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Abstract
Off-policy evaluation is the problem of estimat-
ing the value of a target policy using data col-
lected under a different policy. We describe a
framework for designing estimators for bandit off-
policy evaluation. Given a base estimator and a
parametrized class of control variates, we seek a
control variate in that class that reduces the risk
of the base estimator. We derive the population
risk as a function of the class parameters and we
discuss some approaches for optimizing this func-
tion. We present our main results in the context
of multi-armed bandits, and we decribe a sim-
ple design for contextual bandits that gives rise
to an estimator that is shown to perform well in
multi-class cost-sensitive classification datasets.

1. Introduction
We address the problem of off-policy evaluation in a bandit
setting. The problem involves estimating the value (ex-
pected reward) of a target policy from logged data collected
under an alternative logging policy. This is an important
problem, with roots in causality and estimation of treatment
effects (Robins & Rotnitzky, 1995; Hahn, 1998; Hirano
et al., 2003), and with an active research literature (Dudı́k
et al., 2014; Li et al., 2015; Thomas & Brunskill, 2016;
Swaminathan et al., 2017; Wang et al., 2017; Athey & Wa-
ger, 2017; Kallus & Zhou, 2018; Farajtabar et al., 2018;
Joachims et al., 2018). The setting is of particular interest
in recommendation systems (e.g., movie recommendations
at Netflix), in which the logged actions are recommended
items (e.g., movies) and the logged rewards capture a metric
of interest (e.g., watch time). Off-policy evaluation allows
testing a much larger number of candidate policies than
would be possible by online A/B testing.

In the context of bandit problems, the following question is
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of great interest: Given a bandit model, what is a low-risk
estimator of the counterfactual target value? (Throughout,
by ‘risk’ we will assume mean squared error (MSE).) The
question is primarily relevant in the non-asymptotic (finite
sample) and/or agnostic (inaccurate model) setting, since
asymptotically and under model realizability the Doubly
Robust (DR) estimator is known to be risk-optimal (Hahn,
1998). Even for the simple case of a Bernoulli K-armed
bandit the question of what constitutes a risk-optimal esti-
mator is still open. Li et al. (2015) have derived a minimax
lower bound of risk in the case of K-armed bandits with
Gaussian rewards, and have demonstrated that REG, the
classical regression (aka direct method) estimator for K-
armed bandits, matches the minimax lower bound up to a
constant. However, it is not known whether REG is improv-
able, and whether there exist instance-dependent estimators
that dominate REG. Lattimore & Szepesvári (2019, Chapter
16) discuss the problem of computing instance-dependent
lower bounds for bandit problems.

In this work we address the problem of designing a low-risk
estimator for a given bandit instance. We develop our main
results in the context of the standard Bernoulli K-armed
bandit, but our ideas are generalizable to a wider class of
problems, and we demonstrate an application to contextual
bandits. We approach the problem in the following way: We
assume we possess a base estimator b, for instance, REG.
Given knowledge of b, we design a parametric class of
control variates (CV), and seek a member t from that class
such that MSE(b − t) < MSE(b). The latter involves an
optimization problem over population-dependent quantities.
We derive the population risk difference MSE(b − t) −
MSE(b) and discuss a few ways to optimize this quantity.

Our main contributions can be summarized as follows.
First, we show that the population risk is closed-form for
a parametrized class of estimators involving polynomial
functions of sufficient statistics (Section 3.3). Second, we
demonstrate experimentally (Section 4 and Fig.1) that there
do exist instance-dependent estimators that improve REG
for K-armed bandits in the finite-sample regime, and those
estimators can be learned from the data and built off to-
tally different estimator classes (e.g., IPS). Finally, we show
how a simple application of the idea can give rise to an
estimator for contextual bandits that attains state-of-the-art
performance in a benchmark dataset.
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2. K-armed Bandits
We assume K actions and binary rewards. The logged
data consist of n i.i.d. pairs (ai, ri) that are assumed to be
generated as follows: K Bernoulli rewards ra are first drawn
as ra ∼ Pa, for a = 1, . . . ,K, where Pa are the (unknown)
Bernoulli parameters, then actions are drawn as ai ∼ µ
where µ is the logging policy, and finally we observe the
rewards ri = rai . Using the n logged samples, we want to
estimate the value of a target policy π:

v = Eπ[r] =
∑
a

πaPa .

We will throughout assume absolute continuity of π with
respect to µ, that is µa > 0 when πa > 0. A well-known
unbiased estimator is the inverse propensity scoring (IPS)
estimator (Horvitz & Thompson, 1952):

v̂IPS =
1

n

n∑
i=1

πi
µi
ri ,

where we write πi = πai and µi = µai . Note that the IPS
estimator can be written

v̂IPS =
1

n

n∑
i=1

∑
a

I[Ai = a]
πa
µa
ri =

∑
a

n+a
πa
nµa

where we defined n+a =
∑n
i=1 I[Ai = a] ri the number

of observed positives for arm a. The variance of the IPS
estimator is (see derivation in the next section)

Var(v̂IPS) =
1

n

(∑
a

Pa
π2
a

µa
− v2

)
,

which is known to be suboptimal for K-armed bandits, as
it does not match, up to any constant, the minimax lower
bound of risk for this problem (Li et al., 2015). An alterna-
tive estimator is REG, that is order optimal for this problem:

v̂REG =
∑
a

n+a
πa I[na > 0]

na

where na =
∑n
i=1 I[Ai = a] is the number of times (out of

n) that arm a was chosen.

We note that IPS and REG are both of the same form v̂ =∑
a n

+
a f(na), for some choice of function f . A natural

question is whether there exists some other member in the
same family (for some function f ) that exhibits improved
risk. This question has prompted our approach, which aims
at designing a new estimator by adding to a base estimator
a control variate that is optimized to reduce overall risk.

3. The Family of Estimators
We will present the main ideas by assuming that the base
estimator b and the control variate t are both of the following

form:

b =
∑
a

n+a g(na), t =
∑
a

n+a f(na),

for some choice of functions g and f , and we will write
b =

∑
a n

+
a ga and t =

∑
a n

+
a fa for brevity.

The question of interest is under what conditions on b, t, and
the problem instance, a new estimator defined by b− t could
dominate the base estimator, that is, MSE(b− t) < MSE(b).
We collect all t-dependent terms of the risk difference func-
tion MSE(b− t)−MSE(b) into a function R:

R =
(
E[b]− E[t]− v

)2
+ Var[t]− 2Cov(b, t), (1)

where v ≡ vπ is the target value of π. Next we show how
to compute the various terms in (1).

3.1. Variance

The following holds for any function f :

Var(t) = Var(E[t|(na)]) + E(Var[t|(na)])

= Var
(∑

a

Panafa
)

+
∑
a

Pa(1− Pa)E[naf
2
a ]

=
∑
a

P 2
aVar(nafa) +

∑
a6=a′

PaPa′Cov(nafa, na′fa′)

+
∑
a

Pa(1− Pa)E[naf
2
a ], (2)

and the individual variance/covariance terms can be com-
puted as usual via expectations:

Cov(nafa, na′fa′) = E[nafana′fa′ ]− E[nafa]E[na′fa′ ].

When t is in the IPS family, that is, f is constant w.r.t. (na),
then E[t] = n

∑
a Pafaµa and it is easy to verify that (2)

simplifies to

Var
(
t|f=const

)
= n

∑
a

Paf
2
aµa −

1

n

(
E[t]
)2
. (3)

The variance of IPS is obtained by using fa = πa

nµa
in (3):

Var
(
t|t= IPS

)
=

1

n

(∑
a

Pa
π2
a

µa
− v2

)
.

where E[t] = v since IPS is unbiased.

3.2. Covariance

The following holds for any functions g, f :

Cov(b, t) = E[Cov(b, t|(na))]+

Cov(E[b|(na)],E[t|(na)]), (4)
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and using the fact that Cov(n+a ga, n
+
a′fa′ |(na)) = 0 for

a 6= a′, the first term in (4) simplifies to

E[Cov(b, t|(na))] = E
[∑

a

Cov(n+a ga, n
+
a fa|(na))

]
=
∑
a

E[(n+a )2gafa|(na)]−
∑
a

P 2
a E[naga]E[nafa]

=
∑
a

P 2
aE[n2agafa] +

∑
a

Pa(1− Pa)E[nagafa]

−
∑
a

P 2
a E[naga]E[nafa]. (5)

The second term Cov(E[b|(na)],E[t|(na)]) in (4) can be
similarly computed by writing

E[b|(na)] =
∑
a

Panaga, E[t|(na)] =
∑
a

Panafa,

and expanding the covariance Cov(E[b|(na)],E[t|(na)]) as
a sum of covariances as in (2). (An interesting question,
which we do not pursue here, is to identify conditions on
g, f under which Cov(E[b|(na)],E[t|(na)]) ≥ 0.)

3.3. Computing the Expectations

From the above we see that the function R requires evaluat-
ing various expectations of functions of the counts na. For
instance, when the base estimator b is REG and the control
variate t is in the IPS family (i.e., f is constant), then the
expectations in (5) read

E[n2agafa] = πafaE
[
naI[na > 0]

]
= πafaE[na],

E[nagafa] = πafaP[na > 0] = πafa(1− (1− µa)n).

A key result is that the required expectations can be eval-
uated in closed-form when the functions g and f are poly-
nomial functions of na. This is possible by resorting to the
following formula for the expectations of certain functions
of multinomial counts (Mosiman, 1962):

E[(na)m] = (n)m µ
m
a ,

where (x)m = x(x− 1) · · · (x−m+ 1) is the m’th order
falling factorial of x. The set of falling factorials form
a basis for the polynomial ring, so we can express any
polynomial of na as a linear combination of such functions.
The following identities are also known to hold:

x(x)m = (x)m+1 +m(x)m

x2(x)m = (x)m+2 + (2m+ 1)(x)m+1 +m2(x)m

(x)m(x)n =

m∑
k=0

(
m

k

)(
n

k

)
k! (x)m+n−k .

4. An Example
Let us consider a simple example in which b is IPS and t is
of the simpler form

t =
∑
a

nafa,

where fa are constant w.r.t. na. Note that in that case the
estimator b− t can be viewed as doing reward shaping, as
it can be written as:

v̂ ≡ b− t =
1

n

n∑
i=1

(πi
µi
ri − fi

)
, (6)

where fi ≡ fai . Let us assume that we are interested in
obtaining an unbiased estimator v̂. In that case, the re-
quirement that t is zero-mean amounts to imposing a linear
constraint on fa:

E[t] = 0 ⇔
∑
a

µafa = 0.

Since the base estimator b is unbiased, we can verify (by
recapitulating the analysis of the previous section or by
performing a direct calculation) that the function R in (1)
reads

R =
1

n

(∑
a

µaf
2
a − 2

∑
a

πaPafa

)
+ const.

Hence, we can characterize the set of minimum-variance
unbiased estimators within the above class of control vari-
ates t by the optima of the following linearly-constrained
quadratic program (QP):

min
fa

∑
a

µaf
2
a − 2

∑
a

πaPafa (7)

s.t.
∑
a

µafa = 0 . (8)

Alternatively, when the number K of actions is very large,
as in the case of linear bandits (Ghosh et al., 2017) or
slate bandits (Swaminathan et al., 2017), we can consider
a parametrized family of offsets of the form fa = wᵀφa,
where w ∈ Rd is a d-dimensional vector and φa are d-
dimensional feature vectors describing each action. In that
case, the set of minimum-variance unbiased estimators are
characterized by a QP in the vector w:

min
w

wᵀΦw − 2wᵀ
∑
a

πaPaφa (9)

s.t. wᵀ
∑
a

µaφa = 0 , (10)

where Φ =
∑
a µaφaφ

ᵀ
a is a weighted covariance matrix.



On the Design of Estimators for Bandit Off-Policy Evaluation

4.1. Optimization

Solving the QP in (7)-(8), or the analogous one in (9)-(10),
presents a difficulty, as the second term of the objective func-
tion contains unknown quantities (the Bernoulli parameters
Pa, for a = 1, . . . ,K). Next we discuss a few approaches
to dealing with this.

Eliminating the unknown quantities. One approach is
to approximate the original QP with a new QP in which the
unknown quantities are imputed by some constant values
(for instance, when a good prior is known for the Bernoulli
parameters Pa). As an example, in the case of K-armed
bandits with Bernoulli rewards we have Pa ∈ [0, 1], and
hence we can consider imputing Pa = 1 which approxi-
mates the second term in (7) with 2πafa. That would give
f∗a = 1− πa

µa
, in which case the corresponding estimator in

(6) boils down to IPS, showing that the above approximation
is too loose. For a richer parametric family, a question of
interest is whether the minimax solution over Pa could give
an estimator that has lower risk than the base estimator. We
are not aware of any work that directly addresses this ques-
tion. It is an open problem the design of instance-dependent
control variates that guarantee risk improvement for any
value of the true population parameters.

Approximating the unknown quantities by sample sur-
rogates. A more practical approach to dealing with the
unknown quantities in (7) is to approximate the population
expectations with sample averages (for instance, approxi-
mate the Pa with empirical success rates) and then solve
the approximate QP. A similar approach was used by Fara-
jtabar et al. (2018) in a contextual bandits setting involving
a parametrized class of doubly-robust estimators. In our
example above, an idea would be to rewrite the second sum
in (7) as

∑
a µaPa

πa

µa
fa, and note that this is a population

average over the logging policy µ and the true reward mod-
els Pa. Hence, one can approximate this expectation using
the logged data, giving rise to the following QP:

min
fa

∑
a

µaf
2
a −

2

n

n∑
i=1

πi
µi
rifi (11)

s.t.
∑
a

µafa = 0 .

Rewriting the second sum in (11) using indicator variables

n∑
i=1

πi
µi
rifi =

n∑
i=1

∑
a

I[Ai = a]
πa
µa
rifa =

∑
a

πa
µa
fan

+
a

and solving the resulting QP, gives

f∗a = −πan
+
a

nµ2
a

+
∑
a′

πa′n
+
a′

nµa′
. (12)

This corresponds to using a control variate

t =
∑
a

πan
+
a

nµa

(
1− na

nµa

)
(13)

=
1

n

n∑
i=1

πi
µi

(
2ri −

n+ai
nµi

)
. (14)

Note from (13) that this t belongs to the family of CVs from
Section 3. Also note that the terms in the parenthesis of (14)
converge in the limit of large n to 2Pai − Pai , and hence
the estimator converges to the true v. It is easy to verify that
the expectation of t is

E[t] =
1

n

∑
a

πa
µa
Pa(1− µa) ,

and hence the derived estimator b − t is asymptotically
unbiased.

However, the above brings up a subtle issue (that is also
present in the approach of Farajtabar et al. (2018)). When
optimizing an empirical surrogate of population risk, what-
ever comes out of the optimization is a function of the
sample, and hence it is random. This randomness would
have induced correlations that are essentially ignored in the
optimization problem. For example, note that the optimal
f∗a in (12) are random since they depend on n+a , but the
parametric CV class in (6) had assumed non-random fa.
One should therefore view the plug-in approach above pri-
marily as a ‘guide’ that allows identifying a candidate class
of control variates, and which should be followed by an
analysis of the risk of the corresponding estimators from
that class (using for instance the tools presented in Section
3). Clearly, every iteration of this procedure will require
dealing with the unknown population parameters. Even-
tually, the latter will need to be estimated empirically (by
imputation, sample surrogates, or sample-splitting (Dudı́k
et al., 2014; Athey & Wager, 2017)), but the hope is that a
‘good-enough’ parametric class can already be identified by
optimization at the population level.

Re-analyzing the obtained CV. We have followed the
procedure described in Section 3 to analyze the properties
of a CV of the form λt, where λ ∈ R and t is given by
(13). The resulting function R in (1) is quadratic in λ (de-
tails omitted) and optimization is straightforward. The next
figures show results from a simulation involving 5 and 10
actions, where we see that the resulting estimator improves
the base estimator IPS and often it also performs better than
REG. In the figures we show the ‘oracle’ λ0, which was
computed by knowledge of the true Pa, as well as the plug-
in λ̂ which was computed by the plug-in approach outlined
above. The graphs show that the largest improvement is ob-
tained in the ‘adversarial’ setting in which the logging and
target policies differ, as predicted by theory (the function R
involves terms that contain the ratios πa

µa
).
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Figure 1. Comparing IPS and REG with an optimized IPS - λt estimator from Section 4.
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5. Contextual Bandits
In this section we demonstrate an application of the main
ideas to contextual bandits. In particular, using variants of
the Doubly Robust estimator as base estimators, we show
that by operating outside the manifold of the base estimator
we can get estimators with improved risk.

In the stochastic contextual bandit setting, there is a finite
set of arms, a ∈ {1, 2, . . . ,K}. The environment produces
(x, r) ∼ D, where x is a d-dimensional context vector x
and r = (r(1), . . . , r(K)) is the reward associated with
each arm in {1, 2, . . . ,K}. A logging policy µ chooses arm
a ∈ {1, 2, . . . ,K} for context x with probability µ(a|x)
and observes the reward only for the chosen arm, r(a). We
are interested in estimating the value v of a deterministic
target policy π, defined as

v = E(x,r)∼Dr(π(x)),

from n observations {(xi, ai, ri)}ni=1 logged by policy µ.

5.1. Popular Estimators

We provide a brief overview of some popular off-policy
evaluation estimators used in the literature:

• Direct Method (DM) forms an estimate r̂(x, a) of the
expected reward conditioned on the context and action.
The policy value is then estimated by

DM =
1

n

n∑
i=1

r̂(xi, π(xi)) .

DM corresponds to REG in traditional (i.e., non-
contextual) multi-armed bandits. If r̂(x, a) is an un-
biased estimator of the expected reward conditioned
on the context and action, then DM is an unbiased
estimator of v. Otherwise DM is biased.

• Inverse Propensity Score (IPS) forms an estimate
µ̂(a|x) of the probability that the logging policy µ
chooses action a for context x (propensity). The policy
value is then estimated by

IPS =
1

n

n∑
i=1

I[π(xi) = ai]

µ̂(ai|xi)
ri .

It is often the case that we have access to the logging
policy µ and IPS is an unbiased estimator of v. How-
ever, IPS may suffer large variance, particularly when
the probabilities µ(ai|xi) become small.

• Doubly Robust (DR) (Dudı́k et al., 2014) takes advan-
tage of both the estimate of the expected reward r̂(x, a)

and the estimate of action probabilities µ̂(a|x) in the
estimate DR.

DR =
1

n

n∑
i=1

[ I[π(xi) = ai]

µ̂(ai|xi)
(ri − r̂(xi, ai))

+ r̂(xi, π(xi))
]
.

If one of the two estimators is unbiased, then DR is
unbiased and has much lower variance than IPS. Hence,
if the propensities µ(a|x) are known, DR is unbiased.

• More Robust that Doubly Robust (MRDR) (Farajtabar
et al., 2018) is a variation of DR with a DM reward
function derived from minimizing the variance of DR.
If the model r̂(x, a) of the expected reward condi-
tioned on the context and action is parameterized by
β, then MRDR finds the model parameter by solving a
weighted least squares problem

β∗ = argmin
β

1

n

n∑
i=1

[
I[π(xi) = ai]·

1− µ̂(ai|xi)
µ̂(ai|xi)2

(ri − r̂(xi, ai;β))2
]
.

Similarly to DR, if the propensities µ(a|x) are known,
MRDR is unbiased.

5.2. Control Variates for Doubly Robust Estimators

We propose a new family of estimators for contextual ban-
dits that given an unbiased off-policy evaluation estimator
for contextual bandits, it subtract an IPS control variate in
order to decrease the risk of the estimator. Particularly, we
focus on the doubly robust estimators, DR and MRDR.

• DR with IPS control variate:

DR IPS CV = DR− κDR · IPS .

The coefficient κDR is chosen so that the risk of the
estimator is minimized:

κDR =
Cov(DR, IPS)

E[IPS]2 + Var(IPS)
.

Taking sample average equivalents (i.e., replacing the
population covariance, variance, and expectation in the
above expression with their empirical versions), we
obtain a consistent estimator κ̂DR of κDR given by

κ̂DR =
Ĉov(DR, IPS)

Ê[IPS]2 + V̂ar(IPS)
. (15)

• MRDR with IPS control variate:

MRDR IPS CV = MRDR− κMRDR · IPS .
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In analogy with κDR, the coefficient κMRDR is chosen
so that the risk of the estimator is minimized:

κMRDR =
Cov(MRDR, IPS)

E[IPS]2 + Var(IPS)
,

and a consistent sample-based estimator κ̂MRDR of
κMRDR is given by

κ̂MRDR =
Ĉov(MRDR, IPS)

Ê[IPS]2 + V̂ar(IPS)
. (16)

5.3. Experiments: Multiclass Classification with Bandit
Feedback

As in Dudı́k et al. (2014), we turn a K-class classifica-
tion task into a K-armed contextual bandit problem. This
transformation allows us to compare different estimators
for off-policy evaluation using public datasets. In a classi-
fication task, we assume data are drawn IID from a fixed
distribution: (x, c) ∼ D, where x ∈ X is the context
and c ∈ {1, 2, . . . ,K} is the class. Each observation
(x, c) is equivalent to observing (x, r1, . . . , rK), where
ra = I[a = c] is the reward for predicting label a when
the true label is c.

We compare the following contextual off-policy estimators
DM, IPS, DR, MRDR with our proposed estimators DR &
IPS CV and MRDR & IPS CV. We use the same 9 bench-
mark datasets from the UCI repository (Dua & Graff, 2017;
Asuncion & Newman, 2007) as in Dudı́k et al. (2014).

For the evaluation on a dataset, we follow the methodology
of Dudı́k et al. (2014).

1. We randomly split data into training and test sets of the
same size.

2. On the fully labeled training set, we run logistic re-
gression to obtain a classifier π : X → {1, 2, . . . ,K}.
This classifier serves as the deterministic target policy
π, which we wish to evaluate.

3. We compute the classification accuracy on fully ob-
served test data. This accuracy is treated as the ground
truth for the value v of policy π.

4. We use the test set to construct the logging data with
which policy π will be evaluated. We transform the test
set into a partially labeled dataset using a stochastic
logging policy µ. For any observation (x, r1, . . . , rK)
in the test set, we randomly select a label a ∼ µ(a|x)
and we only reveal the reward of label a. The final data
are of the form (x, a, ra).

It is common in practice to have mismatches between log-
ging and target policies. Specifically, if for a context x the

target policy selects label π(x), the logging policy µ selects
label π(x) with probability ε = 0.05 and with probability
1 − ε the logging policy µ selects one of the other labels
{1, 2, . . . ,K}\π(x) uniformly at random. Furthermore, the
propensities µ(a|x) are assumed to be known.

DM, DR, MRDR, DR & IPS CV and MRDR & IPS CV
require estimating the expected conditional reward denoted
as r(x, a) for given (x, a). As in Dudı́k et al. (2014), we
use a linear loss model r̂(x, a) = wa · x parameterized
by K weight vectors {wa}a∈1,...,K and use least-squares
regression to fit wa based on a partially labeled dataset from
the training set.

For each dataset, we repeat step 4, N = 500 times. Each
repetition j results in a different partially labeled dataset,
because the logging policy µ is stochastic. On each dataset
evaluate the accuracy of each estimator in terms of RMSE.

RMSE is defined as
√∑N

j=1(v̂j − v)2/N where v is the
true value of the policy and v̂ is the value of the policy
returned by the estimator on the jth repetition.

The code for all experiments is available by request from
the authors.

In Table 1 we report the RMSE of the different estimators
for each benchmark. The characteristics of the datasets are
reported at the top of the table. In smaller datasets (below
1500 observations), DR & IPS CV always improves over
DR, and MRDR & IPS CV always improves over MRDR.
In larger datasets (above 5500 observations), the κ̂DR and
κ̂MRDR computed in (15) and (16) are very close to zero,
making DR & IPS CV coincide with DR, and MRDR &
IPS CV coincide with MRDR. This is consistent with the
theory, as MRDR and DR are known to be asymptotically
efficient. However, in small samples the IPS control variate
improves the efficiency of these estimators. Overall, one of
DR & IPS CV and MRDR & IPS CV have the lowest RMSE
or tie with their respective unbiased counterparts, DR and
MRDR. (The confidence intervals overlap for DR/DR-CV
and MRDR/MRDR-CV, as well as for DR/MRDR. The
mean, lower confidence bound and upper confidence bound
are consistently below for the CV-variants than the non-CV
variants.)

6. Conclusions
We addressed the problem of designing an instance-
dependent estimator for a bandit problem. The proposed
framework assumes the existence of a base estimator and
a parametrized class of control variates, and it involves an
optimization problem for finding a control variate in that
class that reduces the risk of the base estimator.

Our contributions can be summarized as follows: (1) We
proposed the use of parametric control variates for off-
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Dataset ecoli glass letter optdigits page-blocks pendigits satimage vehicle yeast
Classes (K) 8 6 26 10 5 10 6 4 10
Dataset size 336 214 20000 5620 5473 10992 6435 846 1484

DM 0.4837 0.3170 0.4063 0.4306 0.0715 0.5281 0.3259 0.4090 0.1914
IPS 0.3074 0.3092 0.0334 0.0815 0.0800 0.0537 0.0724 0.1901 0.1111
DR 0.2136 0.2497 0.0246 0.0411 0.0261 0.0325 0.0402 0.1298 0.0840

MRDR 0.1673 0.3185 0.0266 0.0290 0.0344 0.0196 0.0302 0.1194 0.0824
DR IPS CV 0.2099 0.2271 0.0246 0.0409 0.0261 0.0325 0.0400 0.1266 0.0827

MRDR IPS CV 0.1665 0.3103 0.0266 0.0289 0.0344 0.0196 0.0302 0.1182 0.0818

Table 1. RMSE of DM, DR, MRDR, DR & IPS CV and MRDR & IPS CV on UCI benchmark datasets.

policy evaluation, and the possibility of designing instance-
dependent control variates via optimization. (2) We showed
that the population risk is closed-form for a parametrized
class of estimators involving polynomial functions of suf-
ficient statistics (see Section 3.3). (3) We demonstrated
experimentally (see Section 4 and Fig.1) that there do ex-
ist instance-dependent estimators that improve REG in the
finite-sample regime, and those estimators can be learned
from the data. The existence (and the possibility of automat-
ing the design) of instance-dependent estimators that are
better than REG is a fascinating empirical finding, which
was made possible by the techniques that we developed in
this work.

The proposed framework offers many avenues for further
research. An important open question is whether, for a given
bandit instance and a base estimator, there exists an instance-
dependent control variate that guarantees risk improvement
uniformly over the values of the true population parameters.
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