 45.45 % for NMN. Both approaches perform
better than chance accuracy of 15.66% computed by pick-
ing the most frequent answer from the training set. We
compute p(a|x,i) = & >, p(alz",i), where z" ~ ¢(z|x)
for this analysis, drawing n = 20 samples. Next we were
interested in understanding if modeling the uncertainty via.
Prob-NMN helped more with out of distribution questions
(such as CLEVR-humans) — this phenomena is also called
aleatoric uncertaintly. For this, we varied the number of
samples we drew, sweeping from n = 1 to n = 20. For
a single sample, we found that the performance drop for
both NMN as well as Prob-NMN was somewhat similar,
i.e. the NMN performance dropped to 44.98 + 2.67 while
Prob-NMN dropped to 50.26 £ 2.01. In general, we do
not see a greater benefit of handling aleatoric uncertaintly
via. averaging for Prob-NMN over NMN when tested in
the out-of-domain CLEVR-humans dataset. Our hypothesis
for this is that amortized inference is not handling aleatoric
uncertainty as well as we desire in our application.

9. Coherence and Sensitivity results on
CLEVR

We repeat the same procedure used for the SHAPES dataset
on the CLEVR dataset to analyze the coherence and sensi-
tivity in the reasoning performed by the Prob-NMN model.
Given an image and a candidate answer, say “yes” as in-
put, we find that multiple sample programs drawn from
the model are coherent with respect to each other. In Fig-
ure 1 we show a sorted list of such programs ranked by
log-probability of programs, z. Next, when we switch the
answer to “no”, we find that the program changes in a sensi-
ble manner, yeilding something that should correctly eval-
uate to the specified answer. However, in general we find
that the results are not as interpretable for non “yes”/*no”
answers. For example, when conditioning on “small”, we
find that the model makes a mistake of asking for the object
in front of “large brown metal” object in stead of “large
brown” object. This might be because the proposed model
does not take into account question premise (i.e. does not
have an arrow from i to z) meaning that a question about a
large brown metal object would never be asked about this
image, since it is not present in it.

References

Alemi, A. A., Poole, B., Fischer, 1., Dillon, J. V., Saurous,
R. A., and Murphy, K. Fixing a broken ELBO. In ICML,
2018.

Hu, R., Andreas, J., Rohrbach, M., Darrell, T., and Saenko,
K. Learning to reason: End-to-End module networks for
visual question answering. In CVPR, 2017.

Johnson, J., Hariharan, B., van der Maaten, L., Hoffman,
J., Fei-Fei, L., Lawrence Zitnick, C., and Girshick, R.
Inferring and executing programs for visual reasoning. In
Intl. Conf. on Computer Vision, 2017.

Lu, J., Xiong, C., Parikh, D., and Socher, R. Knowing when
to look: Adaptive attention via a visual sentinel for image
captioning. In CVPR, 2017.

Mascharka, D., Tran, P., Soklaski, R., and Majumdar, A.
Transparency by design: Closing the gap between perfor-
mance and interpretability in visual reasoning. In CVPR,
2018.

Vedantam, R., Fischer, 1., Huang, J., and Murphy, K. Gener-
ative models of visually grounded imagination. In ICLR,
2018.

Vinyals, O., Toshev, A., Bengio, S., and Erhan, D. Show
and tell: A neural image caption generator. In CVPR,
2015.

