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Abstract

Consider a setting with N independent individuals, each with an unknown parameter,
pi € [0,1] drawn from some unknown distribution P*. After observing the outcomes of ¢
independent Bernoulli trials, i.e., X; ~ Binomial(¢,p;) per individual, our objective is to ac-
curately estimate P*. This problem arises in numerous domains, including the social sciences,
psychology, health-care, and biology, where the size of the population under study is usually
large while the number of observations per individual is often limited. Our main result shows
that, in the regime where ¢ < N, the maximum likelihood estimator (MLE) is both statisti-
cally minimax optimal and efficiently computable. Precisely, for sufficiently large N, the MLE
achieves the information theoretic optimal error bound of O(7) for t < clog N, with regards
to the earth mover’s distance (between the estimated and true distributions). More generally,
in an exponentially large interval of ¢ beyond clog N, the MLE achieves the minimax error

bound of O(ﬁ). In contrast, regardless of how large N is, the naive "plug-in" estimator

for this problem only achieves the sub-optimal error of @(%)
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1 Introduction

The problem of learning a distribution of parameters over a population arises in several domains
such as social sciences, psychology, medicine, and biology [Lor65, LC75, Mil86, PD90, CC94,
BLWO00]. While the number of individuals in the population can be very large, the number of
observations available per individual is often very limited, which prohibits accurate estimation of
the parameter of interest per individual. In such sparse observation scenarios, how accurately can
we estimate the distribution of parameters over the population?

In the 1960’s F. M. Lord studied the problem of estimating the distribution of parameters over
a population in the context of psychological testing [Lor65, Lor69]. Consider a study involving
a large number of independent individuals. Each individual has an unknown probability p; of
answering a question correctly. Given the scores of these individuals on a test with small set of
questions, the goal is to estimate the underlying distribution of p;’s. Such an estimated distribution
can be used in downstream tasks, like testing if the distribution of scores is uniform or multimodal,
or comparing two tests of the same psychological trait.

We use the lens of sparse regime analysis for this problem of learning a population of param-
eters. Our analysis is inspired by the recent advances in a related problem of estimating discrete
distributions and their properties such as, entropy and support size, when the number of observa-
tions is much smaller than the support size of the distribution [VV13, JVHW15, WY15, WY16,
OSW16, ADOS17, JHW18, HJW18|. However, we note that our setting is not the same as esti-
mating a discrete distribution. For instance, the probabilities sum to 1 for a discrete distribution,
where as, the true parameters in our setting need not sum to 1.

There have been several classical works on non-parametric mixture models in general [Tur76,
Sim76, Lai78, Lin83a, Lin83b, B6h89, LK92| and binomial mixture models in particular [Cre79,
Wo099] which have studied the geometry of the maximum likelihood estimator (MLE), the optimal-
ity conditions, identifiability, and uniqueness of the MLE solution, and algorithms for computing
the optimal solution to the MLE. However, the statistical analysis of how accurately the MLE
recovers the underlying distribution has not been addressed. In this paper, we fill this gap, and
show that MLE achieves the optimal error bound with regards to the earth mover’s distance (or
Wasserstein-1 distance, Definition 3.1) between the estimated and true distributions (equivalently,
the [;-distance between the CDF’s).

1.1 Problem set-up and summary of results

The setting considered in [Lor69] can be modeled as follows. Consider a set of N independent coins,
each with its own unknown bias p; € [0,1] drawn independently from some unknown distribution
P* over [0,1]. That is, the probability of seeing a head when coin 7 is tossed is p;. For each coin
i, we get to observe the outcome of ¢ independent tosses, denoted by, X; ~ Binomial(¢, p;). Our

goal is to estimate the unknown distribution P* from {X;} ;.
The MLE for this problem is as follows:

N 1
arg max Zlog/o (}?)yxl‘(l — ) XdQ(y),

QED o

where D is set of all distributions on [0, 1].

Our Contribution: We bound the earth mover’s distance (or the Wasserstein-1 distance)
between the true distribution P* and the MLE solution ]Smlc, and show that:
e The MLE achieves an error bound of

A 1
W1 (P*, Pyie) = Os (t) -

when t = O(log N). For sufficiently large N, the bound of © (%) is information theoretically
optimal.

e The MLE achieves an error bound of

. 1
Wl(P*7Pmle) - (95 <\/m> )

when ¢ € [Q(logN),O (N?/97)], and this bound is information theoretically optimal in this
regime.

105(.) hides log (1/8) in the bound for it to hold with probability at least 1 — 26.



Table 1: Comparison of results

Estimators Bound on EMD
1 1
o (%) +e ()
Empirical in all regimes
T
Moment *© (?)
Matching when t = O(log N)
[TKV17] e Fails when ¢t = Q(log V)
* 0(3)
when ¢ = O(log N)
1
MLE * O gy ) when
(this paper) | t € [Q(log N), O (N2/97¢)]

Table 1 summarizes our results in comparison to other estimators. While the moment match-
ing estimator [TKV17] achieves the same error bound as the MLE when ¢t = O(log N), if fails
when ¢t = Q(log N) due to high variance in the larger moments. While the local moment match-
ing [HJW18] could potentially avoid this weakness, it involves hyperparameter tuning which makes
it difficult to work with in practice (Remark 3.3 in Section 3). In contrast, the MLE naturally
adapts itself and achieves the optimal rates in different regimes without the need for any parameter
tuning. We demonstrate that the MLE works well in practice on both synthetic as well as real
datasets. Furthermore, our analysis involves bounding the coefficients of Bernstein polynomials
approximating Lipschitz-1 functions (Proposition 4.1). We believe that this question is of indepen-
dent interest with implications to general polynomial approximation theory as well as applications
in computer graphics.

2 Related Works

Starting from [Lor69], there has been a great deal of interest in the problem of estimating the
distribution of true scores of a population of independent entities. Maximum likelihood estimation
for non-parametric mixture models has been studied extensively [LC75, Cre79, Lai78, Tur76, LK92].
[Lin83a] and [Lin83b] delineate the geometry of the MLE landscape for non-parametric mixture
models in general, and specifically for exponential family respectively. [Wo099] further discusses the
issue of uniqueness of the solution for mixture of binomials and the relationship with the moment
space. As mentioned in the introduction, the accuracy of the MLE solution for this formulation
has not been studied in the literature. Our work fills in this gap by showing that the MLE solution
is minimax optimal when ¢ < N.

In a recent work [TKV17], the authors proposed a moment matching estimator to estimate the
unknown distribution of the biases in the regime where the number of tosses per coin t < O(log N).
This estimator finds a distribution on [0, 1] that closely matches the first ¢ empirical moments of
the unknown distribution that can be estimated using the observations. This moment matching

estimator incurs O (%) +0s | 2% IO—I%t . Furthermore, [TKV17| also showed that 2 (%) is a lower

bound in this setting. The main weakness of this method of moments approach is that it fails to
obtain the optimal rate when ¢ > clog N.

A tangentially related problem is that of estimating a discrete distribution and its symmet-
ric properties? like entropy, and support size, when the number of observations is much smaller
than the support size of the distribution. This is a well-studied classical problem in statis-
tics [FCW43, GT56, ET76|. It has received a lot of interest in the past decade and continues to be
a very active area of research [Pan03, OSVZ04, VV11, VV13, JVHW15, WY15, WY16, OSW16].
Recent work [HJW18| used local moment matching to provide bounds on estimating symmetric
properties of discrete distributions under the Wasserstein-1 distance. This technique of local mo-
ment matching can be used in our setting to improve the bounds obtained in [TKV17] in the regime

2A function over a discrete distribution is said to be a symmetric function if it remains invariant to the relabeling
of the domain symbols.



where t > clog N. We discuss this more in Section 3.2. In a similar spirit to our work, a series
of works [AOP09, ADM*10, ADOS17| examined the profile or pattern maximum likelihood as a
unifying framework for estimating symmetric properties of a discrete distribution. Unlike in our
setting, it is computationally challenging to computing the exact maximum likelihood estimator,
and the question becomes how to efficiently approximate it (see e.g. [Vonl2, CSS19]).

3 Main Results

Before formally stating our results, we introduce some notation, discuss the MLE objective and
define the Wasserstein-1 metric used to measure the accuracy of estimation.

Notation: Recall that N is the number of independent coins and ¢ is the number of tosses per
coin. The biases of the coins are denoted by {p;}}¥ |, where each p; € [0,1] is drawn from some
unknown distribution P* on [0, 1]. The set of observations is {X;}¥,, where X; ~ Binomial(t, p;).
For s € {0,1,...,t}, let n, denote the number of coins that show s heads out of ¢ tosses. Let ho"
denote the fraction of coins that show s heads.

N
bs n
ng = Zl Lixi—sps ™= 2 (1)
i—

where 14 is indicator function for set A. h°Ps := {hgPs h$PS ... h9PS} is the observed fingerprint.
Since the identity of the coins is not important to estimate the distribution of the biases, the
observed fingerprint is a sufficient statistics for the estimation problem.
MLE Objective: The MLE estimate of the distribution of biases given the observations {X;} X,
is,

N 1
p t
Ppie € arg max 10g/ ( )yX'i 1— )" %dQ(y
QeD ; o \X; ( ) (y)
t 1
t\ . .
= arg maXZns log/ ( )y (1— y)t Sq(y)dy,
QeD s=0 0 S

=:Eqlhs]

where D is the set of all distributions on [0, 1], ns is the number of coins that that see s heads
out of ¢ tosses, and Eg[hs] is the expected fraction of the population that sees s heads out of ¢
tosses under the distribution Q. Equivalently, the MLE can be written in terms of the fingerprint
as follows,

t

Py € arg max Z ho™ log Eghs), (2)
QeD 5—0
= arg min KL (h°", Eg[h]), (3)
QeD

where KL(A , B) is the Kullback-Leibler divergence® between distributions A and B, h°b® is the
observed fingerprint vector and Eq[h] denotes the expected fingerprint vector when the biases are
drawn from distribution Q.

Remark 3.1. The set D of all distributions over [0, 1] is convex. Furthermore, the objective
function of the MLE (Equation 3) is convex in @ and strictly convex in the valid fingerprints,
{Eq[hs]}izo- While there is a unique Ep [h] that minimizes the objective (3), there can be
many distributions @* € D that can give rise to the optimal expected fingerprint. Moreover, while
the fingerprint vector h lives in A?, the t-dimensional simplex in R**!, not all vectors in A? can
be valid fingerprints. The set of all valid fingerprints is a small convex subset of A. Very often
h°Ps falls outside the set of valid fingerprints and the solution to the MLE is the closest projection
under the KL divergence onto the valid fingerprint set. Furthermore, the fingerprints are related
to moments via a linear transform. The geometry of the set of valid fingerprints therefore can also
be described using moments. For more details on this geometric description we refer the reader
to [Wo099].

3KL divergence between two discrete distributions A and B supported on X is defined as KL(A,B) =
A(2) log A=)
er){ (w) og B(z) "




Wasserstein-1 Distance: We measure the accuracy of our estimator using the Wasserstein-
1 distance or the earth mover’s distance (EMD) between two probability distributions over the
interval [0, 1] which is defined as:

Definition 3.1 (Wasserstein-1 or earth mover’s distance).

Wi(P.Q) = inf // [ — | dr(z,y), (4)

VGF(P Q)

where I'(P, Q) is a collection of all the joint distributions on [0, 1]? with marginals P and Q. A dual
definition due to Kantarovich and Rubinstein [KR58] of this metric is as follows:

Wi(P.Q) == sup / £(@) () — g(x))da (5)

fELIP(l)

= sup (Ep[f] —Eqlf]), (6)

fELlp(l)

where p and ¢ are the probability density functions of the distributions P and Q respectively, and
Lip(1) denotes the set of Lipschitz-1 functions.

Wassertein-1 distance is a natural choice to measure the accuracy of estimator in our setting.
E.g., suppose the true distribution P* is 6(0.5) = 1. Let P; with 6(0.45) = 1 and P, with
§(0) = 6(1) = 1 be the output of two estimators. The Wassertein-1 distance, W1 (P*, P;) = 0.05
and Wi (P*, P;) = 0.5, clearly distinguishes the first estimate to be much better than the second.
In contrast, the total variation distance between both P; and P, to the truth is 1 and the KL
divergence to the truth in both cases is infinite.

3.1 Small sample regime

We first focus on the regime where the number of observations per coin, t = O(log N). Consider the
problem setup in Section 1.1. The following theorem gives a bound on the Wasserstein-1 distance
between the MLE (Equation 3) and the true underlying distribution.

Theorem 3.1 (Small Sample Regime). When ¢ = O(log N), the Wassertein-1 distance between
an optimal solution to the MLE, denoted by Py and the true underlying distribution P* can be
bounded with probability at least 1 — 2§ as follows,

W1 (P*, Pue) < Os (1) . (7)

For constant §, this O(1/t) rate is information theoretically optimal due to the following result
(Proposition 1 in [TKV17]):

Proposition 3.1 (Lower Bound [TKV17]). Let P denote a distribution over [0,1]. Let X :
{X;}, be random variables with X; ~ Binomial(t, p;) where p; is drawn independently from P
Let f be an estimator that maps X to a distribution f(X). For every fixed ¢, the following lower
bound holds for all N:

. 1
inf sup I Wi (P, f(X)] > - (8)

3.2 Medium sample regime

In this section we consider the regime where the number of observations per coin ¢ is larger than
Q(log N). For the same setting as before (Section 1.1), the following theorem provides a bound on
the Wasserstein-1 distance between the MLE solution and the true distribution.

Theorem 3.2 (Medium Sample Regime). There exists e > 0, such that, fort € [Q(log N), O (N%/9=¢)],
with probability at least 1 — 20,

A 1
W1 (P*, Puie) < Os (\/W> .

Remark 3.2. We conjecture that the interval for this bound should be ¢ € [Q(log N), O (N2/3_€)] .

Details on why the sub-optimal bound of O (N 2/ 9*6) arises in our analysis is described in Re-
mark 4.1 and discussion after Lemma 4.2.

9)



We prove a @(ﬁ) lower bound of the minimax rate for estimating the population of

parameters under Wasserstein-1 distance. This lower bound, combining with the @(%) lower bound
shown in [TKV17], implies that the MLE is minimax optimal up to a constant factor in both the
regimes. The lower bound is formalized in Theorem 3.3.

Theorem 3.3. Let P be a distribution over [0,1]. Let X := {X;}¥, be random variables with

X; ~ Binomial(¢, p;) where p; is drawn independently from P. Let f be an estimator that maps
44

.. . N2t -
X to a distribution f(X). For every ¢, N s.t. t < =

5 ) , the following lower bound holds:

1
inf sup E[W1 (P, f(X))] > ———.
TR V2B, FX)) 3ety/tlog N

Remark 3.3. Local Moment Matching: The moment matching estimator in [TKV17] fails
when t is larger than Q(log V) because the t-th order moments cannot be estimated accurately

(10)

in that regime. This causes the second term in the error bound O (%) + O | 2% lngt to be-

come large. Naturally, one might consider matching only the first log N moments which can be
reliably estimated. In addition, the parameter interval [0,1] can be split into blocks, and the
moment matching can be done in each block locally by utilizing the fact that for large t, X;/t
tightly concentrates around p;. The local moment matching was first introduced in a recent work
by [HIJW18] in the setting of learning discrete distributions. Potentially, one may apply the local
moment matching approach to our setting of learning populations of parameters which will likely
yield an algorithm that achieves Wasserstein-1 distance error O(max(ﬁ, 1)) in the t < N
regime. The algorithm will degenerate to the one developed in [TKV17] in the ¢ = O(log N) regime.
However, from a practical perspective, the local moment matching algorithm is quite unwieldy. It
involves significant parameter tuning and special treatment for the edge cases. Some techniques
used in local moment matching, e.g. using a fixed blocks partition of [0, 1] and matching the first
log N for all the blocks, are quite crude and likely lose large constant factors both in theory and
in practice. Therefore, we expect the local moment matching to have inferior performance than
the MLE approach in practice. We include a brief sketch of how one may apply the local moment
matching approach to our setting in the supplementary material.

Remark 3.4. Empirical Estimator: The naive “plug-in" estimator for the underlying distri-

bution is the sorted estimates of the biases of the coins. This incurs an error of O (%) +0O (ﬁ)

in the earth movers distance (or I;— distance between the estimated and the true CDFs), where
the first term is due to the error in estimating the biases of the coins from ¢ outcomes, and the
second term is due to estimating the error in the estimated CDF using IV coins. If the number of
tosses per coin is very large, that is, ¢ > N, then we can estimate individual biases pretty well,

and obtain empirical CDF that can estimate P* incurring overall error rate of O (ﬁ) However,
in the regime of interest, the number of observation per coin is small, i.e., t < N (sparse regime).
The empirical estimates of the biases in this regime are very crude. Thus, when ¢ is small, even

with a very large population (large N), the empirical estimator does not perform better on the
task of estimating the underlying distribution than on estimating the biases itself which incurs a

o ()
4 Proof Sketches

4.1 Bound on Wasserstein-1 distance

Proofs of Theorems 3.1 and 3.2 involve bounding the Wasserstein-1 distance between the true
distribution P* and the MLE estimate ]Smle. Recall the dual definition of Wasserstein-1 distance
or the earth movers distance between two distributions P and @ supported on [0, 1],

1

WiPQ = sw [ f@)p() - afe)ds,
feLip(1) Jz=0

where p and ¢ are the probability density functions of the distributions P and Q respectively,

and Lip(1) denotes the set of Lipschitz-1 functions. Any Lipschitz-1 function f on [0,1] can

be approximated using Bernstein polynomials as, f(z) := Zézo b (;)xj(l — )77, Using this

approximation we have,



/ F@) () - gl >>dx},

which can be bounded by,

2||f - f“oo
1t A .
+/ >.b ( ) 2! (1 —2)" (p(x) - q(x))dz
0 =0 M
A t
=2|[f = fllso + > bj (Bp[h;] — Eq[hy)), (11)
j=0
where ||f — f]loo == nax |f(xz) — f(x)| is the approximation error. Therefore, the Wasserstein-1

€[0,1]
distance (Definition 5) between the true distribution P* and MLE estimate Py can be bounded
as follows,

Wl(P7Pmle)§ sup 2||f_f||oo
f€ELip(1) T

+Zb (Ep-[hy] — hS™)

(b)

+3, (h;bb Ep [hj]) (12)

The first term (a) in the above bound (Equation 12) is the approximation error for using Bernstein
polynomials to approximate Lipschitz-1 functions. The second term (b) is the error due to sampling.
The third term (c) is the estimation error in matching the fingerprints. We bound the second and
third term using the following lemmas.

Lemma 4.1. With probability at least 1 — ¢,

+

3" b; (b — E(hy)) S(’)(mjax|bj log]\}/‘S). (13)

7=0

Lemma 4.2. For 3 <t <+CyN +2,w. p. 1 —9,
t
ij (hj = Epy, (hy)

<maX\b| Z Poe (1)

< max by V2 n2 \/ —+ﬁ1 ?;e. (14)

We prove Lemma 4.1 using Mcharmld s inequality for concentration of fingerprints and Lemma 4.2
using optimality of MLE, Pinsker’s inequality and recent results bounding the KL divergence be-
tween empirical observations and the true distribution for discrete distributions [MJT*18].* We
believe that the v/ dependence in the bound in Lemma 4.2 is spurious due to our analysis via the
first inequality.

4The details are available in the supplementary material and arXiv version [VKVK19].



4.2 Bounding the polynomial approximation error

In this section we bound term max; |b;|. Let f be any Lipschitz-1 function on [0,1]. Let f; be
degree t polynomial approximation of f using Bernstein polynomials:

fi(z) = Z b; (;) (1 —a) 7 = Z b; Bj(x), (15)
0 j=0

Jj=

where, Bjt(:r) = (;)xj(l — )77 is j—th Bernstein polynomial of degree ¢, for j = 0,1,...,t. Our
goal is to bound the uniform approximation error, ||f — f||oo := m[ax}|f(m) — f(x)| while controlling
z€[0,1

the magnitude |b;|, of the coefficients. We note that max; |b;| appears in the bounds of error terms
(b) and (c¢) in Equation (12), and hence it is important to control it to obtain tight bounds on the
Wasserstein-1 metric in different regimes of ¢ and N.

Bernstein used ¢ 4+ 1 uniform samples of the function f on [0, 1], f (%), as the coefficients in Equa-

tion (15) and showed that the uniform approximation error of such approximation is || f — f|oe <
%, where C'is a constant. This approximation is not sufficient to show the bounds in Theorems 3.1
and 3.2. Can we obtain better uniform approximation error using Bernstein polynomials with other
bounded coefficients? The following proposition answers this question.

Proposition 4.1. Any Lipschitz-1 funciton on [0, 1] can be approximated using Bernstein poly-
nomials (Equation 15) of degree ¢, with an uniform approximation error of
. (’)(%) with max; [b;| < V2t

. O(%) with max; |b;| < \/E(t + 1)€$7 for k < t.

For ¢ above Q(log N), we set k = v/tlog N¢, for appropriate choice of ¢ > 0, obtaining a bound

of max; |b;| < tY/4(t + 1) (log NC)1/4 N¢. Combining these bounds with Lemmas 4.1 and 4.2 gives
the results in Theorems 3.1 and 3.2. In the reminder of this section, we sketch out the proof
of Proposition 4.1. Key idea is to approximate f using Chebyshev polynomials of lower degree,
k < t, and transform to Bernstein polynomials of degree ¢ to obtain appropriate bounds on the
coefficients |b;|.

Let T}, denote Chebyshev polynomial of degree m shifted to [0,1] which satisfy the following
recursive relation:

Tp(x) = (42 — 2) Tt — Trno(z), m=2,3, ...,

and To(m) =1, T () = 2z — 1. We use the following lemma regarding Chebyshev polynomial
approximation °.

Lemma 4.3. Given any Lipschitz-1 function f(x) on [0, 1], there exists a degree k polynomial in

the form of fi(x) = anzo amTim () that approximates f(x) with error maxgeo,1] |f(z) — fu(z)] =

O(3), where T, (x) denotes Chebyshev polynomial of degree m shifted to [0,1]. Further, the
coefficients (ay,as,...,a) satisfies ||alls < 1.

Chebyshev polynomial T, can be written in terms of Bernstein-Bezier polynomials of degree
m as follows [Rab03]:

- m . (Zm)

To(x) = (=)™ 2L By (). (16)
i=0 ( j)

Note that the coefficients of B]" can be as large as 2. For m = ¢, this gives an upper bound of

2% on the coefficients of Bernstein polynomial. This along with Equation 25 gives the first part of

Proposition 4.1. To show the second part, we need to bound the coefficents when m < t.

Degree raising: Bernstein polynomials of degree m < ¢ can be raised to degree ¢ as:

B (x) = +Zm (m)(()m)

5The proof is available in the supplementary material and in the arXiv version [VKVK19].

Bi(x). (17)




Using degree raising of Bernstein polynomials, we can write shifted Chebyshev polynomials of
degree m < t in terms of Bernstein polynomials of degree t as,

m (2my iLmm () (t-m
f(o) = oo B D gy
Y Cltm. ) By, 1)

<
Il

where the coefficient of j-th Bernstien polynomial of degree ¢ is given by®,

=0 j

Following is a generating function for the coefficients,

om (L1 VZ)P 4 (1 =i /2)*™
2

(19)

(1+2)

C(t,m, §) (;) 2. (20)

t
J=0

. . . . . . . -1
Using Beta function, the binomial terms in the denominator can be written as, (;) = (t+

1) fol(l — u)?ut=Idu. We bound the generating function of the coefficients on the unit circle and
use Parseval’s theorem to prove the following lemma (details are available in the supplementary
material and in arXiv version [VKVK19]).

Lemma 4.4. The ls-norm of the coefficents of B; can be bounded as follows,

t

SO m I < (E+ 1) (21)

Jj=0

From Lemma 4.4 (Equation 48), we can obtain the following bound on the coefficients:

m?2

C(t,m, )| < (t+ 1) (22)

Remark 4.1. Bounding |C(¢,m,j)| by the lo-norm of the coefficients gives a weak bound. We
conjecture that the right bound on the coefficients of B; for every m <t to be,

’771.2
Cltm, )| < e, j=1,2,1. (23)
In fact, for a fixed m, the coefficients C(t,m, j) should converge to points sampled uniformly from
T,.(x) as t — oo by Bernstein’s approximation. So the bound on the coefficients should converge
to 1l ast — oo.

Let f be a Lipschitz-1 function on [0, 1]. We first let f be the polynomial approximation using
Chebyshev polynomials upto degree k = /tlog N¢ obtained from Lemma 4.3. Then we re-write
each T, use Bernstein polynomials of degree k followed by degree raising to t.

k k t
fk(x) = Z a,me(l‘) = Z am ZC(t,m,g)Bﬁ(l‘)
m=0 m=0 Jj=0
t k
=3 (S ) it
=0 \m=0
= bJB;t-(x). (24)

j=
SFor positive integers a,b > 0, (}) = 0 when a < b.
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Figure 1: EMD between estimated and true distribution for small ¢ (number of coins N = 1e6)
for various distributions using MLE (blue), moment matching (TKV17) [TKV17] (magenta) and
empirical estimate (red). Results are averaged over 10 runs.

Since ||al|2 < 1,and from Equation 22, we have the following bound on the coefficients, for j =
1,2, t,

k
|bj| = Z Am C(tama.])

m=0

< Vk max|C(t,m, j)| < VE(t+1)e
J

k
<3 Jaw] [C(tm, )],
m=0

k2
t

(25)

4.3 Lower bound for medium ¢ regime

The basic idea of the proof of Theorem 3.3 is to construct a pair of distributions P, () such that
Wi(P,Q) = @(ﬁ). With N coins sampled from theses distributions each with t flips, we
argue that it is information theoretically hard to distinguish the two distributions. We use the

following two propositions”:

Proposition 4.2. Given two distributions P, @), supported on [1/2—,/ @, 1/2+ @], whose
first L := e*log N moments match, let p ~ P, X ~ Binomial(¢,p), ¢ ~ Q and Y ~ Binomial(t, q).

The total variation distance between X and Y satisfies TV(X,Y) < 12\;{4{

Proposition 4.3. For any ¢, there exists a pair of distributions P,Q supported on [a,b] where
0 < a < b such that P and ) have identical first ¢ moments, and Wy (P — Dg) > %

Proof of Theorem 3.3. First we apply Proposition A.5 to construct a pair of distributions P, Q
supported on [1/2 — \/m, 1/2 4+ 4/ 228] such that P and Q have identical first L := e*log N

t t

moments, and Wi (P — Q) > e%#gN Let X := {X;}¥, be random variables with X; ~

"The proofs of these propositions are provided in supplementary material and arXiv version [VKVK19]
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Binomial(t, p;) where p; is drawn independently from P. Let Y := {Y;})¥, be random variables
with Y; ~ Binomial(t,q;) where ¢; is drawn independently from (). Denote Py as the joint
distribution of X and Qn as the joint distribution of Y. It follows from Proposition A.3 that

et
TV(X.,Y;) < ]2\[\@ By the property of the product distribution and ¢ < N2(36 1), TV(Py,Qn) <
Ni\ﬁl < 1/3, which implies the minimax error is at least 3TN \/tlloW' O

5 Numerical Experiments
Recall that the MLE (Equation 2) is a convex optimization problem,

t
Pple € arg max Z h‘s’bs log Eqlhs),
QeED =0
where D is the set of all distributions on [0,1]. We discretize the interval [0,1] into a uniform
grid of width % Note that as long as the error due to discretization (9(%) is smaller than the
expected error in earth mover’s distance (EMD), we will not be losing much numerically. Unless
otherwise specified, we use grid length of m = 1000. The discretized set D can then be written
as Dy, 1= {q ER™1:¢>0,1Tg=1 } We then solve the MLE which is convex on this discrete

convex set using cvx [GB14, GB0S8] for Matlab®.

a) Single Spike b) 3-Spike
0.15 (a) 9 ‘ P 0.15 (b) p
r’}‘i—-ﬂ——n——*——x——*
0.1f 1047
o ~—MLE
Lu .
-- Empirical
0.05¢ 10.05¢
0 0
10° N 10° 10° N 105
0.12 (c) truncated Gaussian 0.12 (d) Uniform
0.1 1 0.1
0.08 ¢ 1 0.08
O —-i__.x__—-u——u-—-&-—-x
E 0.06 1 1 0.06
0.04 ¢ 1 0.04
0.02 ¢ 10.02
0 : 0
10° N 10° 10° N  10°

Figure 2: Comparing EMD between estimated distribution and truth for varying number of coins
(with ¢ = 10) for various distributions using MLE (blue) and empirical estimate (red).

5.1 Simulations on synthetic data:

We demonstrate the performance of the MLE on synthetic datasets where we know the ground
truth. We consider 4 distributions, (1) single spike at 0.5, (2) mixture of 3 spikes of equal mass at
0.25,0.5 and 0.75, (3) truncated Gaussian on [0, 1] with mean 0.5 and variance 0.1 and (4) uniform
distribution on [0, 1].

Varying ¢: In the first set of experiments we consider the vary t regime where t = Olog N. With
the population size N = 1e6, we vary ¢ from 2 to 12. We run MLE, moment matching estimator
and empirical estimator. Figure 1 shows the earth mover’s distance (EMD) of the estimates from
the true distribution as a function of ¢.

Varying N: For t = 10, we vary the population size N from 10 to 10® in multiples of 10. Figure 2

11



shows the comparison of performance of the MLE and empirical estimator in EMD. As N increases,
the second term in EMD which depends on N decreases. We note that the error in EMD for MLE
is much lower than that for empirical distribution when ¢t < N as predicted by our analysis.
Varying t: For N = 1e6, we vary the number of tosses ¢ from 2 to 10 in steps of two and then
t = [50, 100, 500, 1000] to illustrate the performance of the MLE as ¢ varies widely. Figure 3 shows
the comparison of performance of the MLE and empirical estimator in EMD.

i i b) 3-Spike
03 (a) Single Spike 02 (b) pil
—=
ozl « MLE | |,
\ - Empirical| 0151
0.2¢ \ 1
[m] ’\\
= 0.15¢} X 1 017
w "
0.1 AN 1
\\ 0.05 |
0.05| Seel —
ol - 0
10° t 10 10° t 10°
i d) Uniform
0.25 (c) truncated Gaussian 014 (d)
\
A2
027 "\ —0 \\
\\ 017 \
\
a 015 [ \\ 7008 L \’(
& : \
01l X 10.06 \
\\\ 0.04 t X
0.05¢ N ] NN
AN 0.02 ~
S R S s
0 M 0 | —~ e
10° t 102 10° t 10

Figure 3: Comparing EMD between estimated distribution and truth for varying number of tosses
(with N = 1e6) for various distributions using MLE (blue) and empirical estimate (red).

5.2 Experiments on real datasets

We ran the MLE on two real datasets used in [TKV17]: (1) A dataset on political leanings of
counties in the US with data on whether a county leaned Democratic or Republican for N = 3116
counties in ¢t = 8 presidential elections from 1976 to 2004. Here, each county ¢ is assumed to have
a true probablity p; with which the county leans Republican in a given election (assuming the
independence of counties and elections). (2) A dataset of delays of flights with N = 25,156 flights.
Each flight is assumed to have an intrinsic probability p; of being delayed more than 15 minutes.
Figure 4 shows the CDF output by MLE, moment matching [TKV17]| and empirical estimators on
these datasets. We note that the observed fingerprints often lie outside the set of valid fingerprints
(see Remark 3.1), and hence the solution to the MLE is the projection on the surface. Thus, the
MLE tends to give sparser solutions. While the CDF output by the MLE and moment matching
qualitatively look very different, their first ¢ moments match and fit the observed first ¢ moments
extremely well (bottom row of Figure 4). Without any side information to enforce constraints like
smoothness, it is not possible to pick one over the other with sparse observations.
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A Supplementary Material

A.1 Concentration of fingerprints

Recall that hg is the fraction of the population that sees k heads out of ¢ tosses and E(hy) is the
expected fingerprint. Define, ¢(X) := S'_ by (hs — E[hs]), that is,

Note that E[¢p(X)] = 0. Let ¢ (X) be ¢ with X; being replaced by re-drawing X, ~ Bin(¢,p;).

6(X) — 60(X)| < max. bl

0<s<t
By McDiarmid’s Inequality, for some absolute constants C' and ¢, Pr (|¢(X)| > €) < Cexp (—m)
Hence, with probability at least 1 — ¢,

t

S b, (b~ B(hy)) <o< b 1°gN1/5>. (26)

=0

A.2 Bound on error term due to MLE
Let Py be an optimal solution for MLE and P* be the truth. By optimality of MLE solution,
KL(b, Ep,,, [b]) < KL, Ep. b)), (27)

Proposition A.1 (Pinsker’s Inequality [CT12]). For discrete distributions P and Q:

KL(P[|Q) = - QIR (28)

2 o 2H

Using the optimality of the MLE solution and Pinsker’s inequality, we can bound term (¢) in
Equation (12) as follows:

t

t
Z b] (h’] - EPmle j Z |b | | Pre (hj))|
7=0

=0

< max|b \ Z |hS™ — Ep,,..(hy)]

7=0
< max|b;| /2 n2 KL(he>||Ep,, b)) (29)
J
< max|b;| /2 n2 KL(he>|| Ep. [n]). (30)
J

Using the recent results on bounds on KL divergence between empirical observations and the true
distribution for discrete distributions [MJT* 18], we obtain the following bound on the error term
involving the MLE solution (term (c) in Equation 12),

Lemma A.1. For 3 <t <+CoN +2, w. p. 1 -9,

t

> b (hj — Ep,,, (h)))

=0

<max\b|\/2ln \/log—i—l 356 (31)
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A.3 Chebyshev polynomial approximation

In this section, we focus on proving Lemma 4.3. The existence of the Chebyshev polynomial
approximation with error O(1/k) is shown via Lemma A.2. In the following, we will show the
coefficients satisfy ||a|| < 1. Let T, denote Chebyshev polynomial of degree m shifted to [0,1]
which satisfy the following recursive relation:

Ton(x) = (42 — 2) Tt — Trn_o(z), m=2,3,....,

and Ty(z) = 1, Ti(z) = 22 — 1. Shifted Chebyshev polynomials form a sequence of orthogonal
polynomials with respect to weight \/%:

—4x
1 5 dy 0 ifm#n
Ton(@)Tn(z) e ={ ™ ifm=n=0 32
| Tt =2 g imono (32)

Let f be a Lipschitz-1 function on [0,1]. Let fx be degree k polynomial approximation using
Chebyshev polynomials up to degree k.

k
fe(@) =Y amTon(2) (33)

m=0

Since f is lipschitz-1 on [0, 1], | fx(z)| < 1/2. So, |am| < 1. Furthermore, the norm of the coefficient
vector can be bounded as follows:

m,n=0
b ™ ™ k 7r
_ 2 2 T _ 2 2
= ap §+mz::1am1—ao Z+m:0am1 (34)
Since | fr(x)] < 1/2 for all x € [0,1] and fol \/4;37412 = 7, we obtain the following bound,

71' ™
@ 7 +llal3] < (33)

m
= 8'
Hence, ||a||3 < 1.

Lemma A.2. [Jac2l, BD69| Given any Lipschitz-1 function f(z) on [0,1], there exists a de-
gree k polynomial in the form of fi(z) = Z’:’zzo amTym(z) that approximates f(z) with error

max,eo,1] | f(z) — fe(z)| = O(3), where T, (z) denotes Chebyshev polynomial of degree m shifted
to [0, 1].

A.4 Bound on generating function

Using degree raising of Bernstein polynomials, we can write shifted Chebyshev polynomials of
degree m < t in terms of Bernstein polynomials of degree t as,

To(z) =

m—i (227?> e (T) (tj_—T) t
-1 > Bl (a),
0( G = Q) )

: C’(t,m,j)B?(a:)7 (36)

I

K2

~

where the coefficient of j-th Bernstien polynomial of degree ¢ is given by®,

C(t,m, j) = Z]: (—1)™! GG 57')5?7) :
= ;)

8For positive integers a,b > 0, (Z) =0 when a < b.

(37)
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Following is a generating function for the coefficients multiplied by the binomail terms,

: > 2m — > 2m t )
(14 2y-m L ETVE) "2“1 V2) :ZC’(Lm,j)(th_]. (38)

. . . . . . . -1
Using the Beta function the binomial terms in the denominator can be written as, (;) = (t+

1) fol(l — u)dut~Idu. Combing with Equation 38, we obtain the following generating function for
the coefficients,

! —u+ iyuz)®™m —u —iyuz)®m
(t+1)/0((1—u)+uz)t-m(vl V) ;(Vl VT L (39)

K ( z'_o<—1>ml<2;>(z_7>>zt_j
= ()

Let iy/z = cos @ +isinf, then z = cos(m +26) + isin(m +26) = — cos(20) —isin(26). As follows,
we will establish an upper bound of the generating function.

(40)

|(1 —u) 4+ uz* = (1 — u(l + cos(20)))? + u?sin*(20) (41)
=1+ (2u® — 2u)(1 4 cos26). (42)

V1 —u+ivuz|* = (V1 —u+ Vucosd)? +usin® 0 = 1 4+ 2v/u — u2cosh. (43)

log (1= w) + u2) =™ (VI=u + iv/az)™ + (VI—u — iv/az)™)|  (44)
t—m log((1 — u(1 4 cos(20)))? + u?sin?(26)) + mlog((v/1 — u + Vucos0)? + usin®0)  (45)

<
-2

Let v = 1/2 — u and take the derivative of § and v of the above formula, we get the following two
expressions:

2(m —t) cos(0) m
—4vcos() ((41}2 —1)cos(20) +4v2 +1 = —4v2cos(#) + cos(f) + /1 — 41)2> (46)
(4v? — 1) (m — t) sin(20) my/1 — 402 sin(6) (47)

(402 — 1) cos(20) + 42 +1 /1 — 42 cos(f) + 1

In order to find the maximum of the function, we solve for 6, v such that the two expressions equal
0. Ignore the solutions where 6 = 0, we have 6 = arccos[m/t] and v = 0. Plugging in the solution
to the upper bound, we have the following upper bound

t—m m?
rof

2
log (1 — T;) + mlog(l + %) < mlog(1l+ ?) <

<0

Equation 39 is now bounded by em*/ t(t +1). Hence, for all z on the unit circle, Equation 40 is
bounded by (¢ + 1)e™"/t.

d—1

=0 ajz’ satisfies [p(x)| < ¢ for

Proposition A.2. Given a degree d — 1 real polynomial p(z) =

all complex number |z| = 1, the sum of the squares of the coeflicients satisfies Z?;é a3 <%

Proof. Let f; = p(x;) where x; = e *ifori=0,1,...,d—1,and . = v/—1. By the assumption, we
have |f;| < ¢ for all f;. Notice that f; is the discrete Fourier transform of vector (ag,a1,...,a4—1).
Hence by Parseval’s theorem, we have > a? =1y O

Therefore,

SO m ) < (+ et (48)

Jj=0
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A.5 Lower bound for medium ¢ regime

Proposition A.3. Given two distributions P, @, supported on [1/2—4/ IOE;N, 1/2+ 1OgN] whose

first L := e*log N moments match, let p ~ P, X ~ Binomial(t,p), ¢ ~ Q and Y ~ Binomial(t,q).
The total variation distance between X and Y satisfies

2Vt
Net

Proof. The total variation distance between X and Y is

y) = Z_j rl(£) 0= 9= ol ()1 - )

=" [Eper[B; ()] - EgnolB; ()],
j=0

TV(X,Y) <

where Bj(p) = (;)pj (1 —p)t=7 is the Bernstein polynomial. Expand the Bernstein polynomial at
p=1/2, and we get

By = 5 2D
Hence .
D STES S ) D LRy ok UL YA
<> B0/ 1y 1) - BiGa - 1720 (50
i=L+1j=0 '

The last inequality follows from the fact that E[(p — 1/2)%] < %77,}/ simply because P, (Q are
supported on [1/2 - \/@, 1/2+ logtN} . Applying Proposition A.4, we have

= Ve logN)l/2

i=L+
<oVi Z Yt logN (53)
1=L+1
S 2\/%676410gN < ]2\;{; (54)
O

Proposition A.4.
B 1/2 \/{eektk/Q

— kk/2

>

j=0

Proof. We can explicitly write down the k’th order derivative of Bernstein polynomial as:

)£
i > (i)
=105 ()
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where K;(k;t) is the Kravchuk polynomial.

Next, we will apply Proposition A.2 to obtain an upper bound for ,/Z;:O K]?(k:;t) through

bounding the generating function of Kravchuk Polynomial. The generating function of the Karvchuk
polynomials is

¢
> K;(k; (14 2)F 1 —2)k
7=0
Define z = cosf + isinf since we aim to bound the absolute value of the generating func-
tion evaluated on |z| = 1. The absolute value of the generating function is |(1 + 2)*7*(1 — 2)*| =
2 cos' =% (%) sin”(£) which achieves maximum at 6 = 2 arcsin(y/k/t) with value 2¢(15£)(t=k)/2(E)k/2,
Hence, it follows from Proposition A.2 that

Finally, it follows from (}) < (£)* and (1 — £)t=k)/2 < e(K*/t=k)/2 that

t 2
B 1 2 t (k /t+k)/2tk/2 t ktk/2
I / \/e < Vet (55)
| kk/2 kk/2

j=0

Proposition A.5. For any ¢, there exists a pair of distributions P, Q supported on [a,b] where
0 < a < b such that P and @ have identical first ¢ moments, and W7 (P — Dg) > %

Proof. Our proof will leverage the following result from [TKV17] which states that there exists
a pair of distributions supported on [0,1] whose first ¢ moments agree, but have Wasserstein-1
distance > 1/2t:

Lemma A.3 ([TKV17], Lemma 3). For any ¢, there exists a pair of distributions P’, Q' supported
on [0, 1] such that P’ and @’ have identical first ¢ moments, and W1 (P’ — Q') > 2%

The pair of distributions P, Q' supported on [0, 1] can be transformed to a pair of distributions
P, Q supported on [a,b] where 0 < a < b via transformation P(z) = ;2 P’(£=%). We will show
that P and @ have identical first £ moments as follows: The k’th moment of P satisfies

’ k . k
P der = d
/a (z)x"dx v —a (b— ) x

- / P(y)(y(b — a) + a)’dy

- / Q' (w)(y(b— a) + a)*dy
b
z/ Q(z)z" dx.

A.6 Local moment matching

In this section, we give high-level ideas of the local moment matching algorithm. The algorithm
consists of three steps

Binning We divide the coin flips into two batches. The first batch of data consists of the result
of the first t/2 coin flips of each coin, and we call the first batch of samples X1, X}, ..., X and
the second batch of samples X1, Xs,..., Xy. We define disjoint intervals

(j—1)2cilogN j% cilogN

Ij = ¢ 5 ¢ )

(56)

20



. 2
forj =1,2,..M := m (assuming , /m be an integer). We define [; = M,m =
M to be the left and right end of the ¢’th interval. The i’th coin is assigned to interval (bin)
jit X[/t e 1.

Moment estimation In the second step, we estimate the first ¢y log N'th moments of the
coins in each interval (bin). Here the k’th moment of the coins in the j’th bin is defined to

. X
be m,(g) = Yxiter, (Pi — I;)*. Tt follows from Lemma 1 of [TKV17] that ((i)) is an unbiased

1

X
estimator for p.. Hence Zf:o (’f)(flj)k*l ((i)) is an unbiased estimator of (p; — [;)*. We com-
1
X
pute ZX{/tte Zf:o (’;)(—lj)k’l ((i)) as an estimate of the k’th moment of the j’th bin for all
: ‘
k=0,1...,colog N, and denote it as m§j).

Distribution recovery In the third step, for each bin j, we will solve a linear programming (see

~ . 2 .
e.g. Algorithm 1 of [TKV17]) to recover a distribution p; supported on I; := [(]7%) crlog N (+1)” 1 log i

; ) . t t
Do), ., - Finally, we will

whose first cs log N moments closely match our estimation

output Bmm = Zj ;i as the estimate.
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