Probabilistic Neural-symbolic Models for
Interpretable Visual Question Answering

Ramakrishna Vedantam *' Karan Desai? Stefan Lee2 Marcus Rohrbach! Dhruv Batra!? Devi Parikh ' 2

Abstract

We propose a new class of probabilistic neural-
symbolic models, that have symbolic functional
programs as a latent, stochastic variable. Instan-
tiated in the context of visual question answer-
ing, our probabilistic formulation offers two key
conceptual advantages over prior neural-symbolic
models for VQA. Firstly, the programs generated
by our model are more understandable while re-
quiring less number of teaching examples. Sec-
ondly, we show that one can pose counterfactual
scenarios to the model, to probe its beliefs on the
programs that could lead to a specified answer
given an image. Our results on the CLEVR and
SHAPES datasets verify our hypotheses, showing
that the model gets better program (and answer)
prediction accuracy even in the low data regime,
and allows one to probe the coherence and consis-
tency of reasoning performed.

1. Introduction

Building flexible learning and reasoning machines is a cen-
tral challenge in Artificial Intelligence (Al). Deep represen-
tation learning (LeCun et al., 2015) provides us powerful,
flexible function approximations that have resulted in state-
of-the-art performance across multiple Al tasks such as
recognition (Krizhevsky et al., 2012; He et al., 2016), ma-
chine translation (Sutskever et al., 2014), visual question
answering (Agrawal et al., 2015), speech modeling (van den
Oord et al., 2016), and reinforcement learning (Mnih et al.,
2015). However, many aspects of human cognition such as
systematic compositional generalization (e.g., understand-
ing that “John loves Mary” could imply that “Mary loves
John”) (Lake et al., 2017; Lake & Baroni, 2018) have proved
harder to model.

* Part of this work was done when R.V. was at Georgia Tech.
"Facebook AI Research >Georgia Tech. Correspondence to: Ra-
makrishna Vedantam <ramav@fb.com>.

Proceedings of the 36" International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

Symbol manipulation (Newell & Simon, 1976), on the other
hand lacks flexible learning capabilities but supports strong
generalization and systematicity (Lake & Baroni, 2018).
Consequently, many works have focused on building neural-
symbolic models with the aim of combining the best of
representation learning and symbolic reasoning (Bader &
Hitzler, 2005; Evans et al., 2018; Valiant, 2003; Yi et al.,
2018; Yin et al., 2018).

As we scale machine learning to machine reasoning (An-
dreas et al., 2017; 2016; Bottou, 2011; Weston et al., 2016)
a natural desire is to provide guidance to the model in the
form of instructions. In such a context, symbols are more
intuitive to specify than say the parameters of a neural net-
work. Thus, a promising method for interpretable reasoning
models is to specify the reasoning plan symbolically and
learn to execute it using deep learning.

This neural-symbolic methodology has been extensively
used to model reasoning capabilities in visual question an-
swering (VQA) (Andreas et al., 2016; Hu et al., 2017; Mao
et al., 2019; Mascharka et al., 2018; Johnson et al., 2017;
Yi et al., 2018) and to some extent in reinforcement learn-
ing (Andreas et al., 2017; Das et al., 2018). Concretely,
in the VQA task one is given an image i, a question x
(“Is there a cylinder left of a cube?”), for which we would
like to provide an answer a (yes). In addition, one may
also optionally be provided a program z for the question
that specifies a reasoning plan. For e.g., one might ask a
model to apply the filter [cube] operator, follwed by
relate[left], and then And the result together with
filter[cylinder] to predict the answer, where each
operator is parameterized as a neural network (Figure 1).

The scope of this current work is to provide a probabilistic
framework for such neural-symbolic models. This provides
two benefits: firstly, given a limited number of teaching
examples of plans / programs for a given question / context,
we show one can better capture the association between the
question and programs to provide more understandable and
legible program explanations for novel questions. Inspired
by Dragan et al. (2013), we call this notion data-efficient
legibility, since the model’s program (actions) in this case
need to be legible, i.e. clearly convey the question (goal
specification) the model has been given.

Probabilistic Neural-symbolic Models for VQA

Symbolic Program

Question Parameters
Is there a cylinder left of a cube? rg . |
1Vfilter[cube]

Scene

1
1Utilter [cylinder]

I
i

I

Answer I
Qz: relate[left] |
1

1

1

1

i a yes
: intersect

{fiLter[smaLL] '

1 filter[cube] |

| filter[gray] |

Z 1| relate[left] !

O, |
1

1

1

| relate[behind]
—> Generative Model

| query[material]
I
o

— — — » Inference Model

Deterministic Node

Figure 1. Probabilistic Neural Symbolic Models for VQA: We show our novel probabilistic neural-symbolic model (Prob-NMN) in
plate notation (right). Given image i, programs z are a (partially observed) latent variable executed on the image to generate an answer a

using parameters 6, (left). For VQA, we infer z given question x to generate an answer. Inference on z given a and i tests coherence of
reasoning patterns. Baseline non-probabilsitic neural symbolic models (NMNs) capture (subset of) terms and edges shown in blue, and
are less data-efficient and less interpretable reasoning models than our (probabilistic) proposal.

Secondly, the formulation makes it possible to probe deeper
into the model’s reasoning capabilities. For e.g., one can
test if the reasoning done by the system is: 1) coherent: pro-
grams which lead to similar answers are consistent with each
other and 2) sensitive: tweaking the answer meaningfully
changes the underlying reasoning plan.

Our probabilistic model treats functional programs (z) as a
stochastic latent variable. This allows us to share statistics
meaningfully between questions with associated programs
and those without corresponding programs. This aids data-
efficient legibility. Secondly, probabilistic modeling brings
to bear a rich set of inferential techniques to answer con-
ditional queries on the beliefs of the model. After fitting a
model for VQA, one can sample z ~ p(zl|i, a), to probe if
the reasoning done by the model is coherent (i.e. multiple
programs leading to answer yes are coherent) and sensitive
to a different answer (a) (say, no).

Given an image (i), we build a model for p(x,z,ali)
(see Figure 1); where the model factorizes as: p(x, z, ali) =
p(z)p(x|z)p(a|z,i). The implied generative process is as
follows. First we sample a program z, which generates
questions x. Further, given a program z and an image i we
generate answers a. Note that based on the symbolic pro-
gram z, we dynamically instantiate parameters of a neural
network 6, (these are deterministic, given z), by composing
smaller neural-modules for each symbol in the program.
This is similar to prior work on neural-symbolic VQA (Hu
et al., 2017; Johnson et al., 2017) using neural module net-
works (NMNs). In comparison to prior works, our proba-
bilistic formulation (shorthand Prob-NMN) leads to better
semi-supervised learning, and reasoning capabilities'.

Our technical contribution is to formulate semi-supervised

!'Note that this model assumes independence of programs from
images, which corresponds to the weak sampling assumptions in
concept learning (Tenenbaum, 1999), one can handle question
premise, i.e. that people might ask a specific set of questions for
an image in such a model by reparameterizing the answer variable
to include a relevance label.

learning with this deep generative neural-symbolic model
using variational inference (Jordan et al., 1999). First, we
derive variational lower bounds on the evidence for the
model for the semi-supervised and supervised cases, and
show how this motivates the semi-supervised objectives
used in previous work with discrete structured latent spaces
(Miao & Blunsom, 2016; Yin et al., 2018). Next, we show
how to learn program execution, i.e. p(a|z, i) jointly with
the remaining terms in the model by devising a stage-wise
optimization algorithm inspired by (Johnson et al., 2017).

Contributions. First, we provide tractable algorithms for
training models with probabilistic latent programs that also
learn to execute them in an end-to-end manner. Second, we
take the first steps towards deriving useful semi-supervised
learning objectives for the class of structured sequential la-
tent variable models (Miao & Blunsom, 2016; Yin et al.,
2018). Third, our approach enables interpretable reasoning
systems that are more legible with less supervision, and
expose their reasoning process to test coherence and sen-
sitivity. Fourth, our system offers improvements on the
CLEVR (Johnson et al., 2017) as well as SHAPES (Andreas
et al., 2016) datasets in the low question program supervi-
sion regime. That is, our model answers questions more
accurately and with legible (understandable) programs than
adaptations of prior work to our setting as well as baseline
non-probabilistic variants of our model.

2. Methods

We first explain the model and its parameterization, then
detail the training objectives along with a discussion of a
stage-wise training procedure.

Leti € RY*V be an input image, x be a question, which
is comprised of a sequence of words (x1, - - ,x;), where
each z; € X, where X is the vocabulary comprising all
words, similarly, a € A be the answer (where A is the
answer vocabulary), and z be the prefix serialization of a
program. Thatis, z = (z1,--- ,27) D 2z € Z, where Z is

Probabilistic Neural-symbolic Models for VQA

the program token vocabulary.

The model we describe below assumes z is a latent variable
that is observed only for a subset of datapoints in D. Con-
cretely, the programs z express (prefix-serializations of) tree
structured graphs. Computations are performed given this
symbolic representation by instantiating, for each symbol
z € Z a corresponding neural network (Figure 1, right)
with parameters 6, (Figure 1). That is, given a symbol in
the program, say find [green], the model instantiates pa-
rameters O¢inqrgreens - 10 this manner, the mapping p(ali, z)
is operationalized as p(ali; 0,), where 6, = {0,,}1_,.

Our model factorizes as p(x, z, a|i) = p(z)p(x|z)p(ali; 6,)
(see Figure 1), where parameters 6, are a deterministic node
in the graph instantiated given the program z and 6z (which
represents the concatenation of parameters across all tokens
in Z). In addition to the generative model, we also use
an inference network g4(z|x) to map questions to latent
structured programs. Thus, the generative parameters in the
model are {0z, 0}, and inference parameters are ¢.

2.1. Parameterization

The terms p(z), po(x|z) and ¢4(z|x) are all parameter-
ized as LSTM neural networks (Hochreiter & Schmidhuber,
1997). The program prior p(z) is pretrained using maximum
likelihood on programs simulated using the syntax of the
program or a held-out dataset of programs. The prior is
learned first and kept fixed for the rest of the training pro-
cess. Finally, the parameters 6, for symbols z parameterize
small, deep convolutional neural networks which optionally
take as input an attention map over the image (see Appendix
for more details).

For reference, previous non-probabilistic, neural-symbolic
models for VQA (Hu et al., 2017; Johnson et al., 2017,
Mascharka et al., 2018) model g4 (z|x) and p(ali; 6,) terms
from our present model (see blue arrows in Figure 1).

2.2. Learning

We assume access to a dataset D = {x",z"} U
{x™,a™,i™} where m indexes the visual question answer-
ing dataset, with questions, corresponding images and an-
swers, while n indexes a teaching dataset, which provides
the corresponding programs for a question, explaining the
steps required to solve the question. For data-efficient legi-
bility, we are interested in the setting where N < M i.e. we
have few annotated examples of programs which might be
more expensive to specify.

Given this, learning in our model consists of estimating
parameters {0z, 0, ¢}. We do this in a stage-wise fashion
(shown below) (c.f. Johnson et al. (2017)):

Stage-wise Optimization.

1) Question Coding: Optimizing parameters {o, ¢} to learn
a good code for questions x in the latent space z.

2) Module Training: Optimizing parameters 6z for learning
to execute symbols z using neural networks 6.,.

3) Joint Training: Learning all the parameters of the model
{9 z,0, gf)}

We describe each of the stages in detail below, and defer the
reader to the Appendix for a more details.

Question Coding. We fit the model on the evidence for
questions x and programs z, marginalizing answers a, i.e.
> o logp(x™,2™) + 3" log p(x™). We lower-bound the
second term, optimizing the evidence lower bound (ELBO)
with an amortized inference network g4 (c.f. Kingma &
Welling (2014); Rezende et al. (2014)):

Z logp(Xm) > Z Ez~q¢(z|xm) [1ngz7 (Xm ‘z)i

Blog qy(z|x™) + Blog p(z)] = UL,

where the lower bound holds for 5 > 1. In practice, we fol-
low prior work in violating the bound, using 8 < 1 to scale
the contribution from KL (¢(z|x)||p(z)) in Equation (1).
This has been shown to be important for learning meaningful
representations when decoding sequences (c.f. Alemi et al.
(2018); Bowman et al. (2016); Miao & Blunsom (2016);
Yin et al. (2018)). For more context, Alemi et al. (2018)
provides theoretical justifications for why this is desirable
when decoding sequences which we discuss in more detail
in the Appendix.

(1)

The U, term in Equation (1) does not capture the semantics
of programs, in terms of how they relate to particular ques-
tions. For modeling legible programs, we would also like to
make use of the labelled data {x™,z™} to learn associations
between questions and programs, and provide legible expla-
nations for novel questions x. To do this, one can factorize
the model to maximize £ =) log p(x"|z"™) + log p(z").
While in theory given the joint, it is possible to estimate
p(z|x), this is expensive and requires an (in general) in-
tractable sum over all possible programs. Ideally, one would
like to reuse the same variational approximation g (-) that
we are training for /. so that it learns from both labelled as
well as unlabelled data (c.f. Kingma et al. (2014)). We prove
the following lemma and use it to construct an objective that
makes use of ¢4, and relate it to the evidence.

Lemma 1. Given observations {x",z"} and p(x,z) =
p(2)ps (X|2), let 2, the token at the t'" timestep in a se-
quence z be distributed as a categorical with parameters .
Let us denote Il = {m;}1_,, the joint random variable over
all ;. Then, the following is a lower bound on the joint
evidence L =), log p(z™) + log ps (x"|2"):

N

L= logas(z"[x") + log py (x"|2")—

n=1

KL (¢(IT]z", x")[|p(IT)) ~ (2)

Probabilistic Neural-symbolic Models for VQA

where p(Il) is a distribution over the sampling distri-

butions implied by the prior p(z) and q(II|x™,z") =
q(mo) Hle q(me|x™, 28, -+, 2] 1), where each q(m¢|-) is
a delta distribution on the probability simplex.

See Appendix for a proof of the result. This is an extension
of the result for a related graphical model (with discrete z
observations) from (Kingma et al., 2014; Keng, 2017) to the
case where z is a sequence.

In practice, the bound above not useful, as the proof assumes
a delta posterior ¢(II|z, x) which makes the last KL term
oo. This means we have to resort to learning only the first
two terms in Lemma 1 as an approximation:

N
L~ aloggy(z"[x") +logps(x"[z") (3)
n=1
where o > 1 is a scaling on log g4, also used in Kingma &
Welling (2014); Miao & Blunsom (2016) (see Appendix for
more details and a justification).

Connections to other objectives. To our knowledge, two
previous works (Miao & Blunsom, 2016; Yin et al., 2018)
have formulated semi-supervised learning with discrete (se-
quential) latent variable models. While Miao & Blunsom
(2016) write the supervised term as log py(z|x), Yin et al.
(2018) write it as log g4 (z|x) + log ps(x|z). The lemma
above provides a clarifying perspective on both the objec-
tives, firstly showing that p should actually be written as g
(and suggests an additional p, term), and that the objective
from Yin et al. (2018) is actually a part of a loose lower
bound on the evidence for £ providing some justification
for the intuition presented in Yin et al. (2018).

We next explain the evidence formulation for the full graph-
ical model; and then introduce the module training and joint
training steps.

Module and Joint Training. For the full model (includ-
ing the answers a), the evidence is £ + Uy, where Uy =

M m .ml:m N n ,n
Y omey logp(x™,a™[i™) and L = ., logp(x",z").
Similar to the previous section, one can derive a variational
lower bound (Jordan et al., 1999) on Uy (c.f. (Vedantam
et al., 2018; Suzuki et al., 2017)):

M
uf > Z EZqu)(z‘xm)[logp(amﬁm

m=1

10,)+

log po (x|z)] — KL (g4 (2[x™)[[log p(2)) (4)

Module Training. During module training, first we opti-
mize the model only w.r.t the parameters responsible for

2 A promising direction for obtaining tighter bounds could be
to change the parameterization of the variational ¢(11) distribution.
Overall, learning of g4 is challenging in the structured, discrete
space of sequences and a proper treatment of how to train this term
in a semi-supervised setting is important for this class of models.

neural execution of the symbolic programs, namely 6z.

Concretely, we maximize:
M

r%gXTnZ:I Ezwq(z|x7”)[10gp02 (am‘z7 im)])]
The goal is to find a good initialization of the module param-
eters, say 0¢;inqgreen; that binds the execution to the com-
putations expected for the symbol find [green] (namely
the neural module network).

Joint Training. Having trained the question code and the
neural module network parameters, we train all terms jointly,
optimizing the complete evidence with the lower bound
L + Uy. We make changes to the above objective (across
all the stages), by adding in scaling factors «, 8 and ~y for
corresponding terms in the objective, and write out the KL
term (Equation (4)), subsuming it into the expectation:
M

Z Eyroqy (zlxmy [y log p(a™[i™; 02)+

m=1

) — Blog qy(z|x™) + Blog p(z)]+

£+Uf’%
log po (x™|z

N

Z [ovlog g4 (2" [x") + log po (x"|2")] (6)

where v > 1 is a scaling factor on the answer likelihood,
which has fewer bits of information than the question. For
answers a, which have probability mass functions, v > 1
still gives us a valid lower bound®. The same values of 3 and
« are used as in question coding (and for the same reasons
explained above).

The first term, with expectation over z ~ ¢4(-) is not
differentiable with respect to ¢. Thus we use the REIN-
FORCE (Williams, 1992) estimator with a moving average
baseline to get a gradient estimate for ¢ (see Appendix for
more details.). We take the gradients (where available) for
updating the rest of the parameters.

2.3. Benefits of Three Stage Training

In this section, we outline the difficulties that arise when
we try to optimize Equation (6) directly, without following
the three stage procedure. Let us consider question cod-
ing — if we do not do question coding independently of the
answer, learning the parameters 6, of the neural module
network becomes difficult, especially when N << M as
the mapping p(a|z,1i) is implemented using neural mod-
ules pg_ (ali). This optimization is discrete in the program
choices, which hurts when gg is uncertain (or has not con-
verged). Next, training the joint model without first running
module training is possible, but trickier, because the gradi-
ent from an untrained neural module network would pass

3Similar scaling factors have been found to be useful in prior
work (Vedantam et al., 2018) (Appendix A.3) in terms of shaping
the latent space.

Probabilistic Neural-symbolic Models for VQA

Algorithm 1 Prob-NMN Training Procedure
Given: D = {x",z"})_, U {x™, a™ i"}M_ | p(z)
Initialize: 0=, o, ¢
Set: < 1l,a>1,yv>1
Question Coding
Estimate o, ¢ optimizing Equation (1) 4+ Equation (3)
Module Training
Estimate 0 z optimizing Equation (5)
Joint Training
Estimate 0z, o, ¢ optimizing Equation (6)
Note: Updates to ¢ from Equation (1) and Equation (4)
happen via. score function estimator, and the path derivative.
Updates to 6z, o are computed using the gradient.

into the g4 (z|x) inference network, adding noise to the up-
dates. Indeed, we find that inference often deteriorates when
trained with REINFORCE on a reward computed from an
untrained network (Table 1).

3. Related Work

We first explain differences with other discrete structured
latent variable models proposed in the literature. We then
connect our work to the broader context of research in rea-
soning and visual question answering (VQA) and conclude
by discussing interpretability in the context of VQA.

Discrete Structured Latent Variables. Previous works
have applied amortized variational inference (Kingma &
Welling, 2014; Rezende et al., 2014) to build discrete, struc-
tured latent variable models, where the observations as well
as the latents are either sequences (Miao & Blunsom, 2016)
or tree structured programs (Yin et al., 2018). While Yin
et al. (2018) consider the problem of parsing text into pro-
grams, Miao & Blunsom (2016) generate (textual) sum-
maries using a latent variable (Miao & Blunsom, 2016).
In contrast, our joint model is richer since in addition to
parsing, we also learn to decode a latent program into an-
swers by executing neural modules 6,. Finally, as discussed
in Section 2, our derivation for the lower bound on the
question-program evidence provides some understanding of
the objectives used in these prior works for semi-supervised
learning (Yin et al., 2018; Miao & Blunsom, 2016).

Visual Question Answering and Reasoning. A number
of approaches have studied visual question answering, moti-
vated to study multi-hop reasoning (Hu et al., 2017; 2018;
Hudson & Manning, 2018; Johnson et al., 2017; Perez et al.,
2018; Santoro et al., 2017; Yi et al., 2018). Some of these
works build in implicit, non-symbolic inductive biases to
support compositional reasoning into the network (Hudson
& Manning, 2018; Hu et al., 2018; Perez et al., 2018), while
others take a more explicit symbolic approach (Yi et al.,
2018; Hu et al., 2017; Johnson et al., 2017; Mascharka et al.,
2018; Yi et al., 2018). Our high level goal is centered around

providing legible explanations and reasoning traces for pro-
grams, and thus, we adopt a symbolic approach. Even in
the realm of symbols, different approaches utilize differ-
ent kind of inductive biases in the mapping from symbols
(programs) to answer. While Yi et al. (2018) favor an ap-
proach that represents objects in a scene with a vectorized
representation, and compute various operations as manip-
ulations of the vectors, other works take a more modular
approach (Andreas et al., 2016; Hu et al., 2018; Johnson
et al., 2017; Mascharka et al., 2018) where a set of symbols
{2z} intsantiate neural networks with parameters ;.. We
study the latter approach since it is arguably more general
and could conceivably transfer better to other tasks such as
planning and control (Das et al., 2018), lifelong learning
(Gaunt et al., 2017; Valkov et al., 2018) etc.

Different from all these prior works, we provide a proba-
bilistic scaffolding that embeds previous neural-symbolic
models, which we conceptualize should lead to better data-
efficient legibility and the ability to debug coherence and
sensitivity in reasoning. We are not aware of any prior work
on VQA where it is possible to reason about coherence or
sensitivity of the reasoning performed by the model.

Interpretable VQA. Given its importance as a scene un-
derstanding task, and as a general benchmark for reasoning,
there has been a lot of work in trying to interpret VQA
systems and explain their decisions (Das et al., 2016; Lu
et al., 2016; Park et al., 2018; Selvaraju et al., 2017). Inter-
pretability approaches typically either perform some kind of
explicit attention (Bahdanau et al., 2015) over the question
or the image (Lu et al., 2016) to explain with a heat map
the regions or parts of the question the model used to arrive
at an answer. Some other works develop post-hoc attribu-
tion techniques (Mudrakarta et al., 2018; Selvaraju et al.,
2017) for providing explanations. In this work, we are in-
terested in an orthogonal notion of interpretability, in terms
of the legibility of the reasoning process used by the net-
work given symbolic instructions for a subset of examples.
More similar to our high-level motivation are approaches
which take a neural-symbolic approach, providing expla-
nations in terms of programs used for reasoning about a
question (Andreas et al., 2016; Hu et al., 2018), optionally
including a spatial attention over the image to localize the
function of the modules (Andreas et al., 2016; Hu et al.,
2017; Mascharka et al., 2018). In this work we augment the
legibility of the programs/reasoning from these approaches.

4. Experimental Setup

Dataset. We report our results on the CLEVR (Johnson
et al., 2017) dataset and the SHAPES datasets (Andreas
et al., 2016). The CLEVR dataset has been extensively used
as a benchmark for testing reasoning in VQA models in
various prior works (Hu et al., 2017; 2018; Hudson & Man-

Probabilistic Neural-symbolic Models for VQA

ning, 2018; Johnson et al., 2017; Perez et al., 2018; Santoro
et al., 2017) and is composed of 70,000 images and around
700K questions, answers and functional programs in the
training set, and 15,000 images and 150K questions in the
validation set. We choose first 20K examples from CLEVR
v1.0 validation set and use it as our val set. We report results
on CLEVR v1.0 test set using the CLEVR evaluation server
on EvalAI (Yadav et al., 2019). The longest questions in
the dataset are of length 44 while the longest programs are
of length 25. The question vocabulary has 89 tokens while
the program vocabulary has 40 tokens, with 28 possible
answers.

We investigate our design choices on the smaller SHAPES
dataset proposed in previous works (Andreas et al., 2016;
Hu et al., 2017) for visual question answering. The dataset is
explicitly designed to test for compositional reasoning, and
contains compositionally novel questions that the model
must demonstrate generalization to at test time. Overall
there are 244 unique questions with yes/no answers and
15,616 images (Andreas et al., 2016). The dataset also has
annotated programs for each of the questions. We use train,
val, and test splits of 13,568, 1,024, and 1,024 (x,z,1,a)
triplets respectively. The longest questions in the dataset are
of length 11 and shortest are of length 4, while the longest
programs are of length 6 and shortest programs are of length
4. The size of the question vocabulary X is 14 and the
program vocabulary Z is 12.

Training. On SHAPES, to simulate a data-sparse regime,
we restrict the set of question-aligned programs to 5, 10, 15,
or 20% of unique questions — such that even at the highest
level of supervision, programs for 80% of unique questions
have never been seen during training. We train our program
prior using a set of 1848 unique programs simulated from
the syntax (more details of this can be seen in the Appendix).

In general, we find that performance at a given amount of
supervision can be quite variable. In addition, we also find
question coding, and module training stages tend to show
a fair amount of variance across multiple runs. To make
fair comparisons, for every experiment, we run question
coding across 5 different runs, pick the best performing
model, and then run module training (updating 6 =) across
10 different runs. Next, we run the best model from this
stage for joint training (sweeping across values of v €
{1,10,100}). Finally, at the end of this process we have the
best model for an entire training run. We repeat this process
across five random datasets and report mean and variance at
a given level of supervision.

With CLEVR, we report results when we train on 1000
question-program supervision pairs (this is 0.143% of all
question-program pairs), along with the rest of the question,
image answer pairs (dropping the corresponding programs).
Similar to SHAPES, we report our results across 20 dif-

ferent choices of the subset of 1000 questions to estimate
statistical significance. In general, the CLEVR dataset has
question lengths with really large variance, and we select
the subset of 1000 questions with length at most 40. We do
this to stabilize training (for both our method as well as the
baseline) and also to simulate a realistic scenario where an
end user would not want to annotate really long programs.
For each choice of a subset of 1000 questions, we run our
entire training pipeline (across the question coding, module
training and joint training stages) and report results on the
top 15 runs out of the 20 (for all comparisons reported in
the paper), based on question coding accuracy (see metrics
below).

Metrics. For question coding, we report the accuracy of the
programs predicted by the ¢, (z|x) model (determined with
exact string match), since we are interested in the legibility
of the generated programs. In module training, we report
the VQA accuracy obtained by the model, and finally, in
joint training, we report both, VQA and program prediction
accuracy since we are interested in both, getting the right
answers and the legibility of the model’s reasoning trace.

Prior. On SHAPES, we train the program prior p(z) using
programs simulated using syntax (more details in the Ap-
pendix). On CLEVR, we train using all the programs in the
training set, while restricting the number of paired questions
and programs to 1000 (as explained above).

Baselines. We compare against adaptation of a state-of-the-
art semi-supervised learning approach proposed for neu-
ral module networks by Johnson et al. (2017). Johnson
et al. fit the terms corresponding to ¢, (z|x) and p(ali; 6,)
in our model. Specifically, in question coding, they opti-
mize maxy » . 1og gy (x™|2z™) (Where n indexes data points
with associated questions, i.e. the approach does not make
use of “unlabelled” data). Next, in module training they
optimize maxg,, Z%zl E.q(zxm) [log p(a™[i™; 6,)]. In
joint training, they optimize the same objective with re-
spect to the parameters 6z as well as ¢, using the REIN-
FORCE gradient estimator: V4 = 37 >, [log p(ali; 6,) —
B]Vlog qs(z|x™), where B is a baseline. In contrast,
we follow Algorithm 1 and maximize the corresponding
evidence at every stage of training. We also report other
baselines which are either ablations of our model or deter-
ministic variants of our full model. See Appendix for the
exact setting of the hyperparameters.

5. Results

SHAPES results. We focus on evaluating approaches by
varying the fraction of question-aligned programs (which
we denote %x <> z) in Table 1. To put the numbers in
context, a baseline LSTM + image model, which does not
use module networks, gets an accuracy of 63.0% on Test

Probabilistic Neural-symbolic Models for VQA

Question {5% supenvision}
[Cisa blue shape below a blue shape? | g @ el
Ground truth program
p IEREE M
o) ;

115% supervision}- {20% supenvision}
OO =

=" =

@@[ves]

Is a blue shape below a blue shape?

- @]

Is a blue shape below a blue shape?

Is a green shape below a blue shape?

Figure 2. Data-efficient Legibility: Image with the corresponding
question, ground truth program, and ground truth answer (top
left). Predicted programs and answers of different models (NMN
in white, Prob-NMN in gray) and reconstructed question (Prob-
NMN) for variable amount of supervision. We find Prob-NMN
finds the right answer as well as the program more often than
NMN (Johnson et al., 2017).

(see Andreas et al. (2016); Table 2). This indicates that
SHAPES has highly compositional questions which is chal-
lenging to model via conventional methods for Visual Ques-
tion Answering (Agrawal et al., 2015). Overall, we make
the following observations:

- Our Prob-NMN approach consistently improves per-
formance in data-sparse regimes. While both meth-
ods tend to improve with greater program supervision,
Prob-NMN quickly outpaces NMN (Johnson et al., 2017),
achieving test VQA accuracies 30-35% points higher for
>5% program supervision. Notably, both methods per-
form similarly poorly on the test set given 5% program
supervision, suggesting this may be too few examples to
learn compositional reasoning. Similarly, we see that the
program prediction accuracy is also significantly higher
for our approach at the end of joint training, meaning
that Prob-NMN is right for the right reasons.

- Our question coding stage greatly improves initial
program prediction. Our Prob-NMN approach to ques-
tion coding gets approximately double the question cod-
ing (program prediction) accuracy as the NMN approach
(col 1, question coding). This means that it effectively
propagates groundings from question-aligned programs
during the coding phase. Thus the initial programs pro-
duced by our approach are more legible at a lower amount
of supervision than NMN. Further, we also see improved
VQA performance after the module and joint training
stages which are based on predicted programs.

- Successful joint training improves program predic-
tion. In general, we find that the accuracies obtained
on program prediction deteriorate when the module train-
ing stage is weak (row 1). On the other hand, higher
program prediction accuracies generally lead to better
module training, which further improves the program
prediction performance.

Figure 2 shows sample programs for each model. We

see the limited supervision negatively affects NMN pro-

gram prediction, with the 5% model resorting to simple

Find[X]—Answer structures. Interestingly, we find that
the mistakes made by the Prob-NMN model, e.g., green in
5% supervision (top-right) are also made when reconstruct-
ing the question (also substituting green for blue). Further,
when the token does get corrected to blue, the question also
eventually gets reconstructed (partially correctly (10%) and
then fully (15%)), and the program produces the correct
answer. This indicates that there is high fidelity between the
learnt question space, the answer space and the latent space.

Finally, the N2NMN approach (Hu et al., 2017) evaluates
their question-attention based module networks in the fully
unsupervised setting, getting to 96.19% on TEST. How-
ever, the programs in this case become non-compositional
(see Section 3), as the model leaks information from ques-
tions to answers via attention, meaning that programs no
longer carry the burden of explaining the observed answers.
This makes the modules illegible. In general, our approach
makes the right independence assumptions (¢ L x|i, z)
which helps legibility to emerge, along with our careful
design of the three stage optimization procedure.

In the Appendix, we show additional comparisons to a de-
terministic variant of our model (with 5 = 0), and study the
effect of optimizing the true ELBO.

CLEVR Results. Our results on the CLEVR dataset (John-
son et al., 2017) reflect similar trends as the results on
SHAPES (Table 2). As explained in Section 4, we work
with 1000 supervised question program examples from the
CLEVR dataset (0.143% of all question program pairs).
With this, at the end of question coding, Prob-NMN gets
to an accuracy of 93.15 £ 8.61, while the baseline NMN
approach gets to an accuracy of 62.47 £ 9.82. These gains
for the Prob-NMN model are reflected in module training,
where the Prob-NMN approach gets to an accuracy of 94.42
+ 3.77, while the baseline is at 79.26 + 4.03. At the end
of joint training these improve marginally to 95.52 + 4.15
and 79.38 4 4.21 respectively. Crucially, this is achieved
with a program generation accuracy of 93.87 £ 8.73 by our
approach compared to a baseline accuracy of 63.08 £ 9.91.
Thus, the programs generated by the Prob-NMN model are
more legible than those by the semi-supervised NMN ap-
proach (Johnson et al., 2017). Finally, the same trends are
reflected on the CLEVR test set as well, with Prob-NMN
outperforming NMN. We refer to the Appendix for more

details of the training regime and architectural choices *.

Coherence and Sensitivity in Reasoning. Next we show
that the probabilistic formulation can be used to check a
model’s coherence in reasoning (see Figure 3, top). Given
the image and the answer yes, we observe that one is able

“We find the question reconstruction accuracy is close to zero,
since the model often decodes to a semantically equivalent ques-
tion string which an exact match does not recover, thus omit that
number from Table 2.”

Probabilistic Neural-symbolic Models for VQA

Table 1. Results (in percentage) on the SHAPES dataset with varying amounts of question-program supervision (%x <> z), 8 = 0.1.

Validation During Training Stages Test
Tox <>z [1] Question Coding [1I] Module Training [1I1] Joint Training Accuracy
(Reconstruction) (Program Prediction) (VQA Accuracy) (Program Prediction) (VQA Accuracy) (VQA Accuracy)
NMN (ohnson et al., 2017) 5 - 9.28+1.91 61.56+3.59 0.0 +0.0 63.08+0.78 60.06+3.88
Prob-NMN ours) 62.86+5.31 17.12+528 54.55+11.31 28.12 42812 72.50+835 71.95+11.15
NMN (ohnson et al.. 2017) 10 - 24.30+239 60.31+337 6.25 +10.83 66.51+4.10 61.99+0.96
Prob-NMN ours) 83.60+5.57 60.18+9.56 75.80+3.62 90.62+6.98 96.86+2.48 94.53+2.06
NMN (ohnson et al.. 2017) 15 - 47.67+5.02 69.47+9.87 0.0 +o0.0 62.43+0.49 61.324236
Prob-NMN ours) 95.86+0.20 84.85+6.25 90.57+3.44 95.31 +5.18 98.40+1.63 97.02+0.84
NMN (ohnson et al.. 2017) 20 - 58.37+330 66.17+7.02 4375 +4375 80.68+18.00 78.59+19.27
Prob-NMN ours) 96.10+0.27 90.22+1.63 91.81+1.58 96.87 +5.41 99.43+0.61 96.97+1.30

Table 2. Results (in percentage) on the CLEVR dataset with 0.143 % x < z, 8 = 0.1. Validation metrics are calculated on a set of
20K examples out of CLEVR v1.0 validation split, across 15 random seeds. Test metrics are calculated on CLEVR v1.0 test split, and
correspond to the best performing checkpoint across 15 random seeds.

Validation During Training Stages Test
Jox 4> z [1] Question Coding [11] Module Training [I11] Joint Training Accuracy
(Reconstruction) (Program Prediction) (VQA Accuracy) (Program Prediction) (VQA Accuracy) (VQA Accuracy)
NMN (ohnson et al., 2017) 0143 - 62.47+9.82 79.26+4.03 63.08 +9.91 79.38+4.21 75.71
Prob-NMN ours) ’ - 93.15+8.61 94.42+3.77 93.87 +8.73 95.52+4.15 97.73

sforn (ri
ind

(X
v @)

Answer: Yes
(ma mmm ([f

Sensitivity
a0

Figure 3. Coherence and Sensitivity: Image and a correponding
answer are specified, and the model is asked to produce programs
it believes should lead to the particular answer for the given image.
One can notice that the generated programs are consistent with
each other, and evaluate to the specified answer. Results are shown
for a Prob-NMN model trained with 20% program supervision on
SHAPES.

to generate multiple, diverse reasoning patterns which lead

to the answer, by sampling z ~ p(z|a, i), showing a kind
of systematicity in reasoning (Lake et al., 2017). On the
other hand, when we change the answer to no (see Figure 3,
bottom), keeping the image the same, we observe that the
reasoning pattern changes meaningfully, yielding a program
that evaluates to the desired answer. See Appendix for
a description of how we do the sampling and results on
CLEVR.

Coherence

Answer: No

6. Discussion and Conclusion

In this work, we discussed a probabilistic, sequential latent
variable model for visual question answering, that jointly
learns to parse questions into programs, reasons about ab-
stract programs, and learns to execute them on images using
modular neural networks. We demonstrate that the proba-
bilistic model endows the model with desirable properties
for interpretable reasoning systems, such as the reasoning
being clearly legible given minimal number of teaching ex-
amples, and the ability to probe into the reasoning patterns
of the model, by testing their coherence (how consistent are
the reasoning patterns which lead to the same decision?) and
sensitivity (how sensitive is the decision to the reasoning
pattern?). We test our model on the CLEVR dataset as well
as a dataset of compositional questions about SHAPES and
find that handling stochasticity enables better generalization
to compositionally novel inputs.

References

Agrawal, A., Lu, J., Antol, S., Mitchell, M., Lawrence Zit-
nick, C., Batra, D., and Parikh, D. VQA: Visual question
answering. In Intl. Conf. on Computer Vision, May 2015.

Alemi, A. A., Poole, B., Fischer, 1., Dillon, J. V., Saurous,
R. A., and Murphy, K. Fixing a broken ELBO. In ICML,
2018.

Andreas, J., Rohrbach, M., Darrell, T., and Klein, D. Neural

Probabilistic Neural-symbolic Models for VQA

module networks. In CVPR, 2016.

Andreas, J., Klein, D., and Levine, S. Modular multitask
reinforcement learning with policy sketches. In ICML,
2017.

Bader, S. and Hitzler, P. Dimensions of neural-symbolic
integration - a structured survey. November 2005.

Bahdanau, D., Cho, K., and Bengio, Y. Neural machine
translation by jointly learning to align and translate. In
ICLR, 2015.

Bottou, L. From machine learning to machine reasoning.
February 2011.

Bowman, S. R., Vilnis, L., Vinyals, O., Dai, A. M., Joze-
fowicz, R., and Bengio, S. Generating sentences from
a continuous space. In Proc. Conf. Natural Language
Learning (CoNLL),2016. URL http://arxiv.org/
abs/1511.06349.

Das, A., Agrawal, H., Lawrence Zitnick, C., Parikh, D., and
Batra, D. Human attention in visual question answering:
Do humans and deep networks look at the same regions?
In Proc. Empirical Methods in Natural Language Pro-
cessing, 2016.

Das, A., Gkioxari, G., Lee, S., Parikh, D., and Batra, D.
Neural modular control for embodied question answering.
In Conference on Robot Learning, 2018.

Dragan, A. D., Lee, K. C. T., and Srinivasa, S. S. Legibility
and predictability of robot motion. In Proceedings of
the 8th ACM/IEEE International Conference on Human-
robot Interaction, HRI *13, pp. 301-308, Piscataway, NJ,
USA, 2013. IEEE Press.

Evans, R., Saxton, D., Amos, D., Kohli, P., and Grefenstette,
E. Can neural networks understand logical entailment?
February 2018.

Gaunt, A. L., Brockschmidt, M., Kushman, N., and others.
Lifelong perceptual programming by example. In ICLR,
2017.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. In CVPR, 2016.

Hochreiter, S. and Schmidhuber, J. Long Short-Term mem-
ory. Neural Comput., 9(8):1735-1780, November 1997.

Hu, R., Andreas, J., Rohrbach, M., Darrell, T., and Saenko,
K. Learning to reason: End-to-End module networks for
visual question answering. In CVPR, 2017.

Hu, R., Andreas, J., Darrell, T., and Saenko, K. Explainable
neural computation via stack neural module networks. In
ECCV,2018.

Hudson, D. A. and Manning, C. D. Compositional attention
networks for machine reasoning. In /CLR, 2018.

Johnson, J., Hariharan, B., van der Maaten, L., Hoffman,
J., Fei-Fei, L., Lawrence Zitnick, C., and Girshick, R.
Inferring and executing programs for visual reasoning. In
Intl. Conf. on Computer Vision, 2017.

Jordan, M. 1., Ghahramani, Z., Jaakkola, T. S., and Saul,
L. K. An introduction to variational methods for graphical
models. J. of Machine Learning Research, 37(2):183-233,
November 1999.

Keng, B. Semi-supervised learning with variational autoen-
coders, September 2017. Accessed: 2019-1-14.

Kingma, D. P. and Welling, M. Auto-Encoding variational
bayes. In ICLR, 2014.

Kingma, D. P, Rezende, D. J., Mohamed, S., and Welling,
M. Semi-supervised learning with deep generative mod-
els. In NIPS, 2014.

Krizhevsky, A., Sutskever, 1., and Hinton, G. E. ImageNet
classification with deep convolutional neural networks. In
Pereira, F., Burges, C. J. C., Bottou, L., and Weinberger,
K. Q. (eds.), Advances in Neural Information Process-
ing Systems 25, pp. 1097-1105. Curran Associates, Inc.,
2012.

Lake, B. M. and Baroni, M. Generalization without sys-
tematicity: On the compositional skills of sequence-to-
sequence recurrent networks. In ICML, 2018.

Lake, B. M., Ullman, T. D., Tenenbaum, J. B., and Gersh-
man, S. J. Building machines that learn and think like
people. Behav. Brain Sci., 40:¢253, January 2017.

LeCun, Y., Bengio, Y., and Hinton, G. Deep learning. Na-
ture, 521(7553):436—444, May 2015.

Lu, J., Yang, J., Batra, D., and Parikh, D. Hierarchical
Question-Image Co-Attention for visual question answer-
ing. In NIPS, 2016.

Mao, J., Gan, C., Kohli, P., Tenenbaum, J. B., and Wu, J.
The Neuro-Symbolic concept learner: Interpreting scenes,
words, and sentences from natural supervision. In /ICLR,
2019.

Mascharka, D., Tran, P., Soklaski, R., and Majumdar, A.
Transparency by design: Closing the gap between perfor-
mance and interpretability in visual reasoning. In CVPR,
2018.

Miao, Y. and Blunsom, P. Language as a latent variable:
Discrete generative models for sentence compression. In
Proc. Empirical Methods in Natural Language Process-
ing, 2016. URL http://arxiv.org/abs/1609.
07317.

http://arxiv.org/abs/1511.06349
http://arxiv.org/abs/1511.06349
http://arxiv.org/abs/1609.07317
http://arxiv.org/abs/1609.07317

Probabilistic Neural-symbolic Models for VQA

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidje-
land, A. K., Ostrovski, G., Petersen, S., Beattie, C., Sadik,
A., Antonoglou, L., King, H., Kumaran, D., Wierstra, D.,
Legg, S., and Hassabis, D. Human-level control through
deep reinforcement learning. Nature, 518:529, February
2015.

Mudrakarta, P. K., Taly, A., Sundararajan, M., and Dhamd-
here, K. Did the model understand the question? In Proc.
ACL, 2018.

Newell, A. and Simon, H. A. Computer science as empirical
inquiry: Symbols and search. Commun. ACM, 19(3):113-
126, March 1976.

Park, D. H., Hendricks, L. A., Akata, Z., Rohrbach, A.,
Schiele, B., Darrell, T., and Rohrbach, M. Multimodal
explanations: Justifying decisions and pointing to the
evidence. In CVPR, 2018.

Perez, E., Strub, F., de Vries, H., Dumoulin, V., and
Courville, A. FiLM: Visual reasoning with a general
conditioning layer. In AAAI, 2018.

Rezende, D. J., Mohamed, S., and Wierstra, D. Stochas-
tic backpropagation and approximate inference in deep
generative models. In ICML, 2014.

Santoro, A., Raposo, D., Barrett, D. G. T., Malinowski, M.,
Pascanu, R., Battaglia, P., and Lillicrap, T. A simple
neural network module for relational reasoning. In NIPS,
2017.

Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R.,
Parikh, D., and Batra, D. Grad-CAM: Visual explanations
from deep networks via gradient-based localization. In
Intl. Conf. on Computer Vision, 2017.

Sutskever, 1., Vinyals, O., and Le, Q. V. Sequence to se-
quence learning with neural networks. In Ghahramani, Z.,
Welling, M., Cortes, C., Lawrence, N. D., and Weinberger,
K. Q. (eds.), Advances in Neural Information Process-
ing Systems 27, pp. 3104-3112. Curran Associates, Inc.,
2014.

Suzuki, M., Nakayama, K., and Matsuo, Y. Joint multimodal
learning with deep generative models. In /CLR Workshop,
2017.

Tenenbaum, J. B. j. B. A Bayesian framework for concept
learning. PhD thesis, Massachusetts Institute of Technol-
ogy, 1999.

Valiant, L. G. Three problems in computer science. J. ACM,
50(1):96-99, January 2003.

Valkov, L., Chaudhari, D., Srivastava, A., Sutton, C., and
Chaudhuri, S. HOUDINI: Lifelong learning as program
synthesis. In Bengio, S., Wallach, H., Larochelle, H.,
Grauman, K., Cesa-Bianchi, N., and Garnett, R. (eds.),
NIPS. 2018.

van den Oord, A., Dieleman, S., Zen, H., Simonyan, K.,
Vinyals, O., Graves, A., Kalchbrenner, N., Senior, A., and
Kavukcuoglu, K. WaveNet: A generative model for raw
audio. September 2016.

Vedantam, R., Fischer, 1., Huang, J., and Murphy, K. Gener-
ative models of visually grounded imagination. In ICLR,
2018.

Weston, J., Bordes, A., Chopra, S., Rush, A. M., van Mer-
rienboer, B., Joulin, A., and Mikolov, T. Towards Al-
Complete question answering: A set of prerequisite toy
tasks. In ICLR, 2016.

Williams, R. J. Simple statistical gradient-following algo-
rithms for connectionist reinforcement learning. Mach.
Learn., 8(3):229-256, May 1992.

Yadav, D., Jain, R., Agrawal, H., Chattopadhyay, P., Singh,
T., Jain, A., Singh, S. B., Lee, S., and Batra, D. Evalai:
Towards better evaluation systems for ai agents. 2019.

Yi, K., Wu, J., Gan, C., Torralba, A., Kohli, P., and Tenen-
baum, J. B. Neural-Symbolic VQA: Disentangling rea-
soning from vision and language understanding. In NIPS,
2018.

Yin, P.,, Zhou, C., He, J., and Neubig, G. StructVAE: Tree-
structured latent variable models for semi-supervised se-
mantic parsing. In Proc. ACL, 2018.

