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In this supplementary material we provide a number of
additional technical results that are referred to in the main
paper.

Lemma 3.1 proof.

Proof. According to asymptotic equivalence definition there
must exist positive constants d andD such that for all k ∈ N
it holds

d ≤ ‖φ(X)‖k/‖X‖k ≤ D. (1)

The extended envelope property upper bound and the trian-
gle inequality for norms imply the right-hand side of (1),
since

‖φ(X)‖k ≤ ‖c2 + d2|u|‖k ≤ c2 + d2‖u‖k.

Assume that |φ(u)| ≥ c1 + d1|u| for u ∈ R+. Consider the
lower bound of the nonlinearity moments

‖φ(X)‖k ≥ ‖d1u+‖k + c1 + ‖φ(u−)‖k,

where {u− : u ∈ R−} and {u+ : u ∈ R+}. For negative
u− there are constants c1 ≥ 0 and d1 > 0 such that c1 −
d1u > |φ(u)|, or c1 > |φ(u)|+ d1u:

‖φ(X)‖k > ‖d1u+‖k + ‖|φ(u−)|+ d1u−‖k ≥ d1‖u‖k.

It yields asymptotic equivalence as in eq.(5) of the main
paper.

Proposition 3.1 proof.

Proof. Let Xi ∼ subW(θ) for 1 ≤ i ≤ N be units from
one region where pooling operation is applied. Using Def-
inition 3.3, for all x ≥ 0 and some constant K > 0 we
have

P(|Xi| ≥ x) ≤ exp
(
−x1/θ/K

)
for all i.
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Max pooling operation takes the maximum element in the
region. SinceXi, 1 ≤ i ≤ N are the elements in one region,
we want to check if the tail of max1≤i≤N Xi obeys sub-
Weibull property with optimal tail parameter is equal to θ.
Since max pooling operation can be decomposed into linear
and ReLU operations, which does not harm the distribution
tail (Lemma 3.1), it leads to the proposition statement first
part.

Summation and division by a constant does not influence
the distribution tail, yielding the proposition result regarding
the averaging operation.

Lemma 0.1 (Gaussian moments). Let X be a normal ran-
dom variable such that X ∼ N (0, σ2), then the following
asymptotic equivalence holds

‖X‖k �
√
k.

Proof. The moments of central normal absolute random
variable |X| are equal to

E[|X|k] =

∫
R
|x|k p(x) dx

= 2

∫ ∞
0

xk p(x) dx

=
1√
π
σk2k/2Γ

(
k + 1

2

)
. (2)

By the Stirling approximation of the Gamma function:

Γ(z) =

√
2π

z

(z
e

)z (
1 +O

(
1

z

))
. (3)

Substituting (3) into the central normal absolute moment
(2), we obtain

E[|X|k] =
σk2k/2√

π

√
4π

k + 1

(
k + 1

2e

) k+1
2
(

1 +O

(
1

k

))
=

2σk√
2e

(
k + 1

e

)k/2(
1 +O

(
1

k

))
.
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Then the roots of absolute moments can be written in the
form of

‖X‖k =
σ

e1/(2k)

√
k + 1

e

(
1 +O

(
1

k

))1/k

=
σ√
e

√
k + 1

e1/(2k)

(
1 +O

(
1

k2

))
=

σ√
e
ck
√
k + 1.

Here the coefficient ck denotes

ck =
1

e1/(2k)

(
1 +O

(
1

k2

))
→ 1,

with k →∞. Thus, asymptotic equivalence holds

‖X‖k �
√
k + 1 �

√
k.

Lemma 0.2 (Multiplication moments). Let W and X be
independent random variables such that W ∼ N (0, σ2)
and for some p > 0 it holds

‖X‖k � kp. (4)

Let Wi be independent copies of W , and Xi be copies
of X , i = 1, . . . ,H with non-negative covariance between
moments of copies

Cov
[
Xs
i , X

t
j

]
≥ 0, for i 6= j, s, t ∈ N. (5)

Then we have the following asymptotic equivalence

∥∥∥ H∑
i=1

WiXi

∥∥∥
k
� kp+1/2. (6)

Proof. Let us proof the statement, using mathematical in-
duction.

Base case: show that the statement is true for H = 1. For
independent variables W and X , we have

‖WX‖k =
(
E[|WX|k]

)1/k
=
(
E[|W |k]E[|X|k]

)1/k
= ‖W‖k‖X‖k.

(7)

Since the random variable W follows Gaussian distribution,
then Lemma 0.1 implies

‖W‖k �
√
k. (8)

Substituting assumption (4) and weight norm asymptotic
equivalence (8) into (7) leads to the desired asymptotic
equivalence (6) in case of H = 1.

Inductive step: show that if for H = n− 1 the statement
holds, then for H = n it also holds.

Suppose for H = n− 1 we have

∥∥∥n−1∑
i=1

WiXi

∥∥∥
k
� kp+1/2. (9)

Then, according to the covariance assumption (5), for H =
n we get

∥∥∥ n∑
i=1

WiXi

∥∥∥k
k

=
∥∥∥n−1∑
i=1

WiXi +WnXn

∥∥∥k
k

(10)

≥
k∑
j=0

Cjk

∥∥∥n−1∑
i=1

WiXi

∥∥∥j
j

∥∥∥WnXn

∥∥∥k−j
k−j

.

(11)

Using the equivalence definition (Def. 3.2), from the induc-
tion assumption (9) for all j = 0, . . . , k there exists absolute
constant d1 > 0 such that

∥∥∥n−1∑
i=1

WiXi

∥∥∥j
j
≥
(
d1 j

p+1/2
)j
. (12)

Recalling previous equivalence results in the base case, there
exists constant m2 > 0 such that∥∥∥WnXn

∥∥∥k−j
k−j
≥
(
d2 (k − j)p+1/2

)k−j
. (13)

Substitute obtained bounds (12) and (13) into equation (10)
with denoted d = min{d1, d2}, obtain

∥∥∥ n∑
i=1

WiXi

∥∥∥k
k
≥ dk

k∑
j=0

Cjk
[
jj (k − j)k−j

]p+1/2

= dk kk(p+1/2)
k∑
j=0

Cjk

[( j
k

)j(
1− j

k

)k−j]p+1/2

.

(14)

Notice the lower bound of the following expression

k∑
j=0

Cjk

[( j
k

)j(
1− j

k

)k−j]p+1/2

≥
k∑
j=0

[( j
k

)j(
1− j

k

)k−j]p+1/2

≥ 2. (15)

Substituting found lower bound (15) into (14), get

∥∥∥ n∑
i=1

WiXi

∥∥∥k
k
≥ 2 dk kk(p+1/2) > dk kk(p+1/2). (16)
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Now prove the upper bound. For random variables Y and
Z the Holder’s inequality holds

‖Y Z‖1 = E [|Y Z|] ≤
(
E
[
|Y |2

]
E
[
|Z|2

])1/2
= ‖Y Z‖2‖Y Z‖2.

Holder’s inequality leads to the inequality for Lk norm

‖Y X‖kk ≤ ‖Y ‖k2k‖Z‖k2k. (17)

Obtain the upper bound of ‖
∑n
i=1WiXi‖

k

k
from

the norm property (17) for the random variables Y =(∑n−1
i=1 WiXi

)k−j
and Z = (WnXn)

j

∥∥∥ n∑
i=1

WiXi

∥∥∥k
k

=
∥∥∥n−1∑
i=1

WiXi +WnXn

∥∥∥k
k

(18)

≤
k∑
j=0

Cjk

∥∥∥n−1∑
i=1

WiXi

∥∥∥j
2j

∥∥∥WnXn

∥∥∥k−j
2(k−j)

.

(19)

From the induction assumption (9) for all j = 0, . . . , k there
exists absolute constant D1 > 0 such that∥∥∥n−1∑

i=1

WiXi

∥∥∥j
2j
≤
(
D1 (2j)p+1/2

)j
. (20)

Recalling previous equivalence results in the base case, there
exists constant D2 > 0 such that∥∥∥WnXn

∥∥∥k−j
2(k−j)

≤
(
D2

(
2(k − j)

)p+1/2
)k−j

. (21)

Substitute obtained bounds (20) and (21) into equation (18)
with denoted D = max{D1, D2}, obtain∥∥∥ n∑
i=1

WiXi

∥∥∥k
k
≤ Dk

k∑
j=0

Cjk

[(
2j
)j(

2(k − j)
)k−j]p+1/2

.

Find an upper bound for
[(

1− j
k

)k−j ( j
k

)j]p+1/2

. Since

expressions
(
1− j

k

)
and

(
j
k

)
are less than 1, then[(

1− j
k

)k−j ( j
k

)j]p+1/2

< 1 holds for all natural num-
bers p > 0. For the sum of binomial coefficients it holds the
inequality

∑k
j=0 C

j
k < 2k. So the final upper bound is∥∥∥ n∑

i=1

WiXi

∥∥∥k
k
≤ 2kDk (2k)k(p+1/2). (22)

Hence, taking the k-th root of (16) and (22), we have upper
and lower bounds which imply the equivalence for H = n
and the truth of inductive step

d′kp+1/2 ≤
∥∥∥ n∑
i=1

WiXi

∥∥∥
k
≤ D′kp+1/2,

where d′ = d and D′ = 2p+3/2D. Since both the base case
and the inductive step have been performed, by mathemati-
cal induction the equivalence holds for all H ∈ N

∥∥∥ H∑
i=1

WiXi

∥∥∥
k
� kp+1/2.


