Manifold Mixup: Better Representations by Interpolating Hidden States

A. Synthetic Experiments Analysis

We conducted experiments using a generated synthetic
dataset where each image is deterministically rendered from
a set of independent factors. The goal of this experiment is
to study the impact of input mixup and an idealized version
of Manifold Mixup where we know the true factors of varia-
tion in the data and we can do mixup in exactly the space
of those factors. This is not meant to be a fair evaluation or
representation of how Manifold Mixup actually performs -
rather it’s meant to illustrate how generating relevant and se-
mantically meaningful augmented data points can be much
better than generating points by mixing in the input space.

We considered three tasks. In Task A, we train on images
with angles uniformly sampled between (-70°, -50°) (label
0) with 50% probability and uniformly between (50°, 80°)
(label 1) with 50% probability. At test time we sampled uni-
formly between (-30°, -10°) (label 0) with 50% probability
and uniformly between (10°, 30°) (label 1) with 50% proba-
bility. Task B used the same setup as Task A for training, but
the test instead used (-30°, -20°) as label 0 and (-10°, 30°)
as label 1. In Task C we made the label whether the digit
was a “1” or a “7”, and our training images were uniformly
sampled between (-70°, -50°) with 50% probability and
uniformly between (50°, 80°) with 50% probability. The
test data for Task C were uniformly sampled with angles
from (-30°, 30°).

The examples of the data are in Figure ] and results are in
Table[§] In all cases we found that Input Mixup gave some
improvements in likelihood but limited improvements in
accuracy - suggesting that the even generating nonsensical
points can help a classifier trained with Input Mixup to be
better calibrated. Nonetheless the improvements were much
smaller than those achieved with mixing in the ground truth
attribute space.

B. Analysis of how Manifold Mixup changes
learned representations

We have found significant improvements from using Mani-
fold Mixup, but a key question is whether the improvements
come from changing the behavior of the layers before the
mixup operation is applied or the layers after the mixup op-
eration is applied. This is a place where Manifold Mixup and
Input Mixup are clearly differentiated, as Input Mixup has
no “layers before the mixup operation” to change. We con-
ducted analytical experimented where the representations
are low-dimensional enough to visualize. More concretely,
we trained a fully connected network on MNIST with two
fully-connected leaky relu layers of 1024 units, followed
by a 2-dimensional bottleneck layer, followed by two more
fully-connected leaky-relu layers with 1024 units.

We then considered training with no mixup, training with

mixup in the input space, and training only with mixup di-
rectly following the 2D bottleneck. We consistently found
that Manifold Mixup has the effect of making the represen-
tations much tighter, with the real data occupying smaller
region in the hidden space, and with a more well separated
margin between the classes, as shown in Figure [J]

C. Supervised Regularization Experimental
Details

For supervised regularization we considered following ar-
chitectures: PreActResNet18, PreActResNet34, and Wide-
Resnet-28-10. When using Manifold Mixup, we selected
the layer to perform mixing uniformly at random from a
set of eligible layers. In all our experiments, for the Pre-
ActResNets architectures, the eligible layers for mixing in
Manifold Mixup were : the input layer, the output from
the first resblock, and the output from the second resblock.
For Wide-ResNet-20-10 architecture, the eligible layers for
mixing in Manifold Mixup were: the input layer and the
output from the first resblock. For PreActResNet18, the first
resblock has four layers and the second resblock has four
layers. For PreActResNet34, the first resblock has six layers
and the second resblock has eight layers. For Wide-Resnet-
28-10, the first resblock has four layers. Thus the mixing is
often done fairly deep layers in the network.

Throughout our experiments, we use SGD+Momentum op-
timizer with learning rate 0.1, momentum 0.9 and weight-
decay 104, with step-wise learning rate decay.

For Table[Ta] Table[Tb]and Table[2] we train the PreActRes-
Netl18, and PreActResNet34 for 1200 epochs with learning
rate annealed by a factor of 10 at epoch 400 and 800. For
above Tables, we train Wide-ResNet-28-10 for 400 epochs
with learning rate annealed by a factor of 10 at epoch 200
and 300. In Table [3} we train PreActResNet18 for 2000
epochs with learning rate annealed by a factor of 10 at
epoch 1000 and 1500.

For Table[d] and Table[6] we train the PreActResNet18 net-
work for 2000 epochs with learning rate annealed by a factor
of 10 at epoch 1000 and 1500.

For Table[7] Table[5]and Table[0] we train the networks for
1200 epochs with learning rate annealed by a factor of 10 at
epoch 400 and 800.

In Figure[6] and Figure[7] we present the training loss (Bi-
nary cross entropy) for CIFAR10 and CIFAR100 datasets
respectively. We observe that performing Manifold Mixup
in higher layers allows the train loss to go down faster as
compared to the Input Mixup, which suggests that while
Input Mixup may suffer from underfitting, Manifold Mixup
alleviates this problem to some extend.

In Table 0] we present full set of experiments of Section[5.2}
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Figure 4: Synthetic task where the underlying factors are known exactly. Training images (left), images from input mixup
(center), and images from mixing in the ground truth factor space (right).

Table 8: Results on synthetic data generalization task with an idealized Manifold Mixup (mixing in the true latent generative
factors space). Note that in all cases visible mixup significantly improved likelihood, but not to the same degree as factor
mixup.

Task Model Test Accuracy Test NLL
No Mixup 1.6 8.8310
Task A Input Mixup (1.0) 0.0 6.0601
Ground Truth Factor Mixup (1.0) 94.77 0.4940
No Mixup 21.25 7.0026
Task B Input Mixup (1.0) 18.40 4.3149
Ground Truth Factor Mixup (1.0) 84.02 0.4572
No Mixup 63.05 4.2871
Task C  Input Mixup 66.09 1.4181

Ground Truth Factor Mixup 99.06 0.1279
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Figure 5: Representations from a classifier on MNIST (top is trained on digits 0-4, bottom is trained on all digits) with a 2D
bottleneck representation in the middle layer. No Mixup Baseline (left), Input Mixup (center), Manifold Mixup (right).

C.1. Hyperparameter o

For Input Mixup on CIFAR10 and CIFAR100 datasets, we
used the value o = 1.0 as recommended in (Zhang et al.,
[2018). For Input Mixup on SVHN and Tiny-imagenet
datasets, we experimented with the « values in the set
{0.1,0.2,0.4,0.8.1.0,2.0,4.0}. We obtained best results
using a = 1.0 and o = 0.2 for SVHN and Tiny-imagenet,
respectively.

For Manifold Mixup, for all datasets, we experimented with
the « values in the set {0.1,0.2,0.4,0.8.1.0,2.0,4.0}. We
obtained best results with o = 2.0 for CIFAR10, CIFAR100
and SVHN and with o = 0.2 for Tiny-imagenet.

D. Adversarial Examples

We ran the unbounded projected gradient descent (PGD)
(Madry et al, [2018)) sanity check suggested in (Athalye
2018). We took our trained models for the input
mixup baseline and manifold mixup and we ran PGD for
200 iterations with a step size of 0.01 which reduced the
mixup model’s accuracy to 1% and reduced the Manifold
Mixup model’s accuracy to 0%. This is a evidence that
our defense did not improve results primarily as a result of
gradient masking.

E. Generative Adversarial Networks

The recent literature has suggested that regularizing the
discriminator is beneficial for training GANs

et all, 2016} [Arjovsky et al 2017 [Gulrajani et al, 2017;

Miyato et al.,[2018)). In a similar vein, one could add mixup
to the original GAN training objective such that the extra

data augmentation acts as a beneficial regularization to the
discriminator, which is what was proposed in (Zhang et al.|
2018). Mixup proposes the following objective'|
y(\jz1,72)),
“)
where 1, z2 can be either real or fake samples, and A is
sampled from a Uni form(0, ). Note that we have used a

function y(\; 21, x2) to denote the label since there are four
possibilities depending on 21 and x5:

max ml}n Euy 2o 0,2 £L(dMixy (21, 22)),
g

A, if z; is real and x- is fake
1— ), ifxisfake and x5 is real
AT, = 5
yXizez) =4 if both are fake ®)
1, if both are real

In practice however, we find that it did not make sense
to create mixes between real and real where the label is

!'The formulation written is based on the official code provided
with the paper, rather than the description in the paper. The dis-
crepancy between the two is that the formulation in the paper only
considers mixes between real and fake.
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Figure 6: CIFAR-10 train set Binary Cross Entropy Loss (BCE) on Y-axis using PreActResNet18, with respect to training
epochs (X-axis). The numbers in {} refer to the resblock after which Manifold Mixup is performed. The ordering of the
losses is consistent over the course of training: Manifold Mixup with gradient blocked before the mixing layer has the
highest training loss, followed by Input Mixup. The lowest training loss is achieved by mixing in the deepest layer, which
suggests that having more hidden units can help to prevent underfitting.
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Figure 7: CIFAR-100 train set Binary Cross Entropy Loss (BCE) on Y-axis using PreActResNet50, with respect to training
epochs (X-axis). The numbers in {} refer to the resblock after which Manifold Mixup is performed. The lowest training loss
is achieved by mixing in the deepest layer.
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Table 9: Models trained on the normal CIFAR-100 and evaluated on a test set with novel deformations. Manifold Mixup
(ours) consistently allows the model to be more robust to random shearing, rescaling, and rotation even though these
deformations were not observed during training. For the rotation experiment, each image is rotated with an angle uniformly
sampled from the given range. Likewise the shearing is performed with uniformly sampled angles. Zooming-in refers to
take a bounding box at the center of the image with k% of the length and k% of the width of the original image, and then
expanding this image to fit the original size. Likewise zooming-out refers to drawing a bounding box with k% of the height
and k% of the width, and then taking this larger area and scaling it down to the original size of the image (the padding
outside of the image is black).

No Mixup Input Mixup Input Mixup Manifold Mixup
Test Set Deformation Baseline a=1.0 a=2.0 a=2.0
Rotation U(—20°,20°) 52.96 55.55 56.48 60.08
Rotation U(—40°,40°) 33.82 37.73 36.78 42.13
Rotation U(—60°,60°) 26.77 28.47 27.53 33.78
Rotation U(—80°,80°) 24.19 26.72 25.34 29.95
Shearing U(—28.6°, 28.6°) 55.92 58.16 60.01 62.85
Shearing U(—57.3°, 57.3°) 35.66 39.34 39.7 44.27
Shearing U(—114.6°, 114.6°) 19.57 22.94 22.8 24.69
Shearing U(—143.2°, 143.2°) 17.55 21.66 21.22 23.56
Shearing U(—171.9°,171.9°) 22.38 25.53 25.27 28.02
Zoom In (20% rescale) 2.43 1.9 2.45 2.03
Zoom In (40% rescale) 4.97 4.47 5.23 4.17
Zoom In (60% rescale) 12.68 13.75 13.12 11.49
Zoom In (80% rescale) 47.95 52.18 50.47 52.7
Zoom Out (120% rescale) 43.18 60.02 61.62 63.59
Zoom Out (140% rescale) 19.34 41.81 42.02 45.29
Zoom Out (160% rescale) 11.12 25.48 25.85 27.02
Zoom Out (180% rescale) 7.98 18.11 18.02 15.68

set to 1, (as shown in equation [5), since the mixup of two
real examples in input space is not a real example. So we
only create mixes that are either real-fake, fake-real, or
fake-fake. Secondly, instead of using just the equation in
Ml we optimize it in addition to the regular minimax GAN
equations:

The layer k£ we choose the sample can be arbitrary combi-
nations of the input layer (i.e., input mixup), or the first or
second resblocks of the discriminator, all with equal proba-
bility of selection.

We run some experiments evaluating the quality of gener-
ated images on CIFAR10, using as a baseline JSGAN with
max minE, £(d(z),1) + Ey(.) £(d(g(2)),0) + GAN mixup te?ﬁ?fﬁ&hgﬁ&? zat'lon (Mlya.to et al}2018) (our configura-
g d tion is almost identical to theirs). Results are averaged over
(6) at least three runsﬂ From these results, the best-performing

mixup experiments (both input and Manifold Mixup) is with
a = 0.5, with mixing in all layers (both resblocks and in-
put) achieving an average Inception / FID of 8.04 £ 0.08 /
21.240.47, input mixup achieving 8.03+£0.08 / 21.440.56,
for the baseline experiment 7.97 4+ 0.07 / 21.9 £ 0.62. This
mdin Euy w02,k £(d(2), 1) + £(d(g(2), 0) + £( fr (Mixx(gx (1 uggdests khat(Avigup, as a useful regularization on the

Q) Inception scores are typically reported with a mean and vari-
ance, though this is across multiple splits of samples across a

Using similar notation to earlier in the paper, we present the
manifold mixup version of our GAN objective in which we
mix in the hidden space of the discriminator:

where gy, (+) is a function denoting the intermediate output
of the discriminator at layer k, and f(-) the output of the
discriminator given input from layer k.

single model. Since we run multiple experiments, we average their
respective means and variances.
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discriminator, which is even further improved by Manifold
Mixup. (See Figure[§]for the full set of experimental results.)
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Figure 8: We test out various values of « in conjunction
with either: input mixup ( pixel) (Zhang et al., [2018)),
mixing in the output of the first resblock (h1), mixing in
either the output of the first resblock or the output of the
second resblock (h1, 2), and mixing in the input or the out-
put of the first resblock or the output of the second resblock
(1, 2,pixel). The dotted line indicates the baseline In-
ception / FID score. Higher scores are better for Inception,
while lower is better for FID.

F. Intuitive Explanation of how Manifold
Mixup avoids Inconsistent Interpolations

An essential motivation behind manifold mixup is that as
the network learns the hidden states, it does so in a way
that encourages them to be a flatter (per-class). Section[3.1]
characterized this for hidden states with any number of
dimensions and Figure | showed how this can occur on the
2D spiral dataset.

Our goal here is to discuss concrete examples to illustrate
why this flattening happens, as shown in Figure [3] If we
consider any two points, the interpolated point between
them is based on a sampled A and the soft-target for that
interpolated point is the targets interpolated with the same
A. So if we consider two points A,B which have the same
label, it is apparent that every point on the line between A
and B should have that same label with 100% confidence.
If we consider two points A,B with different labels, then
the point which is halfway between them will be given the
soft-label of 50% the label of A and 50% the label of B (and
so on for other A values).

It is clear that for many arrangements of data points, it is
possible for a point in the space to be reached through dis-
tinct interpolations between different pairs of examples, and
reached with different A values. Because the learned model
tries to capture the distribution p(y|h), it can only assign a
single distribution over the label values to a single particular
point (for example it could say that a point is 100% label
A, or it could say that a point is 50% label A and 50% label

B). Intuitively, these inconsistent soft-labels at interpolated
points can be avoided if the states for each class are more
concentrated and the representations do not have variability
in directions pointing towards other classes. This leads to
flattening: a reduction in the number of directions with vari-
ability. The theory in Section [3.1|characterizes exactly what
this concentration needs to be: that the representations for
each class need to lie on a subspace of dimension equal to
“number of hidden dimensions” - “number of classes” + 1.

G. Spectral Analysis of Learned
Representations

When we refer to flattening, we mean that the class-specific
representations have reduced variability in some directions.
Our analysis in this section makes this more concrete.

We trained an MNIST classifier with a hidden state bottle-
neck in the middle with 12 units (intentionally selected to
be just slightly greater than the number of classes). We
then took the representation for each class and computed
a singular value decomposition (Figure [9] and Figure [10)
and we also computed an SVD over all of the representa-
tions together (Figure[T2). Our architecture contained three
hidden layers with 1024 units and LeakyReLU activation,
followed by a bottleneck representation layer (with either
12 or 30 hidden units), followed by an additional four hid-
den layers each with 1024 units and LeakyReLU activation.
When we performed Manifold Mixup for our analysis, we
only performed mixing in the bottleneck layer, and used
a beta distribution with an alpha of 2.0. Additionally we
performed another experiment (Figure |l I|where we placed
the bottleneck representation layer with 30 units immedi-
ately following the first hidden layer with 1024 units and
LeakyReLU activation.

We found that Manifold Mixup had a striking effect on the
singular values, with most of the singular values becoming
much smaller. Effectively, this means that the representa-
tions for each class have variance in fewer directions. While
our theory in Section [3.1] showed that this flattening must
force each classes representations onto a lower-dimensional
subspace (and hence an upper bound on the number of singu-
lar values) but this explores how this occurs empirically and
does not require the number of hidden dimensions to be so
small that it can be manually visualized. In our experiments
we tried using 12 hidden units in the bottleneck Figure [0 as
well as 30 hidden units Figure[I0]in the bottleneck.

Our results from this experiment are unequivocal: Manifold
Mixup dramatically reduces the size of the smaller singular
values for each classes representations. This indicates a
flattening of the class-specific representations. At the same
time, the singular values over all the representations are not
changed in a clear way (Figure[I2)), which suggests that this
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flattening occurs in directions which are distinct from the
directions occupied by representations from other classes,
which is the same intuition behind our theory. Moreover,
Figure [T1]shows that when the mixing is performed earlier
in the network, there is still a flattening effect, though it is
weaker than in the later layers, and again Input Mixup has
an inconsistent effect.
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Figure 9: SVD on the class-specific representations in a bottleneck layer with 12 units following 3 hidden layers. For the
first singular value, the value (averaged across the plots) is 50.08 for the baseline, 37.17 for Input Mixup, and 43.44 for
Manifold Mixup (these are the values at x=0 which are cutoff). We can see that the class-specific SVD leads to singular
values which are dramatically more concentrated when using Manifold Mixup with Input Mixup not having a consistent
effect.
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Figure 10: SVD on the class-specific representations in a bottleneck layer with 30 units following 3 hidden layers. For the
first singular value, the value (averaged across the plots) is 14.68 for the baseline, 12.49 for Input Mixup, and 14.43 for
Manifold Mixup (these are the values at x=0 which are cutoff).
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Figure 11: SVD on the class-specific representations in a bottleneck layer with 30 units following a single hidden layer. For
the first singular value, the value (averaged across the plots) is 33.64 for the baseline, 27.60 for Input Mixup, and 24.60
for Manifold Mixup (these are the values at x=0 which are cutoff). We see that with the bottleneck layer placed earlier,
the reduction in the singular values from Manifold Mixup is smaller but still clearly visible. This makes sense, as it is not
possible for this early layer to be perfectly discriminative.
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Figure 12: When we run SVD on all of the classes together (in the setup with 12 units in the bottleneck layer following 3
hidden layers), we see no clear difference in the singular values for the Baseline, Input Mixup, and Manifold Mixup models.
Thus we can see that the flattening effect of manifold mixup is entirely class-specific, and does not appear overall, which is
consistent with what our theory has predicted. More intuitively, this means that the directions which are being flattened are
those directions which point towards the representations of different classes.
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