
Learning to Select for a Predefined Ranking

Aleksei Ustimenko * 1 2 3 Aleksandr Vorobev * 1 Gleb Gusev 1 4 Pavel Serdyukov 1

Abstract

In this paper, we formulate a novel problem of
learning to select a set of items maximizing the
quality of their ordered list, where the order is
predefined by some explicit rule. Unlike the clas-
sic information retrieval problem, in our setting,
the predefined order of items in the list may not
correspond to their quality in general. For exam-
ple, this is a dominant scenario in personalized
news and social media feeds, where items are or-
dered by publication time in a user interface. We
propose new theoretically grounded algorithms
based on direct optimization of the resulting list
quality. Our offline and online experiments with
a large-scale product search engine demonstrate
the overwhelming advantage of our methods over
the baselines in terms of all key quality metrics.

1. Introduction
Modern search systems traditionally face the problem of
providing users with ordered lists of items best responding
their needs in different contexts. One particularly impor-
tant case is serving a user with a list of relevant items, yet
ordered not by their relevance, but by a dedicated item at-
tribute (often chosen by the user after formulating the initial
query). Examples of such scenarios are time-based order-
ing on a social media website (Hasanain et al., 2015) or
price-based ordering of offers on an e-commerce website
(e.g., Amazon 1). In that case, the algorithmic challenge
essentially comes down to selecting items to include in the
list to be shown to the user.

*Equal contribution 1Yandex, Moscow, Russia 2Skoltech Uni-
versity, Moscow, Russia 3Faculty of Computer Science, Higher
School of Economics, Moscow, Russia 4Department of Inno-
vation and High Technology, Moscow Institute of Physics and
Technology, Dolgoprudny, Russia. Correspondence to: Aleksei
Ustimenko <austimenko@yandex-team.ru>, Aleksandr Vorobev
<alvorobyev88@gmail.com>, Gleb Gusev <gleb57@gmail.com>,
Pavel Serdyukov <pavser@yandex-team.ru>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

1https://www.amazon.com

It is generally a poor choice to select all retrieved items,
since the top ones by the dedicated attribute can be totally
irrelevant to the user needs: e.g., the cheapest offer is often
by no means the most relevant to the user query. In prac-
tice, selection algorithms are often far from perfect, and
numerous users of, e.g., popular product or job search en-
gines regularly suffer from poor quality of results ordered
by price or publication time. For example, see (Spirin et al.,
2015, Section 1) for illustrative statistics and Figure 1 in the
supplementary material for a result page at one of the most
popular product search system.

Despite a large body of learning-to-rank literature, surpris-
ingly, there are no papers about learning to select for a
predefined ranking. One straightforward selection method
referred to as the cutoff approach below is (1) to learn a
relevance prediction model, (2) to select only items whose
predicted relevance is higher than some threshold (Hasanain
et al., 2015). As it was demonstrated by Spirin et al. (2015),
this approach is too far from the optimal solution in gen-
eral. Indeed, on one hand, we want to show the most rel-
evant items at the top of the ordered list; therefore, we
should exclude all items above, even if they are slightly
less relevant. On the other hand, a threshold suitable for
that purpose will also hide many relevant results ranked
below from the user. For example, for the list of items
(d1, d2, d3) (ordered by a dedicated attribute) with respec-
tive relevance values (2, 7, 1), the maximum Discounted
Cumulative Gain2 (Järvelin & Kekäläinen, 2002) of top-3
results (DCG@3) is achieved on the selected set (d2, d3),
where d3 is selected and d1 is not, though having the higher
relevance (see Table 1 for details). At the same time, the
cutoff approach with the best relevance threshold selects
only d2, and it is much closer to the original list than to the
best solution in terms of DCG@3.

Table 1. Example of suboptimality of the cutoff approach

Original list Best Best
cutoff selection

List d1, d2, d3 d2 d2, d3
Attribute values 1, 2, 3 2 2, 3
Relevance values 2, 7, 1 7 7, 1
DCG@3 of list 6.92 7 7.63

2DCG@k(r1, . . . , rk) =
∑k

i=1
ri

log2 (i+1)
, ri - relevance of

the item at position i

https://www.amazon.com

Learning to Select for a Predefined Ranking

If we assume that relevances are known, the selection task
becomes a nice combinatorial problem, which has an exact
solution with quadratic time complexity in the number of
candidate items (Spirin et al., 2015). Unfortunately, this
solution is inapplicable in practice for highly-loaded sys-
tems due to its high time complexity and its incompatibility
with distributed system architectures of large-scale search
engines (see Section 2.1 for details).

In this paper, we formulate the selection task as a ma-
chine learning problem, where we need to train a selection
model F , which decides for each item d whether to select it
(F (d) = 1) or not (F (d) = 0). Unlike usual classification
tasks, the objective is to maximize a given relevance-based
ranking quality measure of the selected set of items ordered
in a predefined way. We call this formulation learning to
select with order (LSO) problem below, by analogy with
learning to rank (LTR) one. To solve this problem, we pro-
pose practically feasible and effective selection algorithms.

Overall, the contribution of this paper is four-fold:
(1) We formulate a learning-to-select-with-order problem
(LSO), a novel machine learning task with a specific objec-
tive function.
(2) We propose two approaches to LSO, which include
smoothing the objective function and two methods for gra-
dient estimation: policy gradient and utilization of a lower
bound of the objective, see Section 4.2.
(3) To avoid local extremes of the non-convex smoothed
objective, we combine its optimization with optimization of
its convex approximation, see Section 4.3.
(4) In offline and online experiments with a large-scale e-
commerce search-engine (see Section 6), our approaches
with gradient boosted decision trees (GBDT) remarkably
outperform the existing solutions to the LSO problem.

2. Problem Setting
2.1. Local vs Global Selection Algorithms

First, we describe the state-of-the-art system architecture
of modern search engines, which basically determines our
problem setting for the selection task described in Section 1.
Large commercial search systems with billions of items in
their databases and millions of users served daily typically
rely on distributed query processing. That means running
several search engines in parallel on separate buckets of
candidate items (the first ranking stage) and aggregating
their top ranked items into the final search result page at a
meta-search engine (the second ranking stage) (Glover et al.,
1999; Patel & Shah, 2011; Wang et al., 2011).

In the selection task, the top ranked items are chosen by
the dedicated attribute. Therefore, it is critical to apply
selection at the first stage before choosing the top ranked
items: otherwise, the meta-search engine will receive mostly

irrelevant items from each first stage engine. At the meta-
search level, since having less candidate items, by analogy
with hierarchical web search ranking algorithms (Glover
et al., 1999; Wang et al., 2011), one can apply an additional
selection based on more complex features.

At the same time, since only a subset of all the candidate
items is available at each first stage search engine where se-
lection must take place, a selection algorithm has no access
to aggregated information about all the candidate items. It
means that any global selection algorithms (by analogy to
global ranking approaches (Ji et al., 2009)) that need the
entire list of the candidate items to make the decision on
one of them, are not applicable. In particular, we cannot
apply the quadratic-time optimization method from Spirin
et al. (2015), see more details in Section 3.

Our setting is to learn a local selection algorithm which
makes decisions on each item in parallel with no direct
knowledge of the other items. Such local approach allows
to minimize latency of the system response, what is critical
for user satisfaction and, eventually, for search system rev-
enue (Schurman & Brutlag, 2009). Thereby, state-of-the-art
LTR models are local (Liu et al., 2009a).

2.2. LSO Problem Formulation

Consider a set D = {Li}mi=1 of ordered sets (referred to
as lists below). Each list Li = (di,1, . . . , di,ni) consists of
ni items di,j = (xi,j , ri,j) ∈ Rl × R. In terms of practice,
list Li corresponds to the set of candidate items retrieved
in a particular context of user-system interaction; an item
d = (x, r) corresponds to a context-item pair represented
by the vector x = (x0, . . . , xl) of its l features and assigned
to a relevance value r unknown to the system; the items
in Li are distributed among multiple first stage search en-
gines. For convenience of notations, we assume that the
items of each set Li are ordered by increasing (w.l.o.g.) a
dedicated attribute x0 (i.e., x0i,1 ≤ . . . ≤ x0i,ni

), which may
correspond to publication time for news and social media
feeds or to price for product search engine. For popular con-
texts, the number of items ni may achieve millions. Lists Li

from D are i.i.d. samples from some distribution P on the
space L :=

∐∞
n=1(Rl ×R)n of lists of any length. Besides,

we are provided with some objective measure Q on lists,
which corresponds to a ranking quality measure in prac-
tice, e.g., DCG, Expected Reciprocal Rank (ERR) (Chapelle
et al., 2009), Rank-Biased Precision (RBP) (Moffat & Zobel,
2008). Its value is determined by only the vector of item rel-
evance values: Q((x1, r1), . . . , (xn, rn)) = qn(r1, . . . , rn)
for some qn : Rn → R which is naturally required to be
non-decreasing w.r.t. each argument ri 3.

3Note that ri is relevance to the user needs, which, in particular,
may include a user intent to see results with better values of x0

i .
Therefore, ri may correlate with x0

i to some extent.

Learning to Select for a Predefined Ranking

We define a selection algorithm as a feature-based binary
decision rule F : Rl → {0, 1} and define the result of
its application to a list Li to be the selected list LF

i :=
(di1 , . . . , dik), where i1 < . . . < ik and {i1, . . . , ik} =
{i ∈ [1, n] : F (xi) = 1}. We formulate the problem of
learning to select with order (LSO) as learning from D a
selection algorithm F that maximizes the expected rank-
ing quality of selected list LF , where the original list L is
sampled from P:

F ∗ = argmax
F

EL∼P Q(LF) (1)

2.3. Analysis

In the usual LTR problem with most ranking quality mea-
sures, the optimal list is the list of items ordered by decreas-
ing relevances. In LSO problem, the structure of the optimal
solution is not so simple (see the example from Introduc-
tion). Here we provide some intuition on its properties.

In Section 1 of the supplementary material, we formulate
some natural requirements for an objective measure Q and
prove the following proposition under them:

Proposition 1 The optimal selection for a set L =
(d1, . . . , dn) has the form F (di) = 1{ri > t(i)}, where
t(·) is a non-increasing threshold function.

The following corollary can be immediately derived:

Corollary 1 If some item di is selected, all items dj with
lower positions (i.e. x0j > x0i) that have at least the same
relevance (rj ≥ ri) should also be selected.

Informally, the optimal selection algorithm should be gener-
ally more selective at the top of the list than at the bottom.

3. Related Work
To the best of our knowledge, the only studied selection
algorithm applicable within large-scale systems is the cut-
off approach that selects either top-k items by predicted
relevance or items with a predicted relevance higher than
a threshold b. This approach has linear time complexity
and is widely used in different application tasks, includ-
ing microblog retrieval (Hasanain et al., 2015), static index
pruning (Carmel et al., 2001) or pruning items in a retrieval
process (Wang et al., 2011). The cutoff approach can often
be strengthened by tuning it specifically for each context
(e.g., a user query). This is commonly performed by utiliz-
ing context features to predict the optimal value of either
k (rank cutoff) (Hasanain et al., 2015; Wang et al., 2011)
or b (score cutoff) (Carmel et al., 2001; Wang et al., 2011).
According to our analysis in Section 2.3, even the best cutoff
threshold is too crude: its decision depends only on rele-
vance ri of the item di and does not take into account its
position i (see Proposition 1 and the example in Section 1).

In the assumption that relevances are known, the LSO prob-
lem can be seen as a combinatorial optimization task.4 In
the case of additive objective measureQ, Spirin et al. (2015)
proposed an exact solving algorithm to this task, with time
complexityO(n2) where n is the number of candidate items.
We refer to this algorithm as Exact Quadratic Complexity
Algorithm (EQA). In a dynamic programming fashion, it
goes from top to bottom over a list L = (d1, . . . , dn) and
obtains, for each i, j ∈ [1, n], the best sublist Li,j of length
j of the list (d1, . . . , di) of length i. The list Li,j is obtained
as the best one among Li−1,j and Li−1,j−1 _ (di) ("_"
means concatenation). For the practical setting of unknown
relevances, Spirin et al. (2015) applied EQA to predicted
relevances learned using MSE loss. This approach is global
and, moreover, has quadratic complexity in the number of
items, what makes it inapplicable within a distributed system
architecture (see Section 2.1). In the setting of global selec-
tion problem this approach is still not necessarily the best
possible solution, because it is not end-to-end. In particular,
the choice of the loss function (MSE in Spirin et al. (2015))
could be adapted to the listwise objective function Q. In
LTR, listwise algorithms significantly outperform pointwise
ones (Liu et al., 2009a). In this paper, we propose a direct
optimization approach to the local LSO problem.

4. Approach
In the below-described approaches, we propose several loss
functions designed for LSO problem. These losses can
be used in combination with any gradient-based machine
learning algorithm including gradient boosting and any para-
metric model (neural networks, linear models, and others).
For this section, it is important that such algorithms rely on
calculating the gradient of the loss function w.r.t. predictions
of the currently built model on training examples.

4.1. Prediction of the Optimal Decision

First, we suggest to build a model M that predicts, based
on item features, the decision of EQA on this item (see
Section 3). For this purpose, we can apply EQA offline to
the item sets of a training dataset D with known relevance
labels ri,j (recall that running EQA online is impossible).
As a result, we obtain the optimal binary decision Opti,j
for each item di,j . Then we train a binary classifier M on
the training examples {(xi,j , Opti,j)}i: Li∈D, j=1..ni

to be
a LogitBoost model (Friedman et al., 2000) (state-of-the-
art classification model) by maximizing log-likelihood (i.e.,
minimizing logistic loss).

Having the model M learned, we define the selection al-
gorithm FM on its basis as FM (x) = 1{M(x) > trelconst},
where M(x) is the model prediction for the feature vector

4As LTR with known relevances reduces to a sorting task.

Learning to Select for a Predefined Ranking

x, the threshold trelconst is a constant hyperparameter of FM ,
and 1{A} denotes the indicator of the event A.

In comparison with the cutoff approach with a predicted
threshold described in Section 3, this approach, referred
further as OSP (Optimal Selection Predictor), uses the opti-
mal selection as a target, instead of the best cutoff selection.
Thus, we expect its performance in terms of the objective
EL∼P Q(LF) of LSO problem (1) to be higher than one of
the cutoff approach. However, the loss function optimized
by OSP (namely, logistic loss) is still not directly related to
the objective EL∼P Q(LF). In particular, the value of the
loss on an item does not depend on the item position in the
selected list (while depends only on the binary decision of
EQA and on the probability predicted by OSP). At the
same time, the impact of an error on the objective measure
decreases with i (e.g., as 1

log(i+1) in the case of DCG). This
effect resembles the weak points of pointwise approach to
LTR (Liu et al., 2009b, Section 2.5.2).

4.2. Direct Optimization of the Objective Measure

Smoothing the objective measure Motivated by the
above-described drawback of the cutoff and OSP ap-
proaches, we propose to construct selection algorithms F
by direct optimization of the objective EL∼P Q(LF). To
apply gradient-based optimization methods, we first need
to allow scores F (x) to take any values in some continuous
space, while F (x) ∈ {0, 1} in Equation 1. A straightfor-
ward solution is to define the selected list LF on the basis
of such scores M(x) by a threshold-based selection rule:

F (x) = 1{M(x) > t} (2)

for some t ∈ R, i.e., items with scores above the threshold
t are selected (as it was proposed in the OSP algorithm).
However, in this case, the objective measure Q is a discon-
tinuous function of the scores M(x), while we need it to be
differentiable. The same problem for ranking quality mea-
sures in LTR was addressed in previous papers (Chapelle
& Wu, 2010; Wu et al., 2009; Valizadegan et al., 2009).
But, though a given ranking quality measure (e.g., DCG)
provides one function of relevances of the items of the re-
sulting list, it corresponds to different functions of the vector
of candidate item scores in LTR and LSO problems. Indeed,
the resulting list of items and, thus, of their relevances, is
formed on the basis of that vector differently: by ranking
by item scores for LTR and by threshold-based selection for
LSO. So, a direct application of the proposed smoothing
methods to LSO is impossible.

Note that a selection algorithm F (x) is a binary classifier,
which decides, upon item features x, whether to select the
item out. This encourages us to adapt to our problem the
smoothing technique being state-of-the-art for the binary
classification problem and used as a component of the Logit-

Boost and logistic regression models (Chapelle et al., 2015).
Namely, we assume the decision F (d) on an item d with fea-
tures xd to be a Bernoulli random variable with sigmoid de-
pendence of the parameter on the score function f : Rl → R
associated with the selection algorithm F :

P (F (d) = 1) = σ(f(xd)) =
1

1 + exp(−f(xd))

Besides, we naturally assume that decisions F (d) for dif-
ferent items d are generated independently. We denote the
space of so-defined stochastic selection algorithms by F .

Then, for a selection algorithm F ∈ F and a list L =
(d1, . . . , dn) of items di = (xi, ri), the selected list LZ :=
{di : Zi = 1, i = 1, . . . , n} is random with the following
distribution PF of the random vector of selection decisions
Z = (Z1, . . . , Zn), Zi ∈ {0, 1}:

PF (z) =

n∏
i=1

pzii (1− pi)1−zi (3)

Further, the objective measureQ is naturally extended to the
measure Qsmooth : F × L → R by taking the expectation
of Q w.r.t. randomness of the selected list LZ :

Qsmooth(F,L) = EZ∼PF
Q(LZ) =

∑
z∈{0,1}n

Q(Lz)PF (z)

Consequently, the LSO problem is transformed to maximiza-
tion of the expectation of Qsmooth(F,L) w.r.t. randomness
of the original list L on the space F :

F ∗ = argmax
F∈F

EL∼D Qsmooth(F,L)

The gradient of Qsmooth w.r.t. the model prediction f(xj)
on an item dj , j = 1..n, required by the GD-based opti-
mization algorithm is expressed as follows:

∂Qsmooth(F,L)

∂f(xj)
= EZ∼PF

Q(LZ)(−pj)1−Zj (1−pj)Zj

(4)

Since precise calculation of this expression includes sum-
mation of 2n components, its execution for each training
item dj at each iteration of the GD-based optimization al-
gorithm is infeasible in a standard production environment.
To address this problem, we suggest two approaches.

Policy Gradient The first approach aims to estimate the
expectation in Equation 4 by Monte Carlo sampling of lists
LZ according to distribution PF (z) from Equation 3. This
method is known as likelihood ratio method (Glynn, 1990)
in the case of a more general problem which is to estimate
the gradient of the expectation of a reward function (Q in

Learning to Select for a Predefined Ranking

the case of LSO) of a random variable (list LZ in the case
of LSO). The optimization algorithm based on this method
is known as policy gradient (Williams, 1992).

Since such an estimate of the gradient has a high vari-
ance, the trick with using reward baseline b was pro-
posed (Williams, 1992): by considering the rewardQ′(L) =
Q(L)− b instead of Q(L) in the gradient estimation proce-
dure, we keep this estimation unbiased but enable reducing
its variance by using an appropriate baseline b. Indeed, in-
tuitively, the variable (Q(LZ) − b)(−pj)1−Zj (1 − pj)Zj

from Equation 4 has a lower variance when the mean of the
variable (Q(LZ)− b) is closer to zero, since the multiplier
(−pj)1−Zj (1 − pj)Zj changes its sign with Zj , while the
value Q(LZ) weakly depends on Zj . See (Kimura et al.,
1995) for the detailed analysis.

It motivates us to consider the expectation or the median of
the distribution of Q(LZ) for a baseline, which would be
specific for each selection algorithm F and each original
list L. However, their precise estimation, again, requires
many samples of LZ and, thus, is infeasible. Hence, we
use for b the mode of the distribution of Q(LZ), which
is equal to Q(Lz0.5

F
), where z0.5F is the vector of the most

probable selection decisions for each item according to the
predicted probabilities pi, i.e., z0.5F,i = 1{pi > 0.5}. Note-
worthy, Lz0.5

F
is the selected list we would choose if we

apply to the list L the threshold-based selection relying on
the predicted probability σ(f(x)) as onM(x) in Equation 2
with the threshold t = 0.5. With such defined baseline, our
estimate of the gradient on one sampled list Lz is equal
to (Q(Lz)−Q(Lz0.5

F
))(−pj)1−zj (1− pj)zj . Naturally, it

votes for shifting the probability pj towards the decision zj
and, thus, for increasing the probability of the list Lz iff
its quality Q(Lz) is higher than the quality Q(Lz0.5

F
) of the

currently chosen list for the threshold t = 0.5.

As a result, the Policy Gradient approach relies on the fol-
lowing gradient estimate:

ˆ∂Qsmooth

∂f(xj)
=

1

s

s∑
i=1

(Q(Lz(i))−Q(Lz0.5
F

))(−pj)(
1− pj
−pj

)z
(i)
j

(5)
where lists Lz(1) , . . . , Lz(s) are sampled according to PF (z)
independently and s is the number of samples to be a hyper-
parameter of the gradient estimation procedure.

Lower Bound Optimization Another approach is to ap-
proximate the objective Qsmooth by another function of the
model predictions f(xj) with a gradient exactly calculated
with low time complexity. For this purpose, we consider
the most practical case of an additive objective measure
Q(d1, . . . , dn) =

∑n
i=1 riwi with wi being a convex func-

tion of the position i. For example, DCG and RBP satisfy
this condition. In this case, by transferring the idea sug-
gested in (Valizadegan et al., 2009) for LTR, the objective

Qsmooth can be lower-bounded by the following measure:

Qlow
smooth(F,L) =

n∑
i=1

ripiw(1 +
∑
j<i

pj),

where w(i) is an alternative notation for wi. Indeed, us-
ing the expression 1 +

∑
j<i F (xj) for the position of the

item di in the selected list (in the case of including the item
in the list) and applying the Jensen inequality provide

Qsmooth =

n∑
i=1

ripiEFw(1 +
∑
j<i

F (xj))

≥
n∑

i=1

ripiw(EF (1 +
∑
j<i

F (xj))) = Qlow
smooth

The gradients of the objective Qlow
smooth follow the equation:

∂Qlow
smooth

∂f(xj)
= σ′(f(xj))

(
rjw(1 +

∑
l<j

pl)

+

n∑
i=j+1

ripiw
′(1 +

∑
l<i

pl)

)
(6)

Notably, all the gradients {∂Q
low
smooth

∂f(xj)
}nj=1 can be calcu-

lated with the same asymptotic time complexity as one of
them, O(n): we use O(n) steps to obtain {

∑
l<i

pl}ni=1, then

O(n) operations to calculate {
n∑

i=j+1

ripiw
′(1+

∑
l<i

pl)}nj=1

and, finally, O(n) operations to obtain the gradients.

Overall, this approach estimates gradients of the measure
Qsmooth with a non-zero bias, but with the zero variance,
while the Policy Gradient approach does it unbiasedly with
a non-zero variance. Thus, it is not clear a priori which
approach is more effective.

Having the model f(x) learned, we no longer need to model
the selection decision F (x) stochastically. Hence, we define
it deterministically by threshold-based rule from Equation 2,
where we use σ(f(x)) for M(x).

Our implementation of all the proposed approaches is de-
scribed in Section 5.

4.3. Fighting Local Extremum

However, in the LSO problem, both above-described ap-
proaches of direct optimization face an important issue: both
objectives Qsmooth and Qlow

smooth as functions in the space
of model predictions f(xi) on the training examples may
have local maximum points which do not correspond to the
global maximum5. As our experimental results demonstrate

5For a parametric model f(xi) = g(w, xi), a point f0 of
extremum in the space of model predictions f(xi) corresponds to
an extremum in the space of parameters w if g(w, x) is continuous
w.r.t. w and the point f0 lays in the value domain of g(w, x)

Learning to Select for a Predefined Ranking

(see Section 6), this issue is crucial for effective learning of
selection algorithms described in Section 4.2. The following
theorem shows that such local maximum points are possible
even in the case of the only list, i.e. P is concentrated at it
(see Section 2 of the supplementary for the proof).

Theorem 1 In the LSO problem with a quality measure
Q(d1, . . . , dn) =

∑n
i=1 riwi:

1) If the weight wi is a logarithmically convex (concave)
function of the position i, i.e., wi/wi+1 > (<) wi+1/wi+2

∀i ∈ N, there exist a list L = (d1, . . . , dn) and a selec-
tion algorithm F such that F provides a local but not the
global maximum for G1(f1, . . . , fn) = Qsmooth(F,L) and
G2(f1, . . . , fn) = Qlow

smooth(F,L) (where fi = f(xi)) in
the space C1(Rn), where the distribution P of the original
list is concentrated at the list L, i.e., P(L) = 1.
2) If {wi, i ∈ N} is the geometric progression, i.e.,
wi/wi+1 = const, then for any list L, in the case P(L) = 1,
the global maximum of G1(f1, . . . , fn) and G2(f1, . . . , fn)
is the only local one.

In particular, the conditional of logarithmically convex
weights is valid for DCG. Thus, GD-based approaches of
its direct optimization may wrongly converge to points of
local maximum. Note that, in the case of algorithms scoring
each item individually, this problem is specific for LSO in
comparison with LTR, where any loss function has the only
local minimum. Indeed, for a point L (a ranked list of items)
different from the global optimum point L∗, there is a pair
of neighbor items in L ranked differently from L∗. Then we
can swap only these two items by changing only the model
prediction for one of them and thus improve the ranking
quality. Thus, the point L is not a local minimum.

At the same time, in the OSP approach, the loss function
(logistic loss) is convex w.r.t. predictions f(xi) and the
target is the globally optimal decision in terms of Qsmooth

too. Thus, the opposite to the loss of OSP can be consid-
ered as a convex approximation of Qsmooth in the space
of model predictions f(xi). Motivated by this, we suggest
a combined approach to the LTR problem: first, to learn
OSP selection algorithm and then to improve it by direct
optimization. Intuitively, OSP learns a model close to mini-
mum of its loss function (on Figure 1, this moves us from
initial point F0 to the point F1) ignoring points of local
maximum of Qsmooth located near to its path, and then di-
rect optimization climbs the closest local (ideally, also the
global) maximum of Qsmooth (in terms of Figure 1, this
moves us from the point F1 to the point F2). In order to
regulate the confidence of the direct optimization proce-
dure in the prior decisions on the training items provided by
OSP , we start this procedure from scaled model predictions
f ′(xi) =M · f(xi), where f(xi) is the prediction of OSP
and M is a scale parameter to be fitted.

Figure 1. Schematic illustration of two steps of learning: (i) OSP:
optimize the convex approximation of Qsmooth (logistic loss) and
(ii) directly optimize Qsmooth

5. Experimental Settings
Data We collected our data from the live stream of search
queries submitted in October-November 2017 to a popular
product search engine Yandex.Market6 aggregating offers
of products from online shops and serving millions of user
queries daily. We considered only queries for which the user
chose ordering by price in ascending order and sampled
a set D of 30K of them. In terms of Section 2, an offer
corresponds to an item and the offer price corresponds to
the dedicated attribute. For each query, we considered only
top-500 cheapest candidate offers from tens of thousands
of offers (60K in average) chosen by a weak production
selection algorithm, which selects all the offers having at
least one word from the query in the name or in the descrip-
tion. Further, we randomly split all the queries from the
collected dataset D into 5 parts of equal size to run 5-fold
cross-validation: at each i of five runs, 80% of the queries
(Di

train) are used for training, 10% (Di
valid) are used for tun-

ing hyperparameters of the algorithms and 10% (Di
test) are

used for testing. The data with labels used for learning all
the models and for evaluation by DCG-RR (see description
of labels and metrics below) is available in open source 7.

Features In our experiments, we use (in all methods in-
cluding baselines) all the features of the Yandex.Market
ranker (see Section 3 of the supplementary for details).

However, in LSO, according to the form of the optimal
selection algorithm (see Proposition 1), it is useful to im-
plicitly predict not only the item relevance ri (as in LTR),
but also the position i of this item in the original ordered
list L and the threshold t(i) for this list, which depends on
the aggregated relevance of items located below in the list
L. Thus, we are motivated to construct features encoding
distributions of relevance and price over offers in L. Hence,
we added four features (for all methods including baselines)
to our experiments: models trained to predict the average

6https://market.yandex.ru
7https://research.yandex.com/datasets/market

Learning to Select for a Predefined Ranking

price (relevance) of top-1 and top-10 offers by production
relevance are referred as AvPricePred (AvRelPred).

Labels We use the relevance score of each item assigned
by the production ranker (referred as production relevance
below) as the predicted relevance in the baseline approaches
and as ground truth relevance in our approaches. See Section
5 of the supplementary for a detailed description.

Metrics For the preliminary analysis of the algorithms
to be compared, we, first, evaluate result pages with max-
imum length of 500 items. As the objective measure of
the result page quality in this case, we use the product
search specific version (reflecting the fact that users ex-
plore more items than in web search) of DCG with posi-
tion weights equal to reciprocal positions (reciprocal ranks)
and with production relevance ri used as relevance gains:
DCG-RR(r1, . . . , rk) =

∑k
i=1 ri/i.

For the major independent evaluation of the result page
relevance, we collected human relevance judgments of 5
grades (from 0 to 4) for top-10 results of each selected
list produced by the tested algorithms trained on D1

train and
applied to 2K queries fromD1

test. On this basis, we measure
DCG@10 and precision@10 (p@10) (the share of at least
partly relevant offers, i.e., ones with relevance labels 1, 2,
3 and 4, among top-10) and stup@12 (the share of stupid8

results among results of the first page).

Finally, most representative algorithms were compared in
online experiments that lasted for 3 days (resulted in 23K
unique users and 100K queries for each algorithm). For
evaluation, the following key production metrics are used:
click MRR (Craswell, 2009) (inverse of the position of the
first click; 0, if there are no clicks), abandonment (share of
queries without clicks) and CTR@12 (share of clicked re-
sults among top-12). Due to proprietary reasons, we present
only relative values of the online metrics.

Machine-learning algorithm For an ML algorithm for
all the approaches, we chose GBDT as the state-of-the-
art method for many practical tasks including the learning-
to-rank problem in web search (Chapelle & Chang, 2011;
Burges, 2010) and click prediction (Konig et al., 2009; Trofi-
mov et al., 2012). We use GBDT implementation in open-
sourced CatBoost9 Python package, since it outperforms
the most popular alternatives, XGBoost (Chen & Guestrin,
2016) and LightGBM (Ke et al., 2017), according to the
comparison by Prokhorenkova et al. (2018).

To obtain a formal description of the learning algorithm for a
particular loss function, one should replaceL in Algorithm 3
in (Prokhorenkova et al., 2018) by that loss. The whole

8a special sub-class of irrelevant results, which represent ex-
treme/confusing irrelevance

9https://catboost.ai

source code of our learning algorithm and its difference
from CatBoost release 0.10.04 are available10. Later, it was
added to CatBoost as StochasticFilter loss11. See Section 4
of the supplementary for CatBoost parameters we used.

Algorithms to be tested
– Oracle: finds the optimal list by applying EQA (see Sec-
tion 3) to ground truth relevance labels for optimizing DCG-
RR. Oracle provides the ideal list. However, in practice,
we do not have ground truth labels and cannot apply EQA
to a large database.

Baselines described in Sections 1 and 3:
– WeakCutoff : selects all the items from Li. Note that
they were retrieved by the above-described weak production
cutoff-based selection.
– ConstCutoff : selects items with relevance predictions
above a constant threshold trelconst fitted on Di

train ∪Di
valid

(see Table 3 in the supplementary for fitted values of this
and below-described thresholds);
–QueryCutoff : for a query q, selects items with relevance
predictions above the threshold trel(q), which is predicted
using query features by a model trained by minimizing MSE
on Di

train ∪Di
valid with the optimal relevance thresholds as

targets 12.

Our approaches, proposed in Section 4, each selects items
with the predicted probability above a constant threshold
tprobconst and uses DCG-RR for objective measure Q:
– OSP (Optimal Selection Predictor): the model trained to
predict decisions of the optimal selection (see Section 4.1).
– PG (Policy Gradient): the model of prediction trained by
direct optimization of Qsmooth, a smoothed modification
of the original measure Q, with sampling-based gradient
estimation, starting from predictions f(xi) = 0.01 for all
the training examples (see Section 4.2).
– LBO (Lower Bound Optimization): the model of pre-
diction trained by direct optimization of Qlow

smooth, a lower
bound for Qsmooth, starting from predictions f(xi) = 0.01
(see Section 4.2).
– OSP + PG / OSP + LBO: the model of prediction
trained as OSP during first n1 ≤ 500 iterations and then,
after prediction transformation, trained as PG/LBO during
the remaining n2 ≤ 500 iterations (n1 and n2 to be fitted),
see Section 4.3. Thus, this approach uses the same limit
of 1000 training iterations as other ML-based approaches.
The fitted values of the scale parameter M are 2 and 1 re-
spectively. The number s of sampled selected lists per each
training list in the gradient estimation by Equation 5 was set
to s = 1, since several samples did not improve the quality
in our experiments.

10https://github.com/TakeOver/catboost/tree/0.10.4_release
11https://github.com/catboost/catboost/commit/df18d16
12The optimal threshold is defined as the average of the mini-

mum relevance among items selected by Oracle and the maximum
relevance among the excluded ones

https://catboost.ai

Learning to Select for a Predefined Ranking

Table 2. Performance, absolute for WeakCutoff and relative ∆
to WeakCutoff , % for others

Approach DCG-RR DCG@10 p@10 stup@12

WeakCutoff 0.52 1.07 0.73 0.06

ConstCutoff 0.05% 2.9% 1.6% -11.7%
QueryCutoff 0.56% 6.3% 4.3% -17.5%
OSP 3.86% 20.3% 10.7% -33.2%
OSP + LBO 4.17% 22.4% 12.0% -37.6%
OSP + PG 4.33% 22.4% 12.2% -36.8%
Oracle 14.44%

Table 3. Online performance, relative ∆ to WeakCutoff , %

Approach Abandonment CTR@12 MRR

QueryCutoff -1.4% 8.7% 5.7%
OSP -4.5% 19.7% 24.6%
OSP + PG -5.1% 24.8% 36.3%

6. Experimental Results
Analysis of the local extremum problem First, we re-
port that the LBO and PG algorithms with the fitted pa-
rameters differ from WeakCutoff negligibly: their train-
ing processes started from the decisions of WeakCutoff
(f(x) = 0.01) and almost did not change these deci-
sions (the learned algorithms exclude 0 and 0.2 items per
query respectively). When we initialized decisions by
f(x) = −0.01, both learned algorithms did not achieve
even the quality of WeakCutoff . To demonstrate the
problem of local extremum, discussed in Section 4.3, more
explicitly, we define hard items di for a given stochastic
selection algorithm as ones for which the selection deci-
sion is rather confident with |pi − 0.5| > 0.25, is globally
suboptimal (i.e., does not coincide with one of Oracle),
but locally optimal (i.e., optimal given fixed selection deci-
sions on other items). The average number of hard items
per list Nhard is presented in Table 3 in the supplemen-
tary. Clearly, LBO and PG greatly suffer from hard items:
while Oracle excludes 78.9 items per list, 62.6 and 58.9 of
them are hard for that filters respectively. Thus, the local
extremum problem strongly prevents effective direct opti-
mization of Qsmooth. Since Nhard = 16.9 is rather small
forOSP , it seems attractive to start direct optimization from
this algorithm. Notably, starting from OSP , both LBO and
PG even decrease the number of hard items (Nhard = 6.1
and 10.6), i.e., correct mistakes of OSP .

Main results The results of offline experiments are pre-
sented in Table 2. Obviously, ConstCutoff approach is
superior in comparison with WeakCutoff in terms of all
the metrics. However, the additional gain from upgrading
it to QueryCutoff is even more impressive, what empha-

sizes importance of query features in LSO. Indeed, they
contain information about relevance and price distributions
over candidate offers, which is useful in LSO according to
our intuition for feature construction described in Section 5.

Next, OSP provides an outstanding increase of all the met-
rics. The reason is that it has the optimal selection as a target
and is not restricted by any crude assumptions about depen-
dence t(i) of relevance threshold on the item position i (in
terms of Proposition 1), in contrast to the cutoff approaches
assuming t(i) = const for each given query.

Finally, both combined approaches OSP + LBO and
OSP + PG remarkably outperform OSP , confirming
our intuition about the advantages of their components de-
scribed in Section 4.3. Among two combined approaches,
OSP + PG performs slightly better with significant differ-
ence only for p@10 13. Thus, variance of the PG gradient
estimation reduced by means of our reward baseline, is a
smaller issue than the bias of the gradient estimate in LBO.
All the other pairwise comparisons between algorithms in
Table 2 are significant 13. Being normalized w.r.t. Oracle,
quality of OSP + PG in terms of DCG-RR is 0.91.

In our online experiments, we compare QueryCutoff ap-
proach as the strongest baseline, OSP as an ML-based
approach without restrictive model assumptions and OSP +
PG as our best approach. The results are presented in Ta-
ble 3 and confirm all the previous conclusions. All the pair-
wise comparisons are significant 13, except for OSP + PG
vs OSP for Abandonment metric.

Feature analysis See Section 3 of the supplementary for
feature analysis. In particular, it shows that the new features,
we constructed specifically for the LSO task, remarkably
increase the quality of OSP + PG. This confirms our
intuition for feature construction proposed in Section 5.

7. Conclusions
Based on a new machine-learning setting of the selection
task, we proposed two effective and practically feasible
theoretically-based approaches to LSO. Their construction
includes (i) smoothing the original objective function Q by
Qsmooth, (ii) approximation of Qsmooth by a convex surro-
gate to avoid local extremes and (iii) two ways to overcome
an exponential (w.r.t. the number of training examples) com-
plexity of calculation of the Qsmooth gradient for its direct
optimization. The selection algorithms produced by these
approaches for the large-scale product search engine dra-
matically outperform the baselines in our offline and online
experiments in terms of all key search quality metrics.

13p-value< 0.05 for one-tailed paired t-test

Learning to Select for a Predefined Ranking

References
Burges, C. J. From ranknet to lambdarank to lambdamart:

An overview. Technical report, June 2010.

Carmel, D., Cohen, D., Fagin, R., Farchi, E., Herscovici,
M., Maarek, Y. S., and Soffer, A. Static index prun-
ing for information retrieval systems. In Proceedings of
the 24th annual international ACM SIGIR conference on
Research and development in information retrieval, pp.
43–50. ACM, 2001.

Chapelle, O. and Chang, Y. Yahoo! learning to rank chal-
lenge overview. In Yahoo! Learning to Rank Challenge,
pp. 1–24, 2011.

Chapelle, O. and Wu, M. Gradient descent optimization
of smoothed information retrieval metrics. Information
retrieval, 13(3):216–235, 2010.

Chapelle, O., Metlzer, D., Zhang, Y., and Grinspan, P. Ex-
pected reciprocal rank for graded relevance. In Proceed-
ings of the 18th ACM conference on Information and
knowledge management, pp. 621–630. ACM, 2009.

Chapelle, O., Manavoglu, E., and Rosales, R. Simple
and scalable response prediction for display advertising.
ACM Transactions on Intelligent Systems and Technology
(TIST), 5(4):61, 2015.

Chen, T. and Guestrin, C. Xgboost: A scalable tree boosting
system. In Proceedings of the 22nd acm sigkdd inter-
national conference on knowledge discovery and data
mining, pp. 785–794. ACM, 2016.

Craswell, N. Mean reciprocal rank. In Encyclopedia of
Database Systems, pp. 1703–1703. Springer, 2009.

Friedman, J., Hastie, T., Tibshirani, R., et al. Additive
logistic regression: a statistical view of boosting (with
discussion and a rejoinder by the authors). The annals of
statistics, 28(2):337–407, 2000.

Glover, E. J., Lawrence, S., Birmingham, W. P., and Giles,
C. L. Architecture of a metasearch engine that supports
user information needs. In Proceedings of the eighth
international conference on Information and knowledge
management, pp. 210–216. ACM, 1999.

Glynn, P. W. Likelihood ratio gradient estimation for
stochastic systems. Communications of the ACM, 33
(10):75–84, 1990.

Hasanain, M., Elsayed, T., and Magdy, W. Improving tweet
timeline generation by predicting optimal retrieval depth.
In Asia Information Retrieval Symposium, pp. 135–146.
Springer, 2015.

Järvelin, K. and Kekäläinen, J. Cumulated gain-based evalu-
ation of ir techniques. ACM Transactions on Information
Systems (TOIS), 20(4):422–446, 2002.

Ji, S., Zhou, K., Liao, C., Zheng, Z., Xue, G.-R., Chapelle,
O., Sun, G., and Zha, H. Global ranking by exploiting
user clicks. In Proceedings of the 32nd international
ACM SIGIR conference on Research and development in
information retrieval, pp. 35–42. ACM, 2009.

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma,
W., Ye, Q., and Liu, T.-Y. Lightgbm: A highly efficient
gradient boosting decision tree. In Advances in Neural
Information Processing Systems, pp. 3149–3157, 2017.

Kimura, H., Yamamura, M., and Kobayashi, S. Reinforce-
ment learning by stochastic hill climbing on discounted
reward. In Machine Learning Proceedings 1995, pp. 295–
303. Elsevier, 1995.

Konig, A. C., Gamon, M., and Wu, Q. Click-through pre-
diction for news queries. In Proceedings of the 32nd
international ACM SIGIR conference on Research and
development in information retrieval, pp. 347–354. ACM,
2009.

Liu, T.-Y. et al. Learning to rank for information retrieval.
Foundations and Trends R© in Information Retrieval, 3(3):
225–331, 2009a.

Liu, T.-Y. et al. Learning to rank for information retrieval.
Foundations and Trends R© in Information Retrieval, 3(3):
225–331, 2009b.

Moffat, A. and Zobel, J. Rank-biased precision for mea-
surement of retrieval effectiveness. ACM Transactions on
Information Systems (TOIS), 27(1):2, 2008.

Patel, M. B. and Shah, D. D. Meta search ranking strate-
gies. International Journal of Information and Computing
Technology (RESEARCH@ ICT) ISSN, 976(5999):24–25,
2011.

Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A. V.,
and Gulin, A. Catboost: unbiased boosting with cat-
egorical features. In Advances in Neural Information
Processing Systems, pp. 6639–6649, 2018.

Schurman, E. and Brutlag, J. The user and business impact
of server delays, additional bytes, and http chunking in
web search. In Velocity Web Performance and Operations
Conference, 2009.

Spirin, N. V., Kuznetsov, M., Kiseleva, J., Spirin, Y. V., and
Izhutov, P. A. Relevance-aware filtering of tuples sorted
by an attribute value via direct optimization of search
quality metrics. In Proceedings of the 38th International
ACM SIGIR Conference on Research and Development
in Information Retrieval, pp. 979–982. ACM, 2015.

Learning to Select for a Predefined Ranking

Trofimov, I., Kornetova, A., and Topinskiy, V. Using
boosted trees for click-through rate prediction for spon-
sored search. In Proceedings of the Sixth International
Workshop on Data Mining for Online Advertising and
Internet Economy, pp. 2. ACM, 2012.

Valizadegan, H., Jin, R., Zhang, R., and Mao, J. Learning to
rank by optimizing ndcg measure. In Bengio, Y., Schuur-
mans, D., Lafferty, J. D., Williams, C. K. I., and Culotta,
A. (eds.), Advances in Neural Information Processing
Systems 22, pp. 1883–1891. Curran Associates, Inc.,
2009. URL http://papers.nips.cc/paper/
3758-learning-to-rank-by-optimizing-ndcg-measure.
pdf.

Wang, L., Lin, J., and Metzler, D. A cascade ranking model
for efficient ranked retrieval. In Proceedings of the 34th
international ACM SIGIR conference on Research and de-
velopment in Information Retrieval, pp. 105–114. ACM,
2011.

Williams, R. J. Simple statistical gradient-following algo-
rithms for connectionist reinforcement learning. Machine
learning, 8(3-4):229–256, 1992.

Wu, M., Chang, Y., Zheng, Z., and Zha, H. Smoothing dcg
for learning to rank: A novel approach using smoothed
hinge functions. In Proceedings of the 18th ACM con-
ference on Information and knowledge management, pp.
1923–1926. ACM, 2009.

http://papers.nips.cc/paper/3758-learning-to-rank-by-optimizing-ndcg-measure.pdf
http://papers.nips.cc/paper/3758-learning-to-rank-by-optimizing-ndcg-measure.pdf
http://papers.nips.cc/paper/3758-learning-to-rank-by-optimizing-ndcg-measure.pdf

